Gravity, strings, modular and quasimodular forms
[Gravité, cordes, formes modulaires et quasimodulaires]
Annales Mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 379-430.

Les formes modulaires et quasimodulaires ont joué un rôle important dans la théorie de la gravité et la théorie des cordes. Les séries d’Eisenstein sont apparues de façon systématique dans la détermination des spectres. Les fonctions de partitions sont apparues de façon systématique dans la description des effets non perturbatifs, dans les corrections d’ordre supérieur des espaces de champs scalaires,... Ces dernières apparaissent souvent comme des instantons gravitationnels, c’est-à-dire des solutions particulières des équations d’Einstein. Dans ces notes de cours, nous présentons une classe de telles solutions en dimension quatre, obtenues en exigeant l’autodualité (conforme) et l’homogénéité Bianchi IX. Dans ce cas, un large ensemble de configurations existe qui exhibent d’intéressantes propriétés modulaires. Nous donnons d’autres exemples d’espaces d’Einstein qui bien que n’ayant pas de symétrie Bianchi IX possèdent des caractéristiques similaires. Enfin, nous discutons de l’émergence et du rôle des séries d’Eisenstein dans le cadre des développements perturbatifs de la théorie des champs et des cordes. Nous motivons le besoin d’étudier dans ce cadre de nouvelles structures modulaires.

Modular and quasimodular forms have played an important role in gravity and string theory. Eisenstein series have appeared systematically in the determination of spectrums and partition functions, in the description of non-perturbative effects, in higher-order corrections of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special solutions of Einstein’s equations. In the present lecture notes we present a class of such solutions in four dimensions, obtained by requiring (conformal) self-duality and Bianchi IX homogeneity. In this case, a vast range of configurations exist, which exhibit interesting modular properties. Examples of other Einstein spaces, without Bianchi IX symmetry, but with similar features are also given. Finally we discuss the emergence and the role of Eisenstein series in the framework of field and string theory perturbative expansions, and motivate the need for unravelling novel modular structures.

@article{AMBP_2012__19_2_379_0,
     author = {P. Marios Petropoulos and Pierre Vanhove},
     title = {Gravity, strings, modular and quasimodular~forms},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {379--430},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {2},
     year = {2012},
     doi = {10.5802/ambp.317},
     mrnumber = {3025139},
     zbl = {1263.11117},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.317/}
}
P. Marios Petropoulos; Pierre Vanhove. Gravity, strings, modular and quasimodular forms. Annales Mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 379-430. doi : 10.5802/ambp.317. https://ambp.centre-mersenne.org/articles/10.5802/ambp.317/

[1] M. J. Ablowitz; S. Chakravarty; R. G. Halburd Integrable systems and reductions of the self-dual Yang-Mills equations, J. Math. Phys., Volume 44 (2003) no. 8, pp. 3147-3173 (Integrability, topological solitons and beyond) | Article | MR 2006746 | Zbl 1062.70050

[2] M. J. Ablowitz; P. A. Clarkson Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, Volume 149, Cambridge University Press, Cambridge, 1991 | Article | MR 1149378 | Zbl 0762.35001

[3] B. S. Acharya; M. O’Loughlin Self-duality in (D8)-dimensional Euclidean gravity, Phys. Rev. D (3), Volume 55 (1997) no. 8, p. R4521-R4524 | Article | MR 1449598

[4] Sergei Alexandrov Twistor Approach to String Compactifications: a Review (2011) (arXiv:1111.2892v2 [hep-th])

[5] Sergei Alexandrov; Daniel Persson; Boris Pioline On the topology of the hypermultiplet moduli space in type II/CY string vacua, Phys.Rev., Volume D83 (2011), 026001 pages | Article

[6] Sergei Alexandrov; Boris Pioline; Frank Saueressig; Stefan Vandoren Linear perturbations of hyperkähler metrics, Lett. Math. Phys., Volume 87 (2009) no. 3, pp. 225-265 | Article | MR 2485482 | Zbl 1169.53035

[7] Sergei Alexandrov; Boris Pioline; Frank Saueressig; Stefan Vandoren Linear perturbations of quaternionic metrics, Comm. Math. Phys., Volume 296 (2010) no. 2, pp. 353-403 | Article | MR 2608119 | Zbl 1194.53043

