Quasi-modular forms attached to elliptic curves, I
[Formes quasimodulaires attachées aux courbes elliptiques, I]
Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 307-377.

Dans ce texte, on donne une interprétation géométrique des formes quasimodulaires en utilisant les modules des courbes elliptiques avec un point marqué dans leurs cohomologies de de Rham. De cette façon, les équations différentielles des formes modulaires et quasimodulaires sont interprétées comme des champs de vecteurs de ces espaces de modules. Elles peuvent être établies grâce à la connection de Gauss-Manin de la famille universelle de courbes elliptiques correspondante. Pour le groupe modulaire, on calcule une telle équation différentielle qui apparaît être celle de Ramanujan qui relie entre elles les séries d’Eisenstein. On explique aussi la notion de périodes construites à partir des intégrales elliptiques. Elles apparaissent comme le pont entre la notion algébrique de forme quasimodulaire et la définition en terme de fonction holomorphe sur le demi-plan de Poincaré. De cette façon, nous obtenons aussi une autre interprétation, essentiellement due à Halphen, de l’équation différentielle de Ramanujan en termes de fonctions hypergéométriques. L’interprétation des formes quasimodulaires comme sections de fibrés des jets et des problèmes de combinatoire énumérative sont aussi présentés.

In the present text we give a geometric interpretation of quasi-modular forms using moduli of elliptic curves with marked elements in their de Rham cohomologies. In this way differential equations of modular and quasi-modular forms are interpreted as vector fields on such moduli spaces and they can be calculated from the Gauss-Manin connection of the corresponding universal family of elliptic curves. For the full modular group such a differential equation is calculated and it turns out to be the Ramanujan differential equation between Eisenstein series. We also explain the notion of period map constructed from elliptic integrals. This turns out to be the bridge between the algebraic notion of a quasi-modular form and the one as a holomorphic function on the upper half plane. In this way we also get another interpretation, essentially due to Halphen, of the Ramanujan differential equation in terms of hypergeometric functions. The interpretation of quasi-modular forms as sections of jet bundles and some related enumerative problems are also presented.

DOI : 10.5802/ambp.316
Hossein Movasati 1

1 Instituto de Matemática Pura e Aplicada, IMPA Estrada Dona Castorina, 110 22460-320, Rio de Janeiro, RJ Brazil
@article{AMBP_2012__19_2_307_0,
     author = {Hossein Movasati},
     title = {Quasi-modular forms attached to elliptic curves, {I}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {307--377},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {2},
     year = {2012},
     doi = {10.5802/ambp.316},
     mrnumber = {3025138},
     zbl = {1264.11031},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.316/}
}
TY  - JOUR
AU  - Hossein Movasati
TI  - Quasi-modular forms attached to elliptic curves, I
JO  - Annales mathématiques Blaise Pascal
PY  - 2012
SP  - 307
EP  - 377
VL  - 19
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.316/
DO  - 10.5802/ambp.316
LA  - en
ID  - AMBP_2012__19_2_307_0
ER  - 
%0 Journal Article
%A Hossein Movasati
%T Quasi-modular forms attached to elliptic curves, I
%J Annales mathématiques Blaise Pascal
%D 2012
%P 307-377
%V 19
%N 2
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.316/
%R 10.5802/ambp.316
%G en
%F AMBP_2012__19_2_307_0
Hossein Movasati. Quasi-modular forms attached to elliptic curves, I. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 307-377. doi : 10.5802/ambp.316. https://ambp.centre-mersenne.org/articles/10.5802/ambp.316/

[1] V. I. Arnold; S. M. Gusein-Zade; A. N. Varchenko Singularities of differentiable maps. Monodromy and asymptotics of integrals Vol. II, Monographs in Mathematics, 83, Birkhäuser Boston Inc., Boston, MA, 1988 | MR

[2] J. W. S. Cassels Diophantine equations with special reference to elliptic curves, J. London Math. Soc., Volume 41 (1966), pp. 193-291 | DOI | MR | Zbl

[3] G. Darboux Sur la théorie des coordonnées curvilignes et les systémes orthogonaux, Ann Ecole Normale Supérieure, Volume 7 (1878), pp. 101-150 | MR

[4] Pierre Deligne; James S. Milne; Arthur Ogus; Kuang-yen Shih Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, 900, Springer-Verlag, Berlin, 1982 (Philosophical Studies Series in Philosophy, 20) | MR | Zbl

[5] Fred Diamond; Jerry Shurman A first course in modular forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005 | MR | Zbl

[6] Robbert Dijkgraaf Mirror symmetry and elliptic curves, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 149-163 | MR | Zbl

[7] David Eisenbud Commutative algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | MR | Zbl

[8] Terry Gannon Moonshine beyond the Monster, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2006 (The bridge connecting algebra, modular forms and physics) | DOI | MR | Zbl

