Is GPU the future of Scientific Computing ?
[Le GPU est-il le futur du calcul scientifique ?]
Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 1, pp. 75-99.

Ces dernières années, de nouveaux types d’architectures basés sur les processeurs graphiques ont émergés. Ces technologies fournissent d’importantes ressources computationelles à faible coût et faible consommation d’énergie. Les nombreux dévelopements effectués sur le GPU ont alors permis la création et l’implémentation de logiciels sur ce type d’architecture.

Cet article contient les deux contributions de ce mini-symposium GPU organisé par Loïc Gouarin (Laboratoire de Mathématiques d’Orsay), Alexis Hérault (CNAM) et Violaine Louvet (Institut Camille Jordan). La premiere concerne les méthodes particulaires pour les équations de transport, la seconde concerne la résolution des équations de Navier-Stokes et des équations d’Euler.

These past few years, new types of computational architectures based on graphics processors have emerged. These technologies provide important computational resources at low cost and low energy consumption. Lots of developments have been done around GPU and many tools and libraries are now available to implement efficiently softwares on those architectures.

This article contains the two contributions of the mini-symposium about GPU organized by Loïc Gouarin (Laboratoire de Mathématiques d’Orsay), Alexis Hérault (CNAM) and Violaine Louvet (Institut Camille Jordan). This mini-symposium was an opportunity to explore the upcoming role of hardware accelerators and how it will affect the way applications are designed and developed.

As the main issue of the mini-symposium was graphical cards, this document contains contributions about two feedbacks on the behavior of different numerical methods on GPU:

  • ones on particle method for transport equations,
  • the other on Lattice Boltzmann Methods for Navier–Stokes equations, Finite Volume schemes for Euler equations and particles methods for kinetic equations.
DOI : 10.5802/ambp.322
Classification : 35L05, 65M08, 76M25, 76N15, 76P05, 97N40
Keywords: GPU, méthode particulaire, EDP, Mécanique des Fluides, interaction, visualisation, calcul instantané, volumes finis, méthode Lattice Boltzmann, méthode particulaire, programmation multicœur
Mot clés : PDE, GPU, CFD, interaction, visualization, instant computation, finite volumes, Lattice Boltzmann method, particle method, multicore programming
Georges-Henri Cottet 1 ; Jean-Matthieu Etancelin 1 ; Franck Perignon 1 ; Christophe Picard 2 ; Florian De Vuyst 3 ; Christophe Labourdette 3

1 Laboratoire Jean Kuntzmann Université Joseph Fourier BP 53 38041, Grenoble Cedex 9 France
2 Laboratoire Jean Kuntzamnn Université Joseph Fourier BP 53 38041, Grenoble Cedex 9 France
3 Centre de Mathématiques et de leurs Applications CMLA CNRS UMR 8536 61, avenue du Président Wilson 94235 Cachan CEDEX FRANCE
@article{AMBP_2013__20_1_75_0,
     author = {Georges-Henri Cottet and Jean-Matthieu Etancelin and Franck Perignon and Christophe Picard and Florian De Vuyst and Christophe Labourdette},
     title = {Is {GPU} the future of {Scientific} {Computing} ?},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {75--99},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {20},
     number = {1},
     year = {2013},
     doi = {10.5802/ambp.322},
     mrnumber = {3112240},
     zbl = {1296.68027},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.322/}
}
TY  - JOUR
AU  - Georges-Henri Cottet
AU  - Jean-Matthieu Etancelin
AU  - Franck Perignon
AU  - Christophe Picard
AU  - Florian De Vuyst
AU  - Christophe Labourdette
TI  - Is GPU the future of Scientific Computing ?
JO  - Annales mathématiques Blaise Pascal
PY  - 2013
SP  - 75
EP  - 99
VL  - 20
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.322/
DO  - 10.5802/ambp.322
LA  - en
ID  - AMBP_2013__20_1_75_0
ER  - 
%0 Journal Article
%A Georges-Henri Cottet
%A Jean-Matthieu Etancelin
%A Franck Perignon
%A Christophe Picard
%A Florian De Vuyst
%A Christophe Labourdette
%T Is GPU the future of Scientific Computing ?
%J Annales mathématiques Blaise Pascal
%D 2013
%P 75-99
%V 20
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.322/
%R 10.5802/ambp.322
%G en
%F AMBP_2013__20_1_75_0
Georges-Henri Cottet; Jean-Matthieu Etancelin; Franck Perignon; Christophe Picard; Florian De Vuyst; Christophe Labourdette. Is GPU the future of Scientific Computing ?. Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 1, pp. 75-99. doi : 10.5802/ambp.322. https://ambp.centre-mersenne.org/articles/10.5802/ambp.322/

[1] M. Bergdorf; P. Koumoutsakos A Lagrangian particle-wavelet method, Multiscale Models. Simul., Volume 5 (2006) no. 3, pp. 980-995 | DOI | MR | Zbl

[2] R.A. Brownlee; A.N. Gorban; J. Levesley Stabilization of the lattice Boltzmann method using the Ehrenfests’ coarse-graining data, Physical Review E, Volume 74 (2006), pp. 037703 | DOI

[3] Carlo Cercignani The Boltzmann Equation and Its Applications, 67, Springer-Verlag, 1988 | MR | Zbl

[4] E. Godlewski; P.-A. Raviart Numerical approximation of hyperbolic conservation laws, 118, Applied Mathematical Sciences, Springer-Verlag, Boston, 1996 | MR

[5] D. Hanel; R. Schwane An implicit Flux-Vector Splitting Scheme for the computation of viscous hypersonic flow, AIAA Paper, Volume 25 (1989) (Paper 89-0274)

[6] A. Harten; P.D. Lax; B. van Leer On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Review, Volume 25 (1983), pp. 35-61 | DOI | MR | Zbl

[7] A. Magni; G.H. Cottet Accurate, non-oscillatory, remeshing schemes for particle methods, J. Comput. Phys., Volume 231 (2012) no. 1, pp. 152-172 | DOI | MR

[8] A. Munshi The OpenCL Specification, Khronos OpenCL Working Group (2011)

[9] RR. Nourgaliev; T.N. Dinh; T.G. Theofanous; D. Joseph The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, Int. J. of Multiphase Flow, Volume 29 (2003), pp. 117-169 | DOI | Zbl

[10] CUDA C Best Practices Guide 4.1, NVIDIA (2012) http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf

[11] D. Rossinelli; M. Bergdorf; G.H. Cottet; P. Koumoutsakos GPU accelerated simulations of bluff body flows using vortex methods, J. Comput. Phys., Volume 229 (2010) no. 9, pp. 3316-3333 | DOI | MR

[12] Sauro Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford, 2001 (ISBN:0-19-850398-9) | MR | Zbl

[13] F. De Vuyst A Flux Vector Splitting method that preserves stationary contact discontinuities, Acta Mathematicae Applicandae (2013) (accepted, under revision)

[14] F. De Vuyst; F. Salvarani GPU-Accelerated numerical simulations of the Knudsen gas on time-dependent domains, Computer Physics Communications, Volume 184 (2013) no. 3, pp. 532-536 http://hal.archives-ouvertes.fr/docs/00/68/75/66/PDF/GPU_DeVuyst_Salvarani3.pdf | DOI | MR

Cité par Sources :