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Abstract

Loop and path groups G and semigroups S as families of map-
pings of one non-Archimedean Banach manifold M into another N
with marked points over the same locally compact field K of char-
acteristic char(K) = 0 are considered. Quasi-invariant measures on
them are constructed. Then measures are used to investigate irre-
ducible representations of such groups.

1 Introduction.

Loop and path groups are very important in differential geometry, algebraic
topology and theoretical physics [2, 5, 19, 25]. Moreover, quasi-invariant
measures are helpful for an investigation of the group itself. In the case of
real manifolds Gaussian quasi-invariant measures on loop groups and semi-
groups were constructed and then applied for the investigation of unitary
representations in [17]. ,

In [12, 14, 16] quasi-invariant measures on non-Archimedean Banach
spaces X and diffeomorphism groups were investigated.

*Mathematics subject classification (1991 Revision) 43A05, 43A$~ and 46S10.
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During the recent time non-Archimedean functional analysis and quan-
tum mechanics develop intensively [21, 27]. One of the reason for this is in
the divergence of some important integrals and series in the real or com-
plex cases and their convergence in the non-Archimedean case. Therefore, it
is important to consider non-Archimedean loop semigroups and groups, that
are new objects. There are many principal differences between classical func-
tional analysis (over the fields R or C) and non-Archimedean (21., 22, 24, 28].
Then the names of loop groups and semigroups in the non-Archimedean case
are used here in analogy with the case of manifolds over the real field R, but
their meaning is quite different, because non-Archimedean manifolds M are
totally disconnected with the small inductive dimension ind(M) = 0 (see §6.2
and Ch. 7 in [8]) and real manifolds are locally connected with ind(M) > l.
In the real case loop groups G are locally connected for dimRM  dimnN,
but in the non-Archimedean case they are zero-dimensional with ind(G) = 0,
where 1  dimRN  oo is the dimension of the tangent Banach space T~N
over R for 1V. Shortly the non-Archimedean loop semigroups were con-
sidered in [15].

In this article loop groups and semi groups are considered. The loop semi-
groups are quotients of families of mappings f from one non-Archimedean
manifold M into another N with limx~s0 03A603C5 f(x) = 0 for a  v ~ t by the
corresponding equivalence relations, where so and 0 are marked points
in M and N respectively, M = M B ~s~}, ~v f are continuous extensions of
the partial difference quotients ~~ f . Besides locally compact manifolds also
non-locally compact Banach manifolds M and N are considered. This work
presents results for manifolds At and N modelled on Banach spa.ces X and Y
over locally compact fields K such that Qp C K C Cp, where Qp is the field
of p-adic numbers, Cp is the field of complex numbers with the corresponding
non-Archimedean norm, that is, K are finite algebraic extensions of Qp.

More interesting are groups constructed with the help of A. Grothendieck
procedure of an Abelian group from an Abelian monoid. This produces
the non-Archimedean loop group. Also semigroups and groups of paths are
considered, but it is only formal terminology. Both in the real and non-
Archimedean cases compositions of pathes are defined not for all elements,
but satisfying the additional condition. Since the non-Archimedean field K is
not directed (apart from R) this condition is another in the non-Archimedean
case than in the real case. On the other hand, semigroups with units (that is,
monoids) and groups of loops have indeed the algebraic structure of monoids
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and groups respectively. Quasi-invariant measures on these semigroups and
groups are constructed in §3 of Part I and §2 of Part II. Then such measures
are used for the investigation of irreducible unitary representations of loop
groups in §3 of Part II.

To construct real-valued and also Qq-valued (for q ~ p) quasi-invariant
measures specific anti derivations and isomorphisms of non-Archimedean Ba-
nach spaces are considered. Apart from the real-valued measures the notion
of quasi-invariance for Qq-valued measures is quite different and is based on
the results from [24]. For this a Banach space L(p,) of integrable functions
defined for a tight measure ~ on an algebra Bco~X ) of clopen subsets of
a Hausdorff space X with ind(X) = 8 is used. To construct measures we
start from measures equivalent to Haar measures on K. The real-valued non-
negative Haar measure v on K as the additive group is characterised by the
equation v(x + A) = v(A) for each x E K and A E where 
denotes the Borel u-field of X (see Chapter VII in [4]). Each bounded non-
negative Borel measure on a clopen compact subset of K may contain only
countable number of atoms, but for it each atom may be only a singleton.
Therefore, the Haar measure v certainly has not any atom. The Qq-valued
Haar measure w on K is characterised by w(z + A) = w(A) for each z E K
and each A E Bco(K) (see Chapter 8 in [21]). In view of Monna-Springer
Theorem 8.4 [21] a non-zero Qq-valued invariant measure w on Bco(K) exists
for each q ~ p, but does not exist for q = p.

Pseudo-diSerentiability of measures with values in R and Qq also is con-
sidered, because in the non-Archimedean case there is not any non-trivial
differentiable function Qq for q ~ p. This notion
of pseudo-differentiability of real-valued measures is based on Vladimirov
operator on the corresponding space of functions f K --~ R [26, 27].

Semigroups and groups of loops and paths are investigated in §2 and Part
II respectively. Here real-valued and also Qq-valued measures are considered
(for q ~ p). Unitary representations of loop groups are given in Part II.

The loop groups are neither Banach-Lie nor locally compact and have a
structure of a non-Archimedean Banach manifold (see Theorem 11.2.3). A.

Weil theorem states that, if there exists a non-trivial non-negative quasi-
invariant measure  on a topological group G relative to left shifts Lg for all
g E G, then G is locally compact, where Lgh = gh for each g and h ~ G
(see also Corollaries 111.12.4,5 [9]). Therefore, the loop group and the loop
semigroup has not any non-zero Haar measure. In Part I manifolds with
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disjoint atlases modelled on Banach spaces are considered. This is sufficient
for many purposes. Moreover, in §II.3.4 it is shown, that arbitrary atlases of
the corresponding class of smoothness of the same manifolds preserve loop
groups and semigroups up to algebraic topological isomorphisms. In Part II
loop and path groups for manifolds modelled on locally K-convex spaces also
are discussed.

The notation is summarized in §II.6.

2 Loop semigroups.
To avoid misunderstandings we first give our definitions and notations. They
are quite necessary, but a reader wishing to get main results quickly can begin
to read from §2.6 and then to find appearing notions and notations in §§2.1-5.

