Local coordinates for SL(n,C)-character varieties of finite-volume hyperbolic 3-manifolds
[Coordonnées locales pour la variété des SL(n,C)-caractères des 3-variétés hyperboliques à volume fini]
Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 107-122.

Étant donnée une 3-variété hyperbolique à volume fini, on compose un relevé dans SL(2,C) de son holnomie avec la représentation irreductible et n-dimensionnelle de SL(2,C) dans SL(n,C). Dans cet article on donne des coordonnées locales autour du caractère de cette représentation. Comme corollaire, cette representation est isolée parmi toutes les représentations qui sont unipotentes aux bouts.

Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in SL(2,C) with the n-dimensional irreducible representation of SL(2,C) in SL(n,C). In this paper we give local coordinates of the SL(n,C)-character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.

DOI : 10.5802/ambp.306
Classification : 53C24, 57M50, 20C15
Keywords: Infinitesimal Rigidity, Character Variety, Hyperbolic 3-Manifold, L2-Cohomology
Mot clés : rigidité infinitesimale, variété des caractères, 3-variété hyperbolique, cohomolgie L2

Pere Menal-Ferrer 1 ; Joan Porti 1

1 Departament de Matemàtiques Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
@article{AMBP_2012__19_1_107_0,
     author = {Pere Menal-Ferrer and Joan Porti},
     title = {Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {107--122},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {1},
     year = {2012},
     doi = {10.5802/ambp.306},
     mrnumber = {2978315},
     zbl = {1252.53053},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.306/}
}
TY  - JOUR
AU  - Pere Menal-Ferrer
AU  - Joan Porti
TI  - Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds
JO  - Annales mathématiques Blaise Pascal
PY  - 2012
SP  - 107
EP  - 122
VL  - 19
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.306/
DO  - 10.5802/ambp.306
LA  - en
ID  - AMBP_2012__19_1_107_0
ER  - 
%0 Journal Article
%A Pere Menal-Ferrer
%A Joan Porti
%T Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds
%J Annales mathématiques Blaise Pascal
%D 2012
%P 107-122
%V 19
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.306/
%R 10.5802/ambp.306
%G en
%F AMBP_2012__19_1_107_0
Pere Menal-Ferrer; Joan Porti. Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 107-122. doi : 10.5802/ambp.306. https://ambp.centre-mersenne.org/articles/10.5802/ambp.306/

[1] Michael T. Anderson Topics in conformally compact Einstein metrics, Perspectives in Riemannian geometry (CRM Proc. Lecture Notes), Volume 40, Amer. Math. Soc., Providence, RI, 2006, pp. 1-26 | MR

[2] K. Bromberg Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata, Volume 105 (2004), pp. 143-170 | DOI | MR

[3] Michael Kapovich Hyperbolic manifolds and discrete groups, Progress in Mathematics, 183, Birkhäuser Boston Inc., Boston, MA, 2001 | MR

[4] Alexander Lubotzky; Andy R. Magid Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., Volume 58 (1985) no. 336, pp. xi+117 | MR | Zbl

[5] Yozô Matsushima; Shingo Murakami On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2), Volume 78 (1963), pp. 365-416 | DOI | MR | Zbl

[6] Pere Menal-Ferrer; Joan Porti Twisted cohomology for hyperbolic three manifolds, to appear in Osaka J. Math. (2012), arXiv:1001.2242

[7] M. S. Raghunathan On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math., Volume 87 (1965), pp. 103-139 | DOI | MR | Zbl

[8] André Weil Remarks on the cohomology of groups, Ann. of Math. (2), Volume 80 (1964), pp. 149-157 | DOI | MR | Zbl

[9] Hartmut Weiss Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom., Volume 71 (2005) no. 3, pp. 437-506 | MR

Cité par Sources :