[8] Sergei Alexandrov; Boris Pioline; Stefan Vandoren Self-dual Einstein spaces, heavenly metrics, and twistors, J. Math. Phys., Volume 51 (2010) no. 7, 073510, 31 pages | Article | MR 2681102

[9] Nicola Ambrosetti; Ignatios Antoniadis; Jean-Pierre Derendinger; Pantelis Tziveloglou The Hypermultiplet with Heisenberg Isometry in N=2 Global and Local Supersymmetry, JHEP, Volume 1106 (2011), 139 pages | Article | MR 2870800

[10] Ignatios Antoniadis; Ruben Minasian; Stefan Theisen; Pierre Vanhove String loop corrections to the universal hypermultiplet, Classical Quantum Gravity, Volume 20 (2003) no. 23, pp. 5079-5102 | Article | MR 2024800 | Zbl 1170.83451

[11] M. F. Atiyah; N. J. Hitchin; I. M. Singer Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, Volume 362 (1978) no. 1711, pp. 425-461 | Article | MR 506229 | Zbl 0389.53011

[12] M.F. Atiyah; N.J. Hitchin Low energy scattering of non-Abelian monopoles, Physics Letters A, Volume 107 (1985) no. 1, pp. 21 -25 http://www.sciencedirect.com/science/article/pii/0375960185902385 | Article | MR 778313 | Zbl 1177.53069

[13] M. V. Babich; D. A. Korotkin Self-dual SU (2)-invariant Einstein metrics and modular dependence of theta functions, Lett. Math. Phys., Volume 46 (1998) no. 4, pp. 323-337 | Article | MR 1668577 | Zbl 0917.53016

[14] I. Bakas; E. G. Floratos; A. Kehagias Octonionic gravitational instantons, Phys. Lett. B, Volume 445 (1998) no. 1-2, pp. 69-76 | Article | MR 1672574

[15] Ling Bao; Axel Kleinschmidt; Bengt E. W. Nilsson; Daniel Persson; Boris Pioline Instanton corrections to the universal hypermultiplet and automorphic forms on SU (2,1), Commun. Number Theory Phys., Volume 4 (2010) no. 1, pp. 187-266 | MR 2679380 | Zbl 1209.81160

[16] Ling Bao; Axel Kleinschmidt; Bengt E.W. Nilsson; Daniel Persson; Boris Pioline Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons (2010) (arXiv:1005.4848v1 [hep-th])

[17] A. A. Belavin; A. M. Polyakov; A. S. Schwartz; Yu. S. Tyupkin Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B, Volume 59 (1975) no. 1, pp. 85-87 | Article | MR 434183

[18] V.A. Belinskii; G.W. Gibbons; D.N. Page; C.N. Pope Asymptotically Euclidean Bianchi IX metrics in quantum gravity, Physics Letters B, Volume 76 (1978) no. 4, pp. 433 -435 http://www.sciencedirect.com/science/article/pii/0370269378908997 | Article | MR 496343

[19] G. Bossard; P.M. Petropoulos; P. Tripathy Darboux–Halphen system and the action of Geroch group (2012) (Unpublished)

[20] F. Bourliot; J. Estes; P. M. Petropoulos; Ph Spindel G3-homogeneous gravitational instantons, Classical Quantum Gravity, Volume 27 (2010) no. 10, 105007, 17 pages | Article | MR 2639106 | Zbl 1190.83020

[21] F. Bourliot; J. Estes; P. M. Petropoulos; Ph. Spindel Gravitational instantons, self-duality, and geometric flows, Phys. Rev. D, Volume 81 (2010) no. 10, 104001, 5 pages | Article | MR 2726952

[22] D. Brecher; M. J. Perry Ricci-flat branes, Nuclear Phys. B, Volume 566 (2000) no. 1-2, pp. 151-172 | Article | MR 1746217 | Zbl 0953.83041

[23] D. J. Broadhurst; D. Kreimer Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B, Volume 393 (1997) no. 3-4, pp. 403-412 | Article | MR 1435933 | Zbl 0946.81028

[24] D. J. Broadhurst; D. Kreimer Feynman diagrams as a weight system: four-loop test of a four-term relation, Phys. Lett. B, Volume 426 (1998) no. 3-4, pp. 339-346 | Article | MR 1629951 | Zbl 1049.81568

[25] Francis Brown On the decomposition of motivic multiple zeta values (2011) (arXiv:1102.1310v2 [math.NT])

