[Contrôlabilité à zéro et application à un problème d’assimilation de données sur un modèle linéaire de dynamique des populations.]
Dans cet article nous étudions un modèle linéaire de dynamique des populations. Dans ce modèle, le processus de naissance est défini par un terme non local et la distribution initiale des individus n’est pas connue. L’objectif ici est d’utiliser un resultat de contôlabilité du système adjoint pour la détermination de la densité des individus à un instant .
In this paper we study a linear population dynamics model. In this model, the birth process is described by a nonlocal term and the initial distribution is unknown. The aim of this paper is to use a controllability result of the adjoint system for the computation of the density of individuals at some time .
Keywords: Population dynamics, Carleman inequality, Null controllability, data assimilation problem
Mot clés : Dynamique des Populations, Inégalité de Carleman, Contrôlabilité, problème d’assimilation des données
Oumar Traore 1
@article{AMBP_2010__17_2_375_0, author = {Oumar Traore}, title = {Null controllability and application to data assimilation problem for a linear model of population dynamics}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {375--399}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {17}, number = {2}, year = {2010}, doi = {10.5802/ambp.289}, mrnumber = {2778914}, zbl = {1207.92038}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.289/} }
TY - JOUR AU - Oumar Traore TI - Null controllability and application to data assimilation problem for a linear model of population dynamics JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 375 EP - 399 VL - 17 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.289/ DO - 10.5802/ambp.289 LA - en ID - AMBP_2010__17_2_375_0 ER -
%0 Journal Article %A Oumar Traore %T Null controllability and application to data assimilation problem for a linear model of population dynamics %J Annales mathématiques Blaise Pascal %D 2010 %P 375-399 %V 17 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.289/ %R 10.5802/ambp.289 %G en %F AMBP_2010__17_2_375_0
Oumar Traore. Null controllability and application to data assimilation problem for a linear model of population dynamics. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 375-399. doi : 10.5802/ambp.289. https://ambp.centre-mersenne.org/articles/10.5802/ambp.289/
[1] Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975 (Pure and Applied Mathematics, Vol. 65) | MR | Zbl
[2] Exact and Approximate Controllability of the Age and Space Structured Model, J. Math. Anal, Volume 275 (2002), pp. 562-574 | DOI | MR | Zbl
[3] Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differential Equations (2004), pp. No. 112, 11 pp. (electronic) | MR | Zbl
[4] Analysis and control of age-dependent population dynamics, Mathematical Modelling: Theory and Applications, 11, Kluwer Academic Publishers, Dordrecht, 2000 | MR | Zbl
[5] An inverse problem of population density dynamics, J. Mat. Zamet Yagu, Volume 6.2 (1999), pp. 50-80 | Zbl
[6] Controllability of evolution equations, Lecture Notes Series, 34, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1996 | MR | Zbl
[7] Variational algorithms for analysis and assimilation of meteorological observations: theoritical aspects, Tellus, Volume 38A (1986), pp. 97-110 | DOI
[8] The inverse problem of linear age-structured population dynamics, J. Evol. Equ., Volume 2 (2002) no. 2, pp. 223-239 | DOI | MR | Zbl
[9] An inverse problem in a parabolic equation, Proceedings of the Third Mississippi State Conference on Difference Equations and Computational Simulations (Mississippi State, MS, 1997) (Electron. J. Differ. Equ. Conf.), Volume 1 (1998), p. 203-209 (electronic) | MR | Zbl
[10] Contrôlabilté des Equations d’Evolution (2001) (Notes de cours Université Paris 6)
[11] A non standard approach to data assimilation problem and Tychonov regularization revisited, SIAM J. Control Optim., Volume 48 (2009), pp. 1089-1111 | DOI | MR | Zbl
[12] Determining the death rate for an age-structured population from census data, SIAM J. Appl. Math., Volume 53 (1993) no. 6, pp. 1731-1746 | DOI | MR | Zbl
[13] Null controllability of a nonlinear population dynamics problem, Int. J. Math. Math. Sci. (2006), pp. Art. ID 49279, 20 | DOI | MR | Zbl
[14] Approximate controllability and application to data assimilation problem for a linear population dynamics model, IAENG Int. J. Appl. Math., Volume 37 (2007) no. 1, pp. Paper 1, 12 | MR
Cité par Sources :