2.1. Notation. Let K be a local field, that is, a finite algebraic extension
of the p-adic field Qp for the corresponding prime number p [28]. For b E R,
6 ~ b  1, we consider the following mapping:

~~~ ;= E ~p

for ~’ ~ 0, := 0, such that jb(~~ : : K --~ Ap, where K C Cp, Cp
denotes the field of complex numbers with the non-Archimedean valuation
extending that of Qp, :=’~~~, Ap is a spherically complete field
with a valuation group 0 ~ x ~ p} = (0, ~) ~ R such that Cp ~ Ap
~6, 21, 22, 28~. Then we denote :~ x for each .c ~ K.

2.2. Note. Each continuous function f : : M --~ K has the following
decomposition

(1) f(x)= 03A3 03B1(m, f)Qm(x),
m~Nno

where M = 0, l~ is the unit ball in Kn, are basic Amice poly-
nomials, a(m, f ~ E K are expansion coefficients (see also §2.2 ~13~ and (1, 3j~.
Here ~y : d(x, y) ~ r}, B(.X, x, r~~ :_ ~y eX: 
r~ are balls for a space X with a metric d, z E X, r > 0, N := ~1, 2, 3, ...},
No :- ~0,1, 2, 3, ...~. .

2.3. Definitions and Notes. Let us consider Banach spaces X and Y
over K. Suppose F : I~ --~ Y is a mapping, where U is an open bounded
subset. The mapping F is called differentiable if for each ( E K, a? E U and
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h E X with x + (h E U there exists a differential such that

(1) DF(x, h) := dF(x + |~=0:= lim{F(x + 03B6h) - F(x)}/03B6

and h) is linear by h, that is, DF(z, h) =: where .F’~~) is a
bounded linear operator (a derivative). Let

(2) h; () := + ~~) - ~’~~)~I ~

be a partial difference quotient of order 1 for each a? + (h E U, (h =~ o.
If h; () has a bounded continuous extension onto U x V x ,~r
where U and V are open neighbourhoods of x and 0 in X, U + V C U,
~ = B~K, o,1), then

(3) h; = sup I~~~~’Cx~ h;  ~
(x~U,h~V,03B6~S)

and = F’(z)h. Such F is called continuously diflerentiable on
U. The space of such F is denoted C(1, U ~ Y). Let

(4) h; () := (F(z + ~h) - E Y~~

be partial difference quotients of order b for 0  b  I, ac + (h E U, ~h ~ o,
:~- F, where Y~p is a Banach space obtained from Y by extension of a

scalar field from K to Ap. By induction using Formulas (1 - 4) we define
partial difference quotients of orders n + 1 and n + b:

(5) ~~F(~~,.,.~~;Ci~~~+i) :=

+ (n+lhn+l; h1, .., hn; 03B61, ..., 03B6n) - 03A6nF(x; h1, ...; hn;

03B61, ..., 03B6n)}/03B6n+1 and = 03A6b(03A6nF)
and derivatives = Then C(t, U --~ Y) is a space of functions
F : ; U --~ Y for which there exist bounded continuous extensions ~~F for

each z and x + (;h; E U and each 4  v  t, such that each derivative

F~~~(x) : : X~ --~ Y is a continuous k-linear operator for each a? E U and



24

are the integral and the fractional parts of t = n + b respectively. The norm
in the Banach space C(t, U -+ Y) is the following:

1s~ I~ ~= 

hl~ ~~~ ~1~ ..., ,

where o  t ~ R, sign(y) = -1 for y  0, sign(y) = 0 for y = 0 and
Bign(y) = 1 for y > ~.

Then the locally K-convex space C(oo, U ~ Y) := ~~n=1 C(n, U ~ Y) is
supplied with the ultrauniformity given by the family of ultranorms
il * ~C(n,U~Y).

2.4. Definitions and Notes. 1. . Let X be a Banach space over K.
Suppose M is an analytic manifold modelled on X with an atlas At(M)
consisting of disjoint clopen charts (Uj,03C6j), j E AM, M ~ N [18]. That
is, ~I~ and are clopen in ~I and X respectively, ~a : U~ - are

homeomorphisms, are bounded in X. Let X = where

(1) co(a, K) := {a- = (~ : : i E ~))a’’ ~ K, and for each e > 0 the set

(i : > e) is finite} with

(2) ~x~ := suP |xi|  o0
i

and the standard orthonormal base (e, : : i ~ a) [21], a is an ordinal, a > 1
[11]. Its cardinality is called a dimension card(a) =: dimKc0(03B1,K) over K.

Then C(t, M -+ Y) for M with a finite atlas At(M), card(AM)  No,
denotes a Banach space of functions f : M -~ Y with an ultranorm

(3) ~f~t = sup ~f|Uj~C(t,Uj~Y)  ~,
j~M

where Y := K) is the Banach space over K, 0  t E R, their restrictions
f|Uj are in C(t, Uj ~ Y) for each j, 03B2 > 1.

2.4.2. Let X, Y and M be the same as in §2.4.1 for a local field K. When
X or Y are infinite-dimensional over K, then the Banach space C(t, M ~ Y)
is in general of non-separable type over K for 0  t E R. For constructions
of quasi-invariant measures it is necessary to have spaces of separable type.
Therefore, subspaces of type Co are defined below. Their construction is
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analogous to that of Co from I°~ by imposing additional conditions (see for
comparison [21]).

We denote by Co(t, M --~ Y) a completion of a subspace of cylindrical
functions restrictions of which on each chart f|Ul are finite K-linear com-
binations of functions e p, m} relative to the following
norm:

~~3 := sup ~)~ i
i,m,l

where multipliers m) are defined as follows:

(2) m) v-= ~Qm|Ul~C(t,03C6l(Ul)~Kn~K),
m ~ Qp) with components ~ E No, non-zero componets of m are
m;, ..., with n E N, m := ..., for each 0, := (~’~ , ..., ~~ ) E

X, Qo := 1 (see aslo §2.2).
Lemma. If f e Co(t, M --~ Y), then

(3) (f|Uj)(x) = 
i,m

for each j E AM, where a(m, fi|Uj) E K are expansion coefficients such that
for each e > 0 a set 

(4) ~(~~ m~~) ~ : f a(’m~ I J(t, m) > finite .

Proof. This follows immediately from the definition, since

(5) f(x) = 03A3 fi(x)qi,
;e4

where Co(t, M -~ K).
In view of Formulas (1 2014 5) the space Co(t, M --~ Y) is of separable type

over K, when card(a x ~ x A,~) ~ Evidently, for compact M the spaces
Co (t, M -~ Y) and Co(t, ~I --~ Y) are isomorphic.

2.4.3.a. Now we define uniform spaces of the corresponding mappings
from one manifold into another, which are necessary for the subsequent def-
initions of loop semi groups and groups.
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Let N be an analytic manifold modelled on Y with an atlas

(1) At(N) = ~{Y~~’~~) : k E such that : V~~ --~ ~~{v~) c Y

are homeomorphisms, card(AN)  No and B : M ~ N be a C(t’)-mapping,
also card(AM)  N0, where Vk are clopen in N, t’ ~ max(l, t) is the index of
a class of smoothness, that is, for each admissible (i,j):

(2) E ~*(~, U;a --~ y)

with * empty or an index * taking value 0 respectively,

(3) 8= =i := o a

where := [U; n are non-void clopen subsets. We denote by
M - N) for 03BE = t with 4  t ~ oo a space of mappings f : M ~ N

such that

(4) - B=,J E C*(~y U=a -~ Y).
In view of Formulas (1 2014 4) we supply it with an ultrametric

(5) 9) = sup " gi,j~C*(03BE,Uj~Y)
i~1

for each 4  ~’  oo.

2.4.3.b. For a construction of quasi-invariant measures particular types
of function spaces are necessary, which are obtained by imposing simple
relations on vectors h; for partial difference quotients. Let M and N be two
analytic manifolds with finite atlases, dimKM = n E N, E C(~, Uj ~