[26] Francis C.S. Brown On the periods of some Feynman integrals (2010) (arXiv:0910.0114v2 [math.AG])

[27] M. Cahen; R. Debever; L. Defrise A complex vectorial formalism in general relativity, J. Math. Mech., Volume 16 (1967), pp. 761-785 | MR 207370 | Zbl 0149.23401

[28] D. M. J. Calderbank; H. Pedersen Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 3, pp. 921-963 | Article | Numdam | MR 1779900 | Zbl 0970.53027

[29] David M. J. Calderbank; Henrik Pedersen Selfdual Einstein metrics with torus symmetry, J. Differential Geom., Volume 60 (2002) no. 3, pp. 485-521 http://projecteuclid.org/getRecord?id=euclid.jdg/1090351125 | MR 1950174 | Zbl 1067.53034

[30] J. Chazy Sur les équations différentielles dont l’intégrale générale possède une coupure essentielle mobile., C.R. Acad. Sc. Paris, Volume 150 (1910), pp. 456-458

[31] J. Chazy Sur les équations différentielles du troisième ordre et d’ordre supérieur dont líntégrale générale a ses points critiques fixes., Acta Math., Volume 34 (1911), pp. 317-385 | Article | MR 1555070

[32] Bennett Chow; Dan Knopf The Ricci flow: an introduction, Mathematical Surveys and Monographs, Volume 110, American Mathematical Society, Providence, RI, 2004 | MR 2061425 | Zbl 1086.53085

[33] S. Coleman Aspects of Symmetry, Cambridge University Press, 1985 | Zbl 0575.22023

[34] M. Cvetič; G. W. Gibbons; H. Lü; C. N. Pope Cohomogeneity one manifolds of Spin(7) and G 2 holonomy, Phys. Rev. D (3), Volume 65 (2002) no. 10, 106004, 29 pages | Article | MR 1919035 | Zbl 1031.53076

[35] Mirjam Cvetic; G.W. Gibbons; H. Lu; C.N. Pope Bianchi IX selfdual Einstein metrics and singular G(2) manifolds, Class.Quant.Grav., Volume 20 (2003), pp. 4239-4268 | Article | MR 2013229 | Zbl 1048.53033

[36] Gaston Darboux Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux, Ann. Sci. École Norm. Sup. (2), Volume 7 (1878), p. 101-150, 227–260, 275–348 | Numdam

[37] P. Deligne Multizêtas [d’après Francis Brown] (Janvier 2012) (Séminaire Bourbaki)

[38] Eric D’Hoker; D. H. Phong The box graph in superstring theory, Nuclear Phys. B, Volume 440 (1995) no. 1-2, pp. 24-94 | Article | MR 1336085 | Zbl 0990.81655

[39] Tohru Eguchi; Peter B. Gilkey; Andrew J. Hanson Gravitation, gauge theories and differential geometry, Phys. Rep., Volume 66 (1980) no. 6, pp. 213-393 | Article | MR 598586

[40] Tohru Eguchi; Andrew J. Hanson Gravitational instantons, Gen. Relativity Gravitation, Volume 11 (1979) no. 5, pp. 315-320 | Article | MR 563971

[41] Tohru Eguchi; Andrew J. Hanson Selfdual Solutions to Euclidean Gravity, Annals Phys., Volume 120 (1979), pp. 82-106 | Article | MR 540896 | Zbl 0409.53020

[42] S. Ferrara; S. Sabharwal Quaternionic Manifolds for Type II Superstring Vacua of Calabi-Yau Spaces, Nucl.Phys., Volume B332 (1990), 317 pages | Article | MR 1046353

[43] E. G. Floratos; A. Kehagias Eight-dimensional self-dual spaces, Phys. Lett. B, Volume 427 (1998) no. 3-4, pp. 283-290 | Article | MR 1629156

[44] Daniel Harry Friedan Nonlinear Models in Two + Epsilon Dimensions, Annals Phys., Volume 163 (1985), 318 pages | Article | MR 811072 | Zbl 0583.58010

[45] Herbert Gangl; Masanobu Kaneko; Don Zagier Double zeta values and modular forms, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ, 2006, pp. 71-106 | Article | MR 2208210 | Zbl 1122.11057

[46] Robert Geroch A method for generating solutions of Einstein’s equations, J. Mathematical Phys., Volume 12 (1971), pp. 918-924 | Article | MR 286442 | Zbl 0214.49002

