A purely analytical lower bound for L(1,χ)
Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 259-265.

Nous donnons une preuve simple de l’inégalité L(1,χ)q2 ω(q) lorsque χ est un caractère quadratique primitif impair. En particulier, nous n’utilisons pas la formule de Dirichlet liant L(1,χ) et e nombre de classes.

We give a simple proof of L(1,χ)q2 ω(q) when χ is an odd primitiv quadratic Dirichlet character of conductor q. In particular we do not use the Dirichlet class-number formula.

DOI : 10.5802/ambp.265
Classification : 11N05
Mots clés : Lower bound for $L(1,\chi )$, Dirichlet class number formula

Olivier Ramaré 1

1 Laboratoire CNRS Paul Painlevé Université Lille I 59 655 Villeneuve d’Ascq Cedex
@article{AMBP_2009__16_2_259_0,
     author = {Olivier Ramar\'e},
     title = {A purely analytical lower bound for $L(1,\chi )$},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {259--265},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {16},
     number = {2},
     year = {2009},
     doi = {10.5802/ambp.265},
     mrnumber = {2568864},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.265/}
}
TY  - JOUR
AU  - Olivier Ramaré
TI  - A purely analytical lower bound for $L(1,\chi )$
JO  - Annales mathématiques Blaise Pascal
PY  - 2009
SP  - 259
EP  - 265
VL  - 16
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.265/
DO  - 10.5802/ambp.265
LA  - en
ID  - AMBP_2009__16_2_259_0
ER  - 
%0 Journal Article
%A Olivier Ramaré
%T A purely analytical lower bound for $L(1,\chi )$
%J Annales mathématiques Blaise Pascal
%D 2009
%P 259-265
%V 16
%N 2
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.265/
%R 10.5802/ambp.265
%G en
%F AMBP_2009__16_2_259_0
Olivier Ramaré. A purely analytical lower bound for $L(1,\chi )$. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 259-265. doi : 10.5802/ambp.265. https://ambp.centre-mersenne.org/articles/10.5802/ambp.265/

[1] Dorian Goldfeld Gauss’s class number problem for imaginary quadratic fields, Bull. Amer. Math. Soc. (N.S.), Volume 13 (1985) no. 1, pp. 23-37 | DOI | MR | Zbl

[2] Joseph Oesterlé Nombres de classes des corps quadratiques imaginaires, Astérisque (1985) no. 121-122, pp. 309-323 (Seminar Bourbaki, Vol. 1983/84) | Numdam | MR | Zbl

Cité par Sources :