K) for each 

We denote by Cp {(t, s), M -~ N) a completion of a locally K-convex
space

(1) ~f E N) : t p~f’’1{,~~ ~)  o0

and for each e > 0 a set ~{k, rrz) : : ~ ~a{m,, f ~-8~~)~J{{t, $), m) > finite }
ta 

’ ’

relative to an ultrametric

(2) := sup |a(m, f a - s), m),
i,j,m,k
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where 8 No, 0 ~  oo, ,

(3) Jj((t, s), m) := max

h1, ..., 03B61, ..., with

(4) hi = ... = h03B3 = e1, ..., = ... = hn03B3 = en
for each integer 03B3 such that 1  03B3  s and for each v E {[t] + 03B3n, t + 03B3n}.

In view of Fbrmulas (1 2014 3) this space is separable, when N is separable,
since M is locally compact.

2.4.4. For infinite atlases we use the traditional procedure of inductive
limits of spaces. Fbr M with the infinite atlas, card(AM) = N0, and the
Banach space Y over K we denote by M -+ Y) for 03BE = t with 4  t  o0

or for {= (t, $) a locally K-convex space, which is the strict inductive limit

(1) Y) := str - Y), ~, ~},
where E E E, E is the family of all finite subsets of AM directed by the
inclusion E  F if E C F, UE := ~j~E Uj (see also §2.4 [13]).

For mappings from one manifold into another f M -~ N we therefore
get the corresponding uniform spaces. Then as in §2.4.4(b) [13] we denote
them by M --~ N).

We introduce notations

(2) C(~~ M) ~= --~ M) n Hom(M),

(3) M) = C~(~~ M --~ M) n Hom(M),
that are called groups of diffeomorphisms (and homeomorphisms for 0  t 
1 and s = U), 8 = id, id(z) = z for each x ~ M, where Hom(M) := {f :

j E C(0, Af -~ M), f is bijective, ,~(M) = M, f and f -1 E C(0, M -+ M)}
denotes the usual homeomorphism group. For s == 0 we may omit it from
the notation, which is always accomplished for M infinite-dimensional over
K.

2.5. Notes. Henceforth, ultrametrizable separable complete manifolds
M and N are considered. Since a large inductive dimension Ind(M) = U
(see Theorem 7.3.3 [8]), hence M has not boundaries in the usual sense.
Therefore,
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has a refinement which is countable and its charts (Uj, are clopen
and disjoint and homeomorphic with the corresponding balls B(X, ya, r~),
where

(2) ~.: : U? -+ for each j E ~.~
are homeomorphisms (see {8, 18j). For M we fix such At’(M).

We define topologies of groups G(~, M) and locally K-convex spaces .

C~(~’, ,~l --~ Y) relative to where Y is the Banach space over K.

Therefore, we suppose also that M and N are clopen subsets of the Banach
spaces X and Y respectively. Up to the isomorphism of loop semigroups (see
below their definition) we can suppose that So = 0 E M and y0 = 0 E N.

For M = M B ~a} let At(M) consists of charts E AM, while
At’(M) consists of charts (t~~, ~y), ,j E A~, where due to Formulas (1, 2) we
define

(3) t/i = U1 B {0}, 03C61 = = U; and 03C6j = 03C6j for each j > 1,
0 E U1, M = U’1 B {0} s 03C6’1 = , U’ ; = U’j and 03C6’j = 03C6’k

for each j > 1, ,~ e A’M = A’M, Ui 3 0.
2.6. Definitions and Notes. 1. Let the spaces be the same as in ~2.4.4

(see Formulas 2.4.4.(1-3)) with the atlas of M defined by Conditions 2.5.(3).
Then we consider their subspaces of mappings preserving marked points:

(1) ~ (N, y0)) := {f E C03B80(03C9, M ~ N) : lim 03A6v(f-
|03B61|+...+|03B6k|~0

h1, ..., hk; 03B61, ..., 03B6k) = 0 for each v E {0, 1, ..., [t], t}, k = t

where for a > 0 and ~ == (t, s) in addition Condition 2.4.3.b.(4) is satisfied
for each 1 ~ 03B3  s and for each v E {[t] + + n03B3},
and the following subgroup:

(2) Go(~~ M) := ~f E G(~~ M) /(so) = so}
of the diffeomorphism group, where s E No for dimK M  No and a = o for
dimKM = N0.

With the help of them we define the following equvalence relations K~:
if and only if there exist sequences

{03C8n E n ~ N},
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{fn E -+ N) : n E N} and

~9n E - .~’) : n E N} such that

(3) f n(x) = for each x E M and lim f n = f and lim gn = g.
n~~ n~~

Due to Condition (3) these equivalence classes are closed, since (g(03C8(x))’ =
= sa, = 0 for t + s > 1. We denote them by

 f > K,03BE. Then for g E f > K,03BE we write gK03BEf also. The quotient space
(M, so) ~ (N, y0))/K03BE we denote by N), where 03B8(M) = {y0}.

2.6.2. Let as usually AV B := A x {b0} U {a0} x B ~ A x B be the wedge
product of pointed spaces (A, ao) and (B, 60), where A and B are topological
spaces with marked points a0 ~ A and bQ E B. Then the composition g o f
of two elements f , g E ~(~’, (~’, so) -~ is defined on the domain
M V  s0} =: M V M..

Let M = M B ~0} be as in §2.5. We fix an infinite atlas :=

~(Uj, ~’3) : ~ EN} such that : U~ -~ B(K, y’~, r’a) are homeomorphisms,

lim r’j(k) = o and lim = o

for an infinte sequence {j(k) E N : : k E N} such that clM[~~k=1 ’j(k)] is a
clopen neighbourhood of 0 in M, where clMA denotes the closure of a subset
A in M. In M V M we choose the following atlas V M) = :

l E N} such that ~ : -~ B(X, ~, o~) are homeomorphisms,

lim al(k) = 0 and lim zl(k) = 0k~~

for an infinite sequence EN: k E N} such that is a

clopen neighbourhood of 0 x 0 in M V M and

card(N B {l(k) : k EN}) = card(N 1 {j(k) : k ~ N}).

Then we fix a C(~)-diffeomorphisms ~ : M V M ~ M such that

(1) = for each k e N and

(2) = for each ! E (N B ~1(k) : k E N}), where

(3) It : k E N}) -+ k E N})
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is a bijective mapping for which

(4) p~~   p and pVl   p.

This induces the continuous injective homomorphism

(5) x* : C03B80(03BE, (MV M, s0  s0) -+ (N, y0)) ~ C03B80(03BE, (M, so) ~ (!’V, y0)) such that

(s) V f )(x) = (g V ~)~x~lC~))
for each x E M, where (g V f )(y) = f(y) for y E M2 and (g V f )(y) = g(y)
for y E Mx, M1 V M2 = M V M, Mi = M for d = I, 2. Therefore

(~)9°f 

may be considered as defined on M also, that is, to g o f there corresponds
the unique element in Co (~, (M, se) --~ (N, yo)~.

2.8.8. The composition in N~ is defined due to the following
inclusion g o j E Ca(~, (M, so) -+ (N, (see Formulas 2.B.2.(1-7)) and
then using the equivalence relations K~ (see Condition 2.6.1.(3)~.

It is shown below that S~~(~l, is the monoid, which we call the loop
monoid.

2.7. Theorem. The space from §2.6 is the complete sep-
arable Abelian topological Hausdorff monoid. Moreover, it as non-discrete,
topologically perfect and has the cardinality c := card(R). .

Proof. We have E (M, so) ~ (N, y0)) for each f E C03B80(03BE, (M, so) ~
and ~G E (see also [16, 18~j. The diffeomorphism x :

M V M --~ M is of class C(oo) and from Condition 2.6.1.(1) for f; E
--~ it follows that for f ~ x* ( f x V f ~) also Condition

2.fi.1.(1~ is satisfied, since X fulfils Conditions 2.fi.2.(1-4~, where i E ~l, 2~,