[9] Gerard van der Geer Siegel modular forms and their applications, The 1-2-3 of modular forms (Universitext), Springer, Berlin, 2008, pp. 181-245 | DOI | MR

[10] Benedict H. Gross On an identity of Chowla and Selberg, J. Number Theory, Volume 11 (1979) no. 3 S. Chowla Anniversary Issue, pp. 344-348 | DOI | MR | Zbl

[11] Alexander Grothendieck On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966) no. 29, pp. 95-103 | Numdam | MR | Zbl

[12] G. H. Halphen Sur une systéme d’équations différetielles, C. R. Acad. Sci Paris, Volume 92 (1881), pp. 1101-1103

[13] G. H. Halphen Traité des fonctions elliptiques et de leurs applications, 1, Gauthier-Villars, Paris, 1886

[14] Robin Hartshorne Algebraic geometry, Springer-Verlag, New York, 1977 (Graduate Texts in Mathematics, No. 52) | MR | Zbl

[15] Haruzo Hida Geometric modular forms and elliptic curves, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012 | MR

[16] Jerome W. Hoffman Topics in elliptic curves and modular forms (2010) https://www.math.lsu.edu/~hoffman/ (Preprint available in the author’s homepage)

[17] Masanobu Kaneko; Don Zagier A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 165-172 | MR | Zbl

[18] Nicholas M. Katz p-adic interpolation of real analytic Eisenstein series, Ann. of Math. (2), Volume 104 (1976) no. 3, pp. 459-571 | DOI | MR | Zbl

[19] Kiran S. Kedlaya p-adic cohomology: from theory to practice, p -adic geometry (Univ. Lecture Ser.), Volume 45, Amer. Math. Soc., Providence, RI, 2008, pp. 175-203 | MR | Zbl

[20] Klaus Lamotke The topology of complex projective varieties after S. Lefschetz, Topology, Volume 20 (1981) no. 1, pp. 15-51 | DOI | MR | Zbl

[21] Min Ho Lee Quasimodular forms and vector bundles, Bull. Aust. Math. Soc., Volume 80 (2009) no. 3, pp. 402-412 | DOI | MR | Zbl

[22] François Martin; Emmanuel Royer Formes modulaires et périodes, Formes modulaires et transcendance (Sémin. Congr.), Volume 12, Soc. Math. France, Paris, 2005, pp. 1-117 | MR | Zbl

[23] Hossein Movasati On differential modular forms and some analytic relations between Eisenstein series, Ramanujan J., Volume 17 (2008) no. 1, pp. 53-76 | DOI | MR | Zbl

[24] Hossein Movasati Eisenstein type series for Calabi-Yau varieties, Nuclear Phys. B, Volume 847 (2011) no. 2, pp. 460-484 | DOI | MR | Zbl

[25] Hossein Movasati Multiple integrals and modular differential equations, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2011 (28o Colóquio Brasileiro de Matemática. [28th Brazilian Mathematics Colloquium]) | MR

[26] Y.V. Nesterenko; P. Philippon Introduction to algebraic independence theory, Lecture Notes in Mathematics, 1752, Springer-Verlag, Berlin, 2001 (With contributions from F. Amoroso, D. Bertrand, W. D. Brownawell, G. Diaz, M. Laurent, Yuri V. Nesterenko, K. Nishioka, Patrice Philippon, G. Rémond, D. Roy and M. Waldschmidt,) | MR

[27] Yousuke Ohyama Differential relations of theta functions, Osaka J. Math., Volume 32 (1995) no. 2, pp. 431-450 http://projecteuclid.org/getRecord?id=euclid.ojm/1200786061 | MR | Zbl

[28] Yousuke Ohyama Differential equations for modular forms of level three, Funkcial. Ekvac., Volume 44 (2001) no. 3, pp. 377-389 | MR | Zbl

[29] Kyoji Saito Primitive automorphic forms, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 1003-1018 | MR | Zbl

[30] Takao Sasai Monodromy representations of homology of certain elliptic surfaces, J. Math. Soc. Japan, Volume 26 (1974), pp. 296-305 | DOI | MR | Zbl

[31] Ernst S. Selmer The Diophantine equation ax 3 +by 3 +cz 3 =0, Acta Math., Volume 85 (1951), p. 203-362 (1 plate) | DOI | MR | Zbl

[32] Joseph H. Silverman The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, Dordrecht, 2009 | MR | Zbl

[33] John Tate Residues of differentials on curves, Ann. Sci. École Norm. Sup. (4), Volume 1 (1968), pp. 149-159 | Numdam | MR | Zbl

[34] Claire Voisin Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, Cambridge, 2002 (Translated from the French original by Leila Schneps) | MR | Zbl

[35] W. Zudilin The hypergeometric equation and Ramanujan functions, Ramanujan J., Volume 7 (2003) no. 4, pp. 435-447 | DOI | MR | Zbl

Cité par Sources :