As a continuation of the programme of [13], we carry out explicit computations of , the quantum isometry group of the canonical spectral triple on coming from the word length function corresponding to a finite generating set S, for several interesting examples of not covered by the previous work [13]. These include the braid group of 3 generators, etc. Moreover, we give an alternative description of the quantum groups and (studied in [3], [4]) in terms of free wreath product. In the last section we give several new examples of groups for which turns out to be a doubling of .
Mots clés : Compact quantum group, Quantum isometry group, Spectral triple
Arnab Mandal 1
@article{AMBP_2016__23_2_219_0, author = {Arnab Mandal}, title = {Quantum isometry group of dual of finitely generated discrete groups - {II}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {219--247}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {23}, number = {2}, year = {2016}, doi = {10.5802/ambp.361}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.361/} }
TY - JOUR AU - Arnab Mandal TI - Quantum isometry group of dual of finitely generated discrete groups - II JO - Annales mathématiques Blaise Pascal PY - 2016 SP - 219 EP - 247 VL - 23 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.361/ DO - 10.5802/ambp.361 LA - en ID - AMBP_2016__23_2_219_0 ER -
%0 Journal Article %A Arnab Mandal %T Quantum isometry group of dual of finitely generated discrete groups - II %J Annales mathématiques Blaise Pascal %D 2016 %P 219-247 %V 23 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.361/ %R 10.5802/ambp.361 %G en %F AMBP_2016__23_2_219_0
Arnab Mandal. Quantum isometry group of dual of finitely generated discrete groups - II. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 219-247. doi : 10.5802/ambp.361. https://ambp.centre-mersenne.org/articles/10.5802/ambp.361/
[1] Quantum automorphism groups of small metric spaces, Pacific J. Math., Volume 219 (2005) no. 1, pp. 27-51 | DOI
[2] Two parameter families of quantum symmetry groups, J. Funct. Anal., Volume 260 (2011) no. 11, pp. 3252-3282 | DOI
[3] Quantum isometry groups of duals of free powers of cyclic groups, Int. Math. Res. Not., Volume 2012 (2012) no. 9, pp. 2094-2122
[4] Quantum symmetry groups of -algebras equipped with orthogonal filtrations, Proc. Lond. Math. Soc. (3), Volume 106 (2013) no. 5, pp. 980-1004 | DOI
[5] Fusion rules for quantum reflection groups, J. Noncommut. Geom., Volume 3 (2009) no. 3, pp. 327-359 | DOI
[6] Quantum group of orientation preserving Riemannian isometries, J. Funct. Anal., Volume 257 (2009) no. 8, pp. 2530-2572 | DOI
[7] Quantum isometry groups of noncommutative manifolds associated to group - algebras, J. Geom. Phys., Volume 60 (2010) no. 10, pp. 1474-1489 | DOI
[8] Quantum automorphism groups of finite graphs, Proc. Am. Math. Soc., Volume 131 (2003) no. 3, pp. 665-673 | DOI
[9] Free wreath product by the quantum permutation group, Algebr. Represent. Theory, Volume 7 (2004) no. 4, pp. 343-362 | DOI
[10] Noncommutative Geometry, Academic Press, 1994, xiii+661 pages
[11] Quantum group of isometries in classical and noncommutative geometry, Commun. Math. Phys., Volume 285 (2009) no. 1, pp. 141-160 | DOI
[12] Existence and examples of quantum isometry groups for a class of compact metric spaces, Adv. Math., Volume 280 (2015), pp. 340-359 | DOI
[13] Quantum isometry group of dual of finitely generated discrete groups and quantum groups (2015) (https://arxiv.org/abs/1408.5683)
[14] Quantum isometry groups of symmetric groups, Int. J. Math., Volume 23 (2012) no. 7, p. 1250074-1-1250074-25 | DOI
[15] Notes on compact quantum groups, Nieuw. Arch. Wisk., Volume 16 (1998) no. 1-2, pp. 73-112
[16] Semi-direct products of Hopf algebras, J. Algebra, Volume 47 (1977), pp. 29-51 | DOI
[17] Projective limits of quantum symmetry groups and the doubling construction of Hopf algebras, Infin. Dimens. Anal.Quantum probab. Relat. Top., Volume 17 (2014) no. 2, p. 1450012-1-1450012-27 | DOI
[18] Quantum isometry groups for Dihedral group , J. Geom. Phys., Volume 62 (2012) no. 9, pp. 1977-1983 | DOI
[19] Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI
[20] Quantum symmetry groups of finite spaces, Commun. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | DOI
[21] Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987), pp. 613-665 | DOI
Cité par Sources :