E M for each j, n = h~ E ~, ~J E K. Due to Condition

2.6.2(4) the composition in C03B80(03BE, (M, so) ~ (N, y0)) is evidently continuous,
since

I!f ~ Pd X max{~f~C03B80(03BE,M~Y), ~g~C03B80(03BE,M~Y)}
for finite At(M) and using the strict inductive limit for infinte At(M~, when
t  oo and d = [t] + 1 for 03BE = t with dimKM  N0, d = [t] + I + sa for
03BE = (t, s) with a = dimKM  No, where o  t E R and s E No. Due to
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Formulas 2.6.1.(1-3) and 2.6.2.(5-7)  f >x,~ o  g >x,~= f o g >x,~
for each f and g E Co (~, (M, so) "~ (N, yo~), since if f n(x) = and

gn(~) ~ for each 2 E M, then ( f n V = V ,

where ~n and (n E G0(03BE, M). Hence the composition is continuous for the
quotient space.

In view of Formulas 2.6.2.(1-3) M1M2 and M2VM1 are C(oo)-diffeomorphic,
hence these semigroups are Abelian. Evidently, this composition is associa-
tive, since M V (M V M) is C(~)-diffeomorphic with (M V M) V M. In

view of Conditions 2.6.1.(1-3) for each f E C03B80(03BE,(M,s0) ~ (N, y0)) there
exist sequences {03C8n : n E N}, E N} E N} in G0(03BE, M),

 N}, N} and {gn : n N} in (M, so) ~ (N, y0))
such that V fn](03C8n V = where

(1) lim diam{x EM: : V V = y0} = 0,

(2) lim fn = f, lim gn = f,

(3) lim 03C90,n = 03C90, fn(x) ~ yQ for each a? E M,

(4) diam(A) := sup ~x1 - x2~X,
x1,x2~A

A C M C X. On the other hand, from limn~~(fn V gn) = f V g it follows
that limn~~ fn = f and limn~~ g" = g. Using Formulas (1 - 4) we get
 ’~o o f >x,~= f >x,~ and  wo >x,~= e is the unit element in ~V)~
since  f >x,~ °  g >x,~= fog >x,~ for each f and g E Co (f , (M, so) "~
(~: ~oj)~

For each f , h and g E (N, yo)j from f V g = f V h it
follows that g = h. If there exists 03C8 E G0(03BE, M) such that X*(j V =

V h)(x) for each x E M, then there exists 03C8 E G0(03BE, M V M) for which
( f V gj(~(~)j = ( f V h)(z) for each z E M V M and f (~~~~ )(xj = for

each :B E Mi, M~ = M2 = M, hence g(z) = for each x E A-f, where
03C8 E corresponds to 03C8|M2. Then

(5)  f o  9’ >x~~=’~ f >x~~ o  h implies

 g >K,03BE = h >K,03BE,

since it is true for representatives of these classes. Implication (5) is caJled the
cancellation property. Therefore, the composition in N) is associative,



32

commutative and there is the unit element e, consequently, N) is the
monoid with the cancellation property.

To show that S~~ (M, N) is the Hausdorfl space it is sufficient to consider M
with a finite atlas, since ~I N~ is defined with the help of inductive
limit. In view of the monoid structure it is sufficient to consider two elements

~ and e with ~ 5~ e. . Let

~= inf 
(g~g,f~f)

be a pseudoultrametric in that is,

(8) Pn(9~ f ) > t~, f) = ~~

(7) 03C103BE03A9(g, f ) = and

(8) G for each f, g and hE 

where 9 and / E Co (~~ (M~ $o) --~ (Ns ~o))t ~ 9 >x,~= 9~  f >x,~= f t
f and g E N). Evidently, N) is continuous relative to the
quotient topology (see §2.4 and §4.1 (8~). If = 0, then there exist

Go(/, M) and 9n E 9 such that

(9) lim {sup ~03C8j  gn  03C6n~C0(03BE,M~Y)} = 0
n~~ j~N

(see Formulas 2.4.2.(3-5) and 2.4.3.a.(l)). In view of Conditions 2.6.1(1),
2.6.2(4) and Formula (9) for each f E N) there are in E f , ~~, and
~" E Go(~, M) such that

lim {sup ~03C8j ° V ° = 0,n~~ j

consequently, f o g = f = g o f for each f E N), hence g = e.
This contradicts the assumption g ~ e, consequently, E := pn(g, e) > o and
Wg n We = 0 for W, := {h E  ~~p}, where W, are
open subsets of N). Then 03A903BE(M, N) is Hausdorff, since

(10) 03C103BE03A9(g,f) > 0 for each g ~ f
and p~(g, f ) satisfying (6 - 8, 10) is the ultrametric.
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The space Ca (~, {M, so) --~ {N, y4)) is separable and complete (see ~~2.4
and 2.6) such that for each Cauchy sequence in the loop monoid there exists a
Cauchy sequence in Cp (~, {~1, as) --~ (N, ys)), hence this monoid is complete.

For each pair of elements f and g E C03B80(03BE, (M, so) - (N, y0)) with differ-
ent images I(M) ~ g(M) we have  f g >,~,~. Since N is embedded
into the Banach space Y and N is clopen in Y it is possible to consider shifts
along the basic vectors and retractions of images f(M) within N of the
corresponding class of smoothness, hence this monoid is non-discrete. The
manifolds M and N and the space C03B80(03BE, (M, s0) ~ (N, y0)) are separable,
hence c = card{N)  -~ = c.

For each g E N) there exists a Cauchy sequence ~gs : i E N} ~
N) B {g} such that limi-+-co Ii = g, since this is true for C03B80(03BE, M ~ N)

and choosing representatives in classes. Hence N) is dense in itself
and perfect as the topological space.

2.8. Note. For each chart of At(N) (see Equality 2.4.3.a. (1 ))
there are local normal coordinates y = (~ : j E ~3) E B{Y, a;, r;), Y =

Moreover, T~ = ~ x Y, consequently, TN has the disjoint atlas
At{TN~ = x x I) : i E where Iy : Y - Y is the unit

mapping, AN C N, TN is the tanget vector bundle over N.
Suppose V is an analytic vector field on N (that is, by definition V|Vi are

analytic for each chart and V o has the natural extension from on

the balls B(X, ai, r;)). Then by analogy with the classical case we can define
the following mapping

expy(zV) = y + zV(y) for which

~2 expy(zV(y))/~z2 = Q

(this is the analog of the geodesic), where for y E Y and
is also denoted by y, z E K, V(y) E Y. Moreover, there exists a

refinement At"(N) = ~(Y~i, ~";) : : i E of At(N). This is
embedded into At(N) by charts such that it is also disjoint and analytic and

are K-convex in Y. The latter means that 
for each E ~r"={Y";) and each a E B(K, U,1). Evidently, we can consider
Exp, injective on Y";, y E Y";. The atlas At" (N) can be chosen such that

V" x B(Y, 0, r,) -+ Y"~ i
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to be the analytic homeomorphism for each a ~ A" ~, where oo > ~_ > 0,

expy : ({y} X 4! i)) ~ V"= i
is the isomorphism. Therefore, ezp is the locally analytic mapping, exp :
TN ~ N, where TN is the corresponding neighbourhood of N in TN.

Then

(1) M ~ N) = {g E C(03B8,0)*(03BE, M ~ TN): : 03C0N o g = f},

consequently,

(2) -~ TN) = U --~ N) = --~ N),
f~C03B8*(03BE,M~N)

where 03C0N : TN ~ N is the natural projection, * = 0 or * = 0 (0 is omitted).
Therefore, the following mapping

(3) : ~V) -~ N)

is defined by the formula given below

(4) = o g(x), ,

that gives charts on Nf --~ N) induced by charts on C~(~, M .-~ TN).
2.9. Definition and Note. In view of Equalities 2.8.(1,2) the space

-~ N) is isomorphic with --~ x where

yo = 0 is the marked point of N. Here

d 
_

(1) N~ := ~V 0 (@ ’~ Y)) for t E No with t + s >~ 0;
;=1

(2) for t + s = 0;

(3) N03BE = N ~ (~ 03BE(Xj ~ Y)) ~ CQ (o, Mk ~ Y03BB) far t E R B N,