[47] G. W. Gibbons; S. W. Hawking Classification of gravitational instanton symmetries, Comm. Math. Phys., Volume 66 (1979) no. 3, pp. 291-310 http://projecteuclid.org/getRecord?id=euclid.cmp/1103905051 | Article | MR 535152

[48] G. W. Gibbons; N. S. Manton Classical and quantum dynamics of BPS monopoles, Nuclear Phys. B, Volume 274 (1986) no. 1, pp. 183-224 | Article | MR 850983

[49] G. W. Gibbons; C. N. Pope CP 2 as a gravitational instanton, Comm. Math. Phys., Volume 61 (1978) no. 3, pp. 239-248 | Article | MR 503465 | Zbl 0389.53013

[50] G. W. Gibbons; C. N. Pope The positive action conjecture and asymptotically Euclidean metrics in quantum gravity, Comm. Math. Phys., Volume 66 (1979) no. 3, pp. 267-290 http://projecteuclid.org/getRecord?id=euclid.cmp/1103905050 | Article | MR 535151

[51] G.W. Gibbons; S.W. Hawking Gravitational multi-instantons, Physics Letters B, Volume 78 (1978) no. 4, pp. 430 -432 http://www.sciencedirect.com/science/article/pii/0370269378904781 | Article

[52] A.S. Goncharov Hodge correlators (2010) (arXiv:0803.0297v2 [math.AG]) | Zbl 1217.14007

[53] Michael B. Green; Stephen D. Miller; Jorge G. Russo; Pierre Vanhove Eisenstein series for higher-rank groups and string theory amplitudes, Commun.Num.Theor.Phys., Volume 4 (2010), pp. 551-596 | MR 2771579 | Zbl 1218.83034

[54] Michael B. Green; Jorge G. Russo; Pierre Vanhove Low energy expansion of the four-particle genus-one amplitude in type II superstring theory, J. High Energy Phys. (2008) no. 2, 020, 56 pages | Article | MR 2386025

[55] Michael B. Green; John H. Schwarz; Edward Witten Superstring theory. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1987 (Introduction) | MR 878143 | Zbl 0619.53002

[56] Michael B. Green; John H. Schwarz; Edward Witten Superstring theory. Vol. 2., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1987 (Loop amplitudes, anomalies and phenomenology) | MR 878144 | Zbl 0619.53002

[57] Michael B. Green; Pierre Vanhove The Low-energy expansion of the one loop type II superstring amplitude, Phys.Rev., Volume D61 (2000), 104011 pages | Article | MR 1790762

[58] G. H. Halphen Sur certains systéme d’équations différetielles, C. R. Acad. Sci Paris, Volume 92 (1881), pp. 1404-1407

[59] G. H. Halphen Sur une systéme d’équations différetielles, C. R. Acad. Sci Paris, Volume 92 (1881), pp. 1101-1103

[60] Richard S. Hamilton Three-manifolds with positive Ricci curvature, J. Differential Geom., Volume 17 (1982) no. 2, pp. 255-306 http://projecteuclid.org/getRecord?id=euclid.jdg/1214436922 | MR 664497 | Zbl 0504.53034

[61] N. J. Hitchin Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom., Volume 42 (1995) no. 1, pp. 30-112 http://projecteuclid.org/getRecord?id=euclid.jdg/1214457032 | MR 1350695 | Zbl 0861.53049

[62] G. ’t Hooft Symmetry Breaking through Bell-Jackiw Anomalies, Phys. Rev. Lett., Volume 37 (1976), pp. 8-11 http://link.aps.org/doi/10.1103/PhysRevLett.37.8 | Article

[63] James Isenberg; Martin Jackson Ricci flow of locally homogeneous geometries on closed manifolds, J. Differential Geom., Volume 35 (1992) no. 3, pp. 723-741 http://projecteuclid.org/getRecord?id=euclid.jdg/1214448265 | MR 1163457 | Zbl 0808.53044

[64] Evgeny Ivanov; Galliano Valent Harmonic space construction of the quaternionic Taub-NUT metric, Classical Quantum Gravity, Volume 16 (1999) no. 3, pp. 1039-1056 | Article | MR 1682553 | Zbl 0937.83032

[65] John David Jackson Classical electrodynamics, John Wiley & Sons Inc., New York, 1975 | MR 436782 | Zbl 0114.42903

