Optimal boundedness of central oscillating multipliers on compact Lie groups
Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 123-145.

Fefferman-Stein, Wainger and Sjölin proved optimal H p boundedness for certain oscillating multipliers on R d . In this article, we prove an analogue of their result on a compact Lie group.

DOI : 10.5802/ambp.307
Classification : 43A22, 43A32, 43B25, 42B25
Mots clés : Oscillating multiplier, $ H^{p}$ spaces, Compact Lie groups, Fourier series.

Jiecheng Chen 1 ; Dashan Fan 2

1 Department of Mathematics Zhejiang Normal University Jinhua, Zhejiang 321004 China
2 Department of Mathematics University of Wisconsin-Milwaukee Milwaukee, WI 53217 USA
@article{AMBP_2012__19_1_123_0,
     author = {Jiecheng Chen and Dashan Fan},
     title = {Optimal boundedness of central oscillating multipliers on compact {Lie} groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {123--145},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {1},
     year = {2012},
     doi = {10.5802/ambp.307},
     mrnumber = {2978316},
     zbl = {1255.43002},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.307/}
}
TY  - JOUR
AU  - Jiecheng Chen
AU  - Dashan Fan
TI  - Optimal boundedness of central oscillating multipliers on compact Lie groups
JO  - Annales mathématiques Blaise Pascal
PY  - 2012
SP  - 123
EP  - 145
VL  - 19
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.307/
DO  - 10.5802/ambp.307
LA  - en
ID  - AMBP_2012__19_1_123_0
ER  - 
%0 Journal Article
%A Jiecheng Chen
%A Dashan Fan
%T Optimal boundedness of central oscillating multipliers on compact Lie groups
%J Annales mathématiques Blaise Pascal
%D 2012
%P 123-145
%V 19
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.307/
%R 10.5802/ambp.307
%G en
%F AMBP_2012__19_1_123_0
Jiecheng Chen; Dashan Fan. Optimal boundedness of central oscillating multipliers on compact Lie groups. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 123-145. doi : 10.5802/ambp.307. https://ambp.centre-mersenne.org/articles/10.5802/ambp.307/

[1] G. Alexopoulos Oscillating multipliers on Lie groups and Riemannian manifolds, Tohoku Math. J., Volume 46 (1994), pp. 457-468 | DOI | MR | Zbl

[2] C. Bennett; R. Sharpley Interpolation of Operators, Pure and Applied Math., Academic Press, Florida, 1988 | MR | Zbl

[3] B. Blank; D. Fan H p spaces on compact Lie groups, Ann. Fac Sci. Toulouse Math., Volume 6 (1997), pp. 429-479 | DOI | Numdam | MR | Zbl

[4] W. R. Bloom; Z. Xu Approximation of H p functions by Bochner-Riesz means on compact Lie groups, Math. Z., Volume 216 (1994), pp. 131-145 | DOI | MR | Zbl

[5] J. Chen; D. Fan Central Oscillating Multipliers on Compact Lie Groups, Math. Z., Volume 267 (2011), pp. 235-259 | DOI | MR

[6] J. Chen; D. Fan; L. Sun Hardy Space Estimates on Wave Equations on Compact Lie Groups, J. Funct. Anal., Volume 259 (2010), pp. 3230-3264 | DOI | MR

[7] J. Chen; S. Wang Decomposition of BMO functions on normal groups, Acta. Math. Sinica (Ser. A, Volume 32 (1989), pp. 345-357 | MR | Zbl

[8] J. L. Clerc Bochner-Riesz means of H p functions (0<p<1) on compact Lie groups, Lecture Notes in Math., Volume 1234 (1987), pp. 86-107 | DOI | MR | Zbl

[9] R. Coifman; G. Weiss Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 569-645 | DOI | MR | Zbl

[10] L. Colzani Hardy space on sphere, Ph.D. Thesis, Washington University, St Louis, 1982

[11] M. Cowling; A.M. Mantero; F. Ricci Pointwise estimates for some kernels on compact Lie groups, Rend. Circ. Mat. Palerma, Volume 31 (1982), pp. 145-158 | DOI | MR | Zbl

[12] Y. Domar On the spectral synthesis problem for (n-1)-dimensional subset of n ,n2, Ark. Math., Volume 9 (1971), pp. 23-37 | DOI | MR | Zbl

[13] D. Fan Calderón-Zygmund operators on compact Lie groups, Math. Z., Volume 216 (1994), pp. 401-415 | DOI | EuDML | MR | Zbl

[14] C. Fefferman; E. M. Stein H p space of several variables, Acta Math., Volume 129 (1972), pp. 137-193 | DOI | MR | Zbl

[15] S. Giulini; S. Meda Oscillating multiplier on noncompact symmetric spaces, J. Reine Angew. Math., Volume 409 (1990), pp. 93-105 | EuDML | MR | Zbl

[16] R. H. Latter A characterization of H p ( n ) in terms of atoms, Studia Math., Volume 62 (1978), pp. 93-101 | EuDML | MR | Zbl

[17] W. Littman Fourier transforms of surface-carried measures and differentiability of surface average, Bull. Amer. Math. Soc., Volume 69 (1963), pp. 766-770 | DOI | MR | Zbl

[18] Michel Marias L p -boundedness of oscillating spectral multipliers on Riemannian manifolds, Ann. Math. Blaise Pascal, Volume 10 (2003) no. 1, pp. 133-160 | DOI | EuDML | Numdam | MR | Zbl

[19] A. Miyachi On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 28 (1981), pp. 267-315 | MR | Zbl

[20] P. Sjölin An H p inequality for strongly singular integrals, Math Z., Volume 165 (1979), pp. 231-238 | DOI | EuDML | MR | Zbl

[21] E. M. Stein Topics in Harmonic Analysis, Ann. of Math. Studies, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl

[22] S. Wainger Special trigonometric series in k dimensions, Mem. Amer. Math. Soc., 1965 | MR | Zbl

[23] G. N. Watson A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1922 | JFM | MR

Cité par Sources :