;~a

where N~ is with the product topology, d = ~t~ for f ~ t, d = ~t~ -~ nO’
for 03BE = (t, s) with a = dimK M  when s > U, k = d + sign{t},
Ya := 03BB), À is the least subfield of Ap such that A D K U j{t}(K)
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(see Equation 2.1.(1)). Then I,(X" - Y) denotes the Banach space of
continuous j-linear operators f; : X’ - Y with

(4) ~fj~L~(Xj~Y) := sup ~fij~m andE 
o,m

(5) lim ~fij~m = o, wherei+|m|+k~~

(6) ~fij~m ’" 
0~hl~Kk,l= 1,... ,j ~fij(h1, ’ ° ° ° hj)~YJ’(03BE,m)/(~h1~X...~hj~X),

8pK(ei , ... , ek) a+ X is a K-linear span of the standard basic vectors,
m = (m1, ..., mk), ]m] = mi + ... + mk, k E N; hi = ... = =

... = hm~ for s = 0; in addition Condition 2.4.3.b.(4) is satisfied for each 0 
Y  s, when 8 > 0; f = (fo, fi , ..., f; , ...) E N’ , £; fijqi = fj, fij : Xj - K,

J’(I, m) ’# |~mQm(x)|x=0|K

(see §2.2 and Equations 2.4.2.(1-5), 2.4.3.b.(1-3)).
2.10. Theorem. Let G = Q«M, N) be the same monoid as in §2. 6.
If 1  t + s, o  t E R and / = (t, s), s e No, then
(1) G is an analytic manifold and for it the mapping i# : TG -+ G is

defined, where iG is the neighbourhood of G in TG such that i#q(V) =
exp~(x) o I§ from some neighbourhood l§ of the zero section in TjG c TG
onto some neighbourhood W, a q E G, iC~ o q, W. = We o q, q E G and
i# belongs to the class C(~) by V, i# is the uniform isomorphism of uniform
spaces V and W;

(2) if At(M) is finite, then there are Ãt(TG) and Ãt(G) for which # is
locally analytic. Moreover, G is not locally compact for each o  t.

Proof. (A.) Let at first M be with a finite atlas At(M). .
Let I§ E TqG for each q, e G, V e Co(g, G -+ TG), suppose also that

oV~ = q be the natural projection such that £ TG -+ G, then V is a vector
field on G of class Indeed, let © = (g E Co(/, (M, so) -+ (N, y0)) :

 I /p) . Then - (N, yo)) and Co(( , (M, so) -+

(TN, yo x o)) have disjoint atlases with clopen charts, since there are neigh-
bourhoods P 3 tvo in Co(f, M - N) and fi 3 (wo © 0) in Co(/, M -+ TN)
homeomorphic to clopen subsets in Co(/, M -+ Y) and Co (/, M -+ Y x Y) ,
where P and # are such that they may be embedded into A := #; Co (/ , U; -+
Y) and B := %; U; - Y x Y) respectively. Moreover, there are the
natural embeddings A P Co(£, M - Y) and B P Co(£, M - Y x Y).
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The disjoint and analytic atlases At(C0(03BE, M ~ N)) and M ~

TN) induce disjoint clopen atlases in G and TG with the help of the cor-
responding equivalence relations, since the metrics in these quotient spaces
satisfy Inequality 2.7.(8). These atlases are countable, since G and TG are
separable.

Let us suppose, that G has a compact clopen neighbourhood W. of e.
Since ind(G) = 4, then there exists We, which is the submonoid (see §?.7
and §9 [10]). There exists  f >x,~E W~ for which J is locally linear,
that is, = a -~ 6(x - ~1) for each x E B(X, ~~, rl), = 0 for each
a? E where M, a and b £ K, 0 ~ B(X, 1, 1),
|a| = p1, |b| > p2, oo > rl > 0, R(Y, o, Then f has compositions
f " := f o f "1I for each n > 1, n E N, where f1 := f and f ° := 03C90, for
which  In for each n, hence the sequence { f n >x~: n~ has a
convergent subsequence { >K,03BE: i E N} in W~, since G is Lindelöf (see
Theorems 3.10.1 and 3.10.31 [8]). But

~ 03B4~f~C00(03BE,M~Y) =: E > o

for each n ~ I, n and l ~ N, 03C8 E consequently, due to Equations
2.6.2.(1-4)

for each n ~ l E N, where oo > 03B4 > 0, since

o  ~fn~C0(03BE,M~Y).
This contradiction means that G is not locally compact. In view of §2.7 the
space TnG is not locally compact, hence it is infinite-dimensional over K,
since dimKC00(03BE, B(K, 0,1) ~ K) = No.

Due to Equations 2.6.2.(1-7) multiplications

(1) R/ : : G -.~ f =: and

(2) ~ (Mt so) --~ (Na ’-~ Co(~’, (M, ss) -~’ (N, yo))~ v°~

for I,g E G and h, v E --~ (N, ys)) belong to the class C(oo)..
Let V be a collection of all g E (M, ss) -+ (N, 0)) for which g = wo + Z
with  1/p for each i and j, since N is clopen in Y.
Hence g~ = wn -~. zZ E Y for each z E B(K, 4,1) and =
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ah(Z). Then Z(x) = for each x E M, where v is a vector field
on N such that ~ ~, n~N : TN - N is the natural projection and
v(y) E Ty N for each y E N, p2 TN ~ Y, p2(y, a) = a for each (y, a) E TyN.
Due to the equivalence relations there are a neighbourhood W of e in G and
a curve gx ~ W corresponding to g~ such that = R fZ, where
Z is a vector field on G, that is a section of the vector bundle  : TG ~ G,

= ~ for each ~ E G, Z~ E T’1G (compare with the classical case in [7]).
From this it follows that each vector field V of class Co(~) on G is invariant,
since G is Abelian. This means that RfV~ = for each f and ~ E G.

Therefore, the vector field V on G of class Co(~) has the form

(3) = 03C5(~(x)),
where v is a vector field on N of the class Co(~), r~ E G, v( f >x,~ (a?)) :=
{03C5(g(x)) : g E f >K,03BE}. Since exp : TN ~ N is analytic on the correspond-
ing charts, then = exp o V has the necessary properties (see Equations
2.8.(3,4)).

(B.) Let now M be with an infinite countable atlas At(M). Let us take
a subset

(4) V’ := {V E (M, so) ~ (TN, a x ©)) : C UE(V), E(Y) E E

such that ~C0(03BE,U(V)~Y Y) ~ 1/p
and xN o = for each ~ E ~(~’, (M, 80) -~ (N, ~)) and a 

where E(V) 3 1 (see §2.4.4). In view of Equations 2.8.(1,2) if V ~ TG,
then there exists v E TN such that V~ = for each ~ E G. If .F(t) is a
C(oo)-mapping from B(~, o,1 ) into C~ (~, (M, so) ’--~ (N, ys)), then

lim lim 03A603C5(~F(t)/~t)(x; h1, ..., hn; 03B61, ..., 03B6n) ~ Y03BE
x~s0 |03B61|+...+|03B6n|~~

as a mapping by h1, ..., hn, hence

(5) C~? so) --~ (~~ = (~~ ~~o) --~ (TN, 0 X o)) X Y~~
since T(N~) is isomorphic with N~ x Yt (see Equations 2.9.(1-3)).

Therefore, using the equivalence relation K~ from §2.6.1 we get the uni-
form isomorphism E,~ : V,~ --> where V C = V n T~G,

(6) ® : Co (~~ (M~ 80) --~ (TN, 0 x o)) -
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(~? so) -~ (TN, 0 x o)) x x jY) = TG
is the quotient mapping, Iy is the identity operator in Y~; ( f , v)(.K~ x

if and only if = ~g~(~~? and = for each
x E M, where 03C8n, fn and gn satisfy Condition 2.5.1. (3), W = E(V),
W~ = E(Y~), where .K~ is for Ca (~’, (M, so) - x 0)). In view of
Equations (3 - 6) we have a mapping .E~ : T,~G --~ G such that ~ is of class
C(oo).

2.11. Definition. Let f (x) be in C((t, s -1 ), X’ -~ K) (see §2.4.3.b),
then an antiderivation P(l, s) is defined by the formula:

(1) P(l, s)f(x) := 03A3{(~ff(xm))(xm+ - + u)! : m ~ Nno,

,~ = j’ s’ E ~o, l, ..., e - I~, ~ !~ o, ..., I -.1},