[66] Michio Jimbo; Tetsuji Miwa Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D, Volume 2 (1981) no. 3, pp. 407-448 | Article | MR 625446 | Zbl 1194.34166

[67] Edward Kasner Geometrical Theorems on Einstein’s Cosmological Equations, Amer. J. Math., Volume 43 (1921) no. 4, pp. 217-221 | Article | MR 1506447

[68] Neal Koblitz Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, Volume 97, Springer-Verlag, New York, 1993 | MR 1216136 | Zbl 0804.11039

[69] H. A. Kramers; G. H. Wannier Statistics of the two-dimensional ferromagnet. I, Phys. Rev. (2), Volume 60 (1941), pp. 252-262 | Article | MR 4803 | Zbl 0027.28505

[70] Robert P. Langlands On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin, 1976 | MR 579181 | Zbl 0332.10018

[71] C. R. LeBrun -space with a cosmological constant, Proc. Roy. Soc. London Ser. A, Volume 380 (1982) no. 1778, pp. 171-185 | Article | MR 652038 | Zbl 0549.53042

[72] D. Lorenz Gravitational instanton solutions for Bianchi types I–IX, Acta Phys.Polon., Volume B14 (1983), pp. 791-805 | MR 741717

[73] Dieter Lorenz-Petzold Gravitational instanton solutions, Progr. Theoret. Phys., Volume 81 (1989) no. 1, pp. 17-22 | Article | MR 989967

[74] Andrzej J. Maciejewski; Jean-Marie Strelcyn On the algebraic non-integrability of the Halphen system, Phys. Lett. A, Volume 201 (1995) no. 2-3, pp. 161-166 | Article | MR 1329966 | Zbl 1020.34502

[75] N. S. Manton A remark on the scattering of BPS monopoles, Phys. Lett. B, Volume 110 (1982) no. 1, pp. 54-56 | Article | MR 647883 | Zbl 1190.81087

[76] R. Maszczyk; L. J. Mason; N. M. J. Woodhouse Self-dual Bianchi metrics and the Painlevé transcendents, Classical Quantum Gravity, Volume 11 (1994) no. 1, pp. 65-71 http://stacks.iop.org/0264-9381/11/65 | Article | MR 1259124 | Zbl 0790.53032

[77] John Milnor Curvatures of left invariant metrics on Lie groups, Advances in Math., Volume 21 (1976) no. 3, pp. 293-329 | Article | MR 425012 | Zbl 0341.53030

[78] C. Mœglin; J.-L. Waldspurger Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, Volume 113, Cambridge University Press, Cambridge, 1995 (Une paraphrase de l’Écriture [A paraphrase of Scripture]) | Article | MR 1361168 | Zbl 0846.11032

[79] C. Montonen; D. Olive Magnetic monopoles as gauge particles?, Physics Letters B, Volume 72 (1977) no. 1, pp. 117 -120 http://www.sciencedirect.com/science/article/pii/0370269377900764 | Article

[80] E. Newman; L. Tamburino; T. Unti Empty-space generalization of the Schwarzschild metric, J. Mathematical Phys., Volume 4 (1963), pp. 915-923 | Article | MR 152345 | Zbl 0115.43305

[81] Lars Onsager Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev., Volume 65 (1944), pp. 117-149 http://link.aps.org/doi/10.1103/PhysRev.65.117 | Article | MR 10315 | Zbl 0060.46001

[82] A.R. Osborne; T.L. Burch Internal Solitons in the Andaman Sea, Science, Volume 208 (1980), pp. 451-460 | Article

[83] H. Pedersen Eguchi-Hanson metrics with cosmological constant, Classical Quantum Gravity, Volume 2 (1985) no. 4, pp. 579-587 http://stacks.iop.org/0264-9381/2/579 | Article | MR 795103 | Zbl 0575.53006

[84] H. Pedersen Einstein metrics, spinning top motions and monopoles, Math. Ann., Volume 274 (1986) no. 1, pp. 35-59 | Article | MR 834105 | Zbl 0566.53058

[85] Henrik Pedersen; Yat Sun Poon Hyper-Kähler metrics and a generalization of the Bogomolny equations, Comm. Math. Phys., Volume 117 (1988) no. 4, pp. 569-580 http://projecteuclid.org/getRecord?id=euclid.cmp/1104161817 | Article | MR 953820 | Zbl 0648.53028