where 8 ’ = ~j(1)1 ... ~j(n)n, j = (j(1), ..., j(n)) , u - _ (1 ..., 1) E Nn, xm = 03C3m(x),

: m E l~Ion~ is an approximation of the identity in X’,
X’ is a clopen subset in B(Kn, o, R), oo > R > o, 1  t E R, d = ~t~ + 1,
n E N.

2.12. Lemma. Let f E C((t, s ’ 1), X’ ~ K), t = l + b -1, 0  b  1
and E C((t, s -1), X’ -~ K). Suppose in addition that

(1) f (~) = + ~ 
s’~{0,1,...,s})

+ I (x ~ ~ x f ~) 
tl?’i~r-~~~-~’+s~3

where R(n, j; x, y) E C(b, X’ x X’ -~ K) and they are zero on the diagonal
((x, y) E X’ x .X’’ : : x = y). Then for each z E X’ :

(2) lim Jk,qj f(x, y; 03B61, ..., 03B6qn) = ~qu f(k) (x)I (k + qn)!,x,y~z;|03B61|+...+|03B6n|~0

for each k =1, ..., l and

(3) lim Jl-1,qjf(x,y;03B61, ..., 03B6qn)(x - y)l-1/jv(03B6) = ..., z)/(qn)!,x,y~z

where

l4~ yi ~1~ ..., ~g~)ll~ - ~)~ ~= (~~~~,f ~ (~? x - ~, ..., x ~- ~~ ~1, ..., hq~~
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4,...,o,l,...,l,~x,...,~q")
has j zeros in (...), the function jb(03B6) was defined in §2.1, x = y + f e; in
Formula (3), h1 = h2 =..... = hq = ex, hq+1 = ... = h2q = e2,... hq(n-1)+1 =

f~Ey~’E~~~~~...,s~,x~yEX’~y+~~h=~X’~
Proof. By the Taylor formula

f ~x) = + ~ 
1~|j|~l-1

+(03A6lf)(y; x - y, ..., x - y; 1, ..., 1, 1) - f(l)(y)(x - y)l/l!.
Then using ~78.3 by induction by each variable and g78.A ~22~ and Formulas
2.I1.(I), 2.12.(1,4) we get formulas ~2, 3).

2.13. Lemma. Let f ~ - 1), B --~ K), B = B(K°,o,1) and
S = B(K, Q, r) be balls in KD and K respectively, t = I + b, 0  b 
1, 1 E ~t. Suppose that /(:1:, y; f t, ..., f q")~x - E S for each x, y E
B, E and for each o  j  n + 1, k  1 + 1. Then

(03A6k+qnf)(y; x1, ..., h1, ..., hqn; 03B61, ..., 03B6k+qn) ~ S for each xi ~ B and 
1, where h~ are the same as in §2.12.

Proof. Applying §81.2 ~22~ by induction by each variable we get the state-
ment of the lemma, since - = ~~‘(y; x - y, ..., x - y; o, ..., 0). .

2.14. Lemma. Let f E ~ K) and ~u f E C((t, s -
1), X’ ~ K) and

(1) f(x) = + 03A3 (~j f(y))(x - y)j/j!
~’E~0,1,...,~}~

+ ~ (x -- y)v x R(n, v; x, y), , _

(~~rj~t, 
’

where are continuous functions zero on the diagonal for
x - y = ~e; with ~’ ~ ~. Then f E C(~t, s), X’ -~ K).

Proof. For s ~ 1 by assumption 8~ f E C(~t, o), X’ -~ K), hence f E
C((t,1), X’ --~ K). Then by induction applying Lemmas 2.12 and 2.13 we
get the statement of this lemma for each 

2.15. Theorem. Let f ~ C~(t, s - 1), X’ --~ K). Then

(I) P(l,s)f(x) ’.’ s) f (y) = 03A3 (~j’ f(y))(x - y)j/j!
s’~{1,...,s})
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+ ~ ,

|v’|=l-1)

where and (with x - y = 03B6 E K for
i =1, ..., n in the latter case) are continuous functions equal to zero on the
diagonal.

Proof. Applying ~78.2 (22~ by each variable and using Lemma 2.14 we
get 8~ f E C~~t s -1 ), X’ -~ K). In view of Formula 2.14. ~1 ) there are
continuous functions A~ j, v; *) together with A~ j, v; x, y)I jb ~~’) (for x - y =
f e;, i =1, ..., n in the latter case), such that

(2) ~j f(xm) " 03A3 (~j+q f(y))(xm - y)q/q!
(I~!=o,...,r-!~I-1)

+ L.~ ~xm and
(|v|=l-|j|-1)

(3) = £ [ £ (
(m~Nno, |j’|=0,...,l-1, j=j’+s’u, s’~{0,1,...,s-1}) (|q|=0,...,l-|j|-1)

~+gf l~)~‘~m‘~I)~I q~’~’ ~, Vi ~m~ 
|v|=l-|j|-1

" £ 
( ~’E{A,~,...,s-1}~

+ £ ~xm _ xm, y)/(j + u)!~~
(m~Nno,|v|=l-|j|-1)

analogously for From Formulas (2, 3) and 2.14.~1) we get

E ~x " vi 2, ~) :

(|v’|=l-1, v=v’+su)

._ £ ~~xm ~. ~)v
(m~Non, |j|=0,...,l-1; |v’|=l-|j|-1, v=v’+su)

v; xm, y)-(ym-y)v(ym+n-ym)j+A(j,v; ym,y)]/(j + u).’. .
We finish the proof as in Theorem 84.3 (22j.

2.16. Corollary. Let 1  t E R. Then each f E - 1), X’ -~ K)
has a C((t, s), X’ -~ K)-antiderivative:

~l) = for each z e .~‘,



41

moreover, for each j = ( j (1 ), ..., j (n)) with j (a)  2 for each i =1, ..., n, and
each z = ..., the following equation is fulfilled:

(2) ~j P(l, s)f(x) |{ there is o.

Proof. This follows immediately from §29.12 [22] and Formulas 2.11.(1),
2.15.(1).

2.17. Lemma. Let G = ~(M, N) be the same monoid a,9 in ~2.6. If
has card(’M) > 2, then G is isomorphic with GI = N), where

M = U’1 ~ U’2 (see §2.5). Moreover, T~G is the Banach space for each ~ E G
and G sa ultrametrizable.

Proof. Let ~; be the characteristic function of then f = X~f
for each f E Co (~, M --~ Y), where (X~ f ) E Uf -~ Y). The spaces

~I -~ Y) and U; --~ Y) are isomorphic, since Ui are clopen
in M (see ~12,1 and (12.2.2) [20]). In view of Formulas 2.5.(1-3) each U;
for At’(M B U~) is C(oo)-diffeomorphic with M, when i and j > 1. . Hence
 f >x,~ is completely defined by the restriction ( f ~~). Therefore, G and
G~ are isomorphic, consequently, TG and TG1 are isomorphic.

The space TG~ is isomorphic with [C4 ( f , (M, sa) -~ (TN, 0 x 0~) x
x IY) (see Formula 2.10.(fi)). Let po be the norm in C00(03BE, M ~

Y x Y) , ’it is also the norm in its complete subset (M, so) --~ (TN, o x o)), ,
where TN is isomorphic with N x Y and N is locally K-convex. In view of
Theorem 2.7 Gi and hence TG~ are Hausdorff spaces. Then p induces an
ultrametric

(1 ) h) := inf Pa(f -’ h)~
(f~f,h~h)

where /, , h E TG1 and /, , h E TC00(03BE, (M, so) ~ (1V, o)). In view of Formula
(1) the ball B(T,G, g x 0, l /p) is K-convex and it is contained in T9G for
each g E G.

The tangent space T~1 G1 is complete, Hausdorff and has a K-convex
bounded neihgbourhood of 0, consequently, Gi is the Banach space over
K for each fit E G1, since At(M) is finite and ~ Y) is the Banach
space over K (see §(7.2.1) and Exer. 7.119 [20]). Hence Gi is metrizable by
an ultrametric p together with G such that

(2) P( f1 > K,03BE,  f2 >K,03BE)= inf ~g1 - g2~C00(03BE,M~Y),
since it satisfies Conditions 2.7.(6-8,10).
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3 Quasi-invariant and pseudo-differentiable mea-
sures on loop semigroups.

3.1. . Definition. Let G denote the Hausdorff totally disconnected group. A
function f : K --~ Y is called pseudo-differentiable of order b, if there exists
the following integral:

(1) f(x)) := K[(f(x) - f(y)) x b)]v(dy),

where g(z,y,b) :=| z - y |-1-b for Y = C and g(z,y,b):= q(-1-b) ordp(x-y)
for Y = Aq with the corresponding Haar Y-valued measure v and b ~ C
(see also §2.1). We introduce the following notation for such

integral by B(K, fl, ~) instead of the entire K.
3.2. Remarks. 1. For a Hausdorff topological space X’ with a small

inductive dimension ind(X’) = 0 [8] the Borel u-field is denoted B f (X’).
Henceforth, measures ~ are given on a measurable space (X’, .E), where E
is a u-algebra such that E ~ Bf(X’) and  has values in R or in the local
field Kq ~ Qq. The completion of B f (X ‘) relative to  is denoted by
Af(X’,p,). The total variation of p, with values in R is denoted by | |(A)
for A E A f (X’, ~). If ~c is non-negative and ~(X’) ~. ~, then it is called a
probability measure.

We recall that a mapping  : E ~ Kq is called a measure, if the following
conditions are accomplished:

(1) ~c is additive and p(0) = 0,

(2) for each A E E there exists the following norm

~A~  := : B B E E}  ao,

(3) if there is a shrinking family F, that is, for each A, B E F

there exist F 3 C C (A n B) and E F~ = 0, then

lim IL(A) = 0A~F

(see chapter 7 [21] and also about the completion Af(X’,p,) of the 03C3-field
B f (X’3 by the measure ~). A measure with values in Kq is called a proba-
bility measure if == 1 and ~(,X’) =1. . For functions f : X’ -t Kq and



43

03C6 : X’ ~ [0, ~) we consider the prenorm

(4) sup(|f(x)|03C6(x))
x~X’

and define the function

(5) N (x) := inf ~U~ ,

where Bco(X’) is a field of closed and at the same time open (clopen) subsets
in X’.

Tight measures (that is, measures defined on an algebra E such that
E D Bco(X’)) compose a Banach space ~I (X’) with a norm

(6) ~ ~ := ~X’~ .

For K D Qp let p, take the values in Kq, where q ~ p, if another is not spec-
ified. Everywhere below there are considered D"-additive measures for which

 oo and  oo for  with values in R and Kq respectively,
if it is not specified another. Then L(X’, ~c, Kq) = L(~x) denotes a space of
~measurable functions f : X’ -~ Kq for which

(7J ~f~L( ) ’- ~f~N   oo.

3.2. Let on a completely regular space X’ with ind(X’) = 0 two non-
zero real-valued (or Kq-valued) measure$ ~ and v are given. Then v is called
absolutely continuous relative to p, if v(A) = o for each A E B f (X’) with

= ~ (or there exists f ~ L(~) such that

(8) v(A) = A 
_

for each A E Bco(X’), respectively) and it is denoted by v « Measures v

and ~ are singular to each other if there is F E B f (X’) with F) = o
and = 0 (or F E Bco(X’) for which Flip = o and = 0)
and it is denoted by v J- ~.

If v ~ ~ and ~~ v then they are called equivalent, which is denoted by
jf,,
3.3. . Remark. Let G be a topological Hausdorff semigroup and (M, F) be

a space M of measures on (G, B f (G)) with values in either F = R or F = Kq.



44

Let also G‘ and G" be dense subsemigroups in G such that G" C G’ and a
topology T on M is compatible with G’, that is, p ~ h is the homomorphism
of (M, F) into itself for each h E G’, where := p,(h o A) for each
A E B f (G). Let T be the topology of convergence for each E E B f (G). If
P E (M, F) and h ~ P for each h E G’ then  is called quasi-invariant on
G relative to G’. We shall consider p with the continuous quasi-invariance

. factor

(1) 
If G is a group, then we use the traditional definition of h such that :=

o A).
3.4. Definition. Let S(r, f ) = 9(",!) be a curve on the subsemi-

group G", such that S(o, f ) = f and there exists 8S(r, f )/8r E TG" and
=: Af E TfG", where r E oo > R > 1. Then

a measure  on G is called pseudo-diflerentiable of order b relative to S if
there exists by r E B(K, U,1) for each B E B f (G) (see
§3.1), where := for each B E B f (G). A measure P
is called pseudo-differentiable of order b if there exists a dense subsemigroup
G" of G such that /~ is pseudo-differentiable of order b for each curve S(r, f )
on G" described above, where b E C.

3.5. Note. Now let us describe dense loop submonoids which are neces-
sary for the investigation of quasi-invariant measures on the entire monoid.
For finite At(M) and ~ = (t, s) let ~ Y) be a subspace of
Cq (~, M -~ Y) consisting of mappings f for which

(1) - C00,{k}(03BE,M~Y) := sup  oo and
i,m,j

(2) lim sup |a(m,fi|Uj)|KJj(03BE,m)pk(i,m) = Qs

where m) := c’ x i + c x + Ord(m)), d and c are non-negative
constants, |m| := 03A3i mi,
. Ord(m) := max~i : ; mi > 0 and m~ = o for each I > a}

(see also Formulas 2.4.2.(2) and 2.4.3.b.(3)).
For finite-dimensional M over K this space is isomorphic with M --~

Y), where k’(i,m) = c’ x s + c x For finite-dimensional Y over K
the space -~ Y) is isomorphic with --~ Y), where
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= c x + ard(m)). For c’ = c = o this space coincides with

Co (~, M --~ Y) and we omit ~k}.
Then es in §2.fi we define spaces C~~~~}(~, (M, ao) --~ (N, 0)), groups

(3) ~ M) n Hom(M),

(4) G{k}0(03BE, M) := {03C8 E M) : 03C8(s0) = s0}
and the equivalence relation If~,~~} in it for each M and N from §2.4 and
§2.5. Therefore,

(5) G’ := N) =: (M, sa) ~ (N, 0))/K03BE,{k}

is the dense submonoid in N).
3.8. Theorem. On the monoid G = N) from §2.6 and each b ~

C there exist probability quasi-invariant and pseudo-differentiable of order
b measures  with values in Rand Kq for each prime number q such that
q ~ p relative to the dense submonoid G‘ from §3.5 with c > 0 and c’ > a.

Proof. In view of Lemma 2.1? it is sufficient to consider the case of
M with the finite atlas At’(M). Let (x~, ..., ...) =: ~ be the natural
coordinates in ~, since .M~ is embedded into the Banach space X, where
xj E K for each j E a. The space C00(03BE, M ~ N) is complete, hence it is
closed in the complete space M - Y), since 0 ~ N ~ Y. From the
definition of the topology in C00(03BE, M ~ Y) it follows that M ~ N) is
the clopen neighbourhood of zero in Nf -~ Y).

Then there exists a continuous mapping

~ ; t N) -i 

given by the following formula:

(1) Aa(F)(xa) :’ s + 1)F1)(xa), ..., 8 + ...),

where Ma := M~Ka for each a E N, K" = spK(e1, ..,, ea) X, 03BE1 = (t, s+1)
for 03BE = (t, s), F(za) = ..., ...) E Y for each xa ~ Ma, xa :=

..., xa), F ~ C00(03BE, Ma ~ 1V), Pa(l, s + 1) is the antiderivation by xa
defined on the space Co ((t, s), Ma - K) as in §2.11, since Ma is with the
finite atlas At’(Ma) consisting of bounded charts.
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Let Aa be defined on the tangent spaces to these with the help of the
local diffeomorphism, , : ~f,a --~ where is a neighbourhood of
the zero section in N) and is a neighbourhood of f in
Co (~, Ma --~ N), for example, f = wo (see Formulas 2.8.(1-4)). Then it is
continuously strongly diflerentiable such that

t2~ ~,~’~atF’~~~a)l(~~ " s

where F‘, ~ ~ UN,a C --~ N), is the corresponding neighbour-
hood of the zero section.

In view of Corollary 2.16 this mapping Aa is injective, hence ,A~ is injective
on Moreover, the restriction of .Aa on Co (~, (N, 4)) has the
image in C00(03BE’, (Ma, s0) ~ (Y, Dj). For Ma = M let A = Aa, for M modelled
on c0(03C90, K) let -

(3~ A = ~ consequently
a~N

(4) A : : (N~, sQ) ~ (N, aj) -~ ~
is injective and continuous for suitable 03BAa E K with p-1 ~ |03BAa| x ~Ãa~ ~ 1, ,
where

(5)  := c0({Ha : a ~ N})
is the following Banach space with elements z = za E H~, a E N) having
the norm

(6) ~z~ := sup ~za~Ha  oo and
a

(7) lim ~za~Ha - a1
(8) ~L~ := &up ~Lx~Y’/~x~X’

~~o

for a bounded linear operator L : X’ -~ Y’ and Banach spaces X’ and
Y’ over K, wa E : Ha ~ E N}) are the natu-
ral embeddings, = 1 for each a E N; ~Lo :~ o. We choose =

T0C00(03BE’, Ma ~ Y). In view of the definition of the space ~ Y)
this mapping .4 is the isomorphism of (M, gpj --~ (N, U)) onto the
Banach subspace of Z. Hence A is defined on a neighbourhood of the zero
section in (M, so) - into a neighbourhood of the zero section
either in (M, s4) --~ for finite-dimensional Mover K, or into
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~ (Y,o)) : a E N}) =: Z for dimK M = N0, where
charts in the manifold Z are induced by (Ma, so) --~ (Y, 0)) : :
a E N}) for f E ~(~~, (M, so) --~ (Y, 0)),

(9) ’-~ =

U 
{f~C00(03BE’,(M,s0)~(Y,0))}

U ~o) -~ ~~a a)) ~ ’ 
{f~C00(03BEf,(M,s0)~(Y,0))}

g E (Ma, so) ’-~ (Y, a)) : a E N}) means by the definition that
~ o~ -~ K) : ~ e N}) and = /, ~ : x ~ ~ ~ are
projections, Yi = Y~ = Y, i E ~1, 2}. .

Let the equivalence relation K03BE acts in (M, so ~ (N, U)) as K03BE  IY
in Formula 2.10.(6). Therefore, A is continuous and injective and from
f 0 1/J = g it follows o 03C8) = A(g) and A  f >K,03BE is a closed subset

in the corresponding manifold --~ (Y, a)) or Z (see Theorem
(14.4.5) and Exer. 14.110 in [20]). Then the factorization by the equiva-
lence relation I~~ is correct due to Definition 2.11 and Corollary 2.16, which
produces the mapping ’~ from the corresponding neighbourhood of the zero
section in N) into a neighbourhood of the zero section in Y)
for dimKM  oo or into E N}) for dimKM = No.
- 

Therefore they are continuously strongly differentiable with =

where f and v E VN ~ Te03A903BE(M, N), VN is the corresponding neigh-
bourhoods of zero sections for the unit element e === ~ra >x,~. . In view of the
existence of the mapping E (see Theorem 2.10 and Formula 2.10.(3)) and
Formulas (1-9) for TG there exists the local diffeomorphism

(10) 1 : --~ V’’o

induced by E and x, where We is a neighbourhood of e in G, V’o is a K-
convex neighbourhood of zero either in the Banach subspace I~ of Y)
for dimK M  oo or in the Banach subspace H of Y) : a E N}j
for dimK M = N0. In view of Formulas 2.8.2.(5-?) there exists the homomor-
phism

(M V M, s0)) ~ (N, 0)) ~ TC00(03BE, (M, s0)) ~ (N,0))
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such that x* is in the class of smoothness C(oo). Therefore, there is the
linear mapping (differential)

(11) (M V M, ao)) --~’ (N, 0)) -~ F

for each h E C~ (~, (MV ~f, ao)) -+ (N, o)), where F is the Banach space such
that TzC00(03BE, (M, s0)) ~ (N, U)) = {z} x F for each z E C00(03BE, (M VM, s0)) ~
(N, o)), in particular for z = x* (h)..

Let now Wi be a neighbourhood of e in G’ such that W’eWe = It

is possible, since the topology in G and G’ is given by the corresponding
ultrametrics (see Formulas 2.7.(6-8,10) and Lemma 2.17) and there exists
W. with WeWe = We, hence it is sufficient to take Wt ~ We. For g ~ We,
v = E’ 1 (g), ~ E W~ the following operator

(12) S~(v) := ’~ o L~ o ~’‘1(v) - v
is defined for each (~, v) E W~ x where L;(9) :=== ~ o g. Then E

V"o C where V"o is an open neighbourhood of the zero section either in
the Banach subspace of TeG‘ for dimKM  o0 or in the Banach subspace of
c0({TeG’a : a E N}) for dimKM = N0, where Ga = 03A9{k}03BE(Ma, N). Moreover,
S~(v) is the C(oo)-mapping by ~ and v, since T and L~ are C(oo)-mappings.

In view of Theorems 6.13 and ~.16 [21] the Banach space H is isomor-
phic with c0(03C90, ff ). The Borel u-algebras of c0(03C90, K) relative to the norm
and weak topologies coincide. Suppose that there exists a sequence of finite-
dimensional over K distributions 03BDLn on which means by the def-
inition, that Ln := spK(e1, ..., en) is a sequence of finite-dimensional over K
subspaces such that Ln C Lm for each n  m, Un Ln is dense in co, 03BDLn is

a family of measures on all with values in one chosen field among
either R or Kq satisfying the following condition

(13) ~ Lm) = 03BDLn(A)
for each A E and each n  m, where 03C0n : co ~ Ln are projections
such that = x = xjej E co, a:n = xjej and xj ~ K.
When the sequence of finite-dimensional over K distributions

(14) = ~nj=103BDj(dxj)
generates a measure v on co we write

(15) 03BD(dx) := ~~j=103BDj(dxj),
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where are measures on Kej. There exist the following 03C3-additive
measures 03BD with values in [0, oo) and Kq:

~

(l6) = ~ 03BDl(j)(dxj),
j=1

where =1 for each j E N,

(17) 03BDj(dxj) = fj(xj)w(dxj),
w is the a-finite Haar measure on K with values in [0, ~] or Kq with

= 1, f j E for real-valued w and fi E L(K, w, Kq)
for Kq-valued 03C9 (see §3.2). It is possible to take, for example,

= n)~

where

S(j, n) := 

for j E Z with j  n,
S(n,n) := 

a(j,n) = r-n)(1 - 1/p)p-n
for j  n and

a(n, n) = ~1 _,1’’~n)p-n
with 1  r for the real-valued case;

n) = (1 - q)(1 - 1/p)q2n-1-jp-n

for j  n and

a(n, rt) = (1 - qn)p-n
for the Kq-valued case.

Let

(18) ~ l~j + 1)
for each j E N,

(19) lim I( j) = oo and

(20) iim p(l(j)-k(ij,mj)) = Uj~~
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(these limits are taken relative to the usual metric in R), where ;; : N 2014~ L
is a bijection, -

L := {(t, m) : indices corresponding to
. difserent classes  Qmqi > K,(03BE,{k}) with 0}

such that to one class there corresponds one index, 03C8(j) =: Qm are
considered on M (see Formulas 2.4.2.(3-5), 3.5.(1-4) and Lemma 2.17). We
can take M C Ui (see Formulas 2.5.(2,3)). When either i ~ i’ or |m| ~ |m’ |
then  Qmqi > K,{03BE,{k})~ Qm’qi’ > K,(03BE,{k}), since Qm are completely defined
by its values on MOrd(m) and have |m| pairwise distinct zeros, where Afn :=

,

In view of Prohorov Theorem §IX.4.2 [4} for real measures or its analog for
measures with values in Kq 7.6(ii) [21] ~ has the countably-additive extension
on The restriction of v on is non-trivial.

Then ~ are compact operators {23] for each ~ E ~. . Let

(21) U03C6 = 7 + S03C6 and 03BD03C6(J) := 03BD(U-103C6(J))
for each J E In view of Formulas (10-20) there exists the quasi-
invariance factor

(22) == |det U’(U-1(x))|K03C103BD(x - U-1(x),x),

where ~7 = ~ for a given ~ ~ ~’(:/) = dU(y)/dy,

:= := v(J - ~), ~ = ~ - ~-’(~),

either e L1(V’0,03BD,R) or L(V’0,03BD,Kq)
in the corresponding cases, since ~ is K-convex and C ~ for each ~ 6
H~. . This t/ on is also pseudo-differentable realtive to ~. Moreover,

is continuous by (03C6,x) W’e x V’0. If f : B(K,O,l) ~ G’ is
a continuous mapping, then /(B(K,0,1)) is a compact subset in GB hence
for each neighbourhood W~’ of e in G’ there are ~i, ...,~ and