[86] Henrik Pedersen; Yat Sun Poon Kähler surfaces with zero scalar curvature, Classical Quantum Gravity, Volume 7 (1990) no. 10, pp. 1707-1719 http://stacks.iop.org/0264-9381/7/1707 | Article | MR 1075860 | Zbl 0711.53039

[87] Grisha Perelman The Entropy formula for the Ricci flow and its geometric applications (2002) (arXiv:math/0211159v1 [math.DG]) | Zbl 1130.53001

[88] Grisha Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003) (arXiv:math/0307245v1 [math.DG]) | Zbl 1130.53003

[89] Grisha Perelman Ricci flow with surgery on three-manifolds (2003) (arXiv:math/0303109v1 [math.DG]) | Zbl 1130.53002

[90] P.M. Petropoulos; V. Pozzoli; K. Siampos Self-dual gravitational instantons and geometric flows of all Bianchi types (2011) (arXiv:1108.0003v2 [hep-th]) | MR 2865308 | Zbl 1232.83078

[91] Michael P. Ryan Jr.; Lawrence C. Shepley Homogeneous relativistic cosmologies, Princeton University Press, Princeton, N.J., 1975 (Princeton Series in Physics) | MR 524082

[92] O. Schlotterer; S. Stieberger Motivic Multiple Zeta Values and Superstring Amplitudes (2012) (arXiv:1205.1516v1 [hep-th])

[93] Peter Scott The geometries of 3-manifolds, Bull. London Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | Article | MR 705527 | Zbl 0561.57001

[94] N. Seiberg; E. Witten Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory, Nuclear Physics B, Volume 426 (1994) no. 1, pp. 19 -52 http://www.sciencedirect.com/science/article/pii/0550321394901244 (Erratum [95]) | Article | MR 1293681 | Zbl 0996.81510

[95] N. Seiberg; E. Witten Erratum, Nuclear Physics B, Volume 430 (1994) no. 2, p. 485 -486 http://www.sciencedirect.com/science/article/pii/0550321394004498 | Article | MR 1303306 | Zbl 0996.81511

[96] Jean-Pierre Serre Cours d’arithmétique, Presses Universitaires de France, Paris, 1977 (Deuxième édition revue et corrigée, Le Mathématicien, No. 2) | MR 498338 | Zbl 0376.12001

[97] K. Sfetsos T-duality and RG-flows (18-22 September 2006) (ERG2006, Lefkada, Greece, unpublished.)

[98] Philippe Spindel Gravity before supergravity, Supersymmetry (Bonn, 1984) (NATO Adv. Sci. Inst. Ser. B Phys.) Volume 125, Plenum, New York, 1985, pp. 455-533 | MR 820496

[99] L. A. Takhtajan A simple example of modular forms as tau-functions for integrable equations, Teoret. Mat. Fiz., Volume 93 (1992) no. 2, pp. 330-341 | Article | MR 1233549 | Zbl 0794.35114

[100] Audrey Terras Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York, 1985 | MR 791406 | Zbl 0574.10029

[101] W. Thurston The Geometry and Topology of Three-Manifolds (1978 – 1981) (Princeton lecture notes)

[102] K. P. Tod A comment on: “Kähler surfaces with zero scalar curvature” [Classical Quantum Gravity 7 (1990), no. 10, 1707–1719; MR1075860 (91i:53057)] by H. Pedersen and Y. S. Poon, Classical Quantum Gravity, Volume 8 (1991) no. 5, pp. 1049-1051 http://stacks.iop.org/0264-9381/8/1049 | Article | MR 1104774 | Zbl 0726.53031

[103] K. P. Tod Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A, Volume 190 (1994) no. 3-4, pp. 221-224 | Article | MR 1285788 | Zbl 0960.83505

[104] R. S. Ward Self-dual space-times with cosmological constant, Comm. Math. Phys., Volume 78 (1980/81) no. 1, pp. 1-17 http://projecteuclid.org/getRecord?id=euclid.cmp/1103908499 | Article | MR 597028 | Zbl 0468.53019

[105] R. S. Ward Integrable and solvable systems, and relations among them, Philos. Trans. Roy. Soc. London Ser. A, Volume 315 (1985) no. 1533, pp. 451-457 (With discussion, New developments in the theory and application of solitons) | Article | MR 836745 | Zbl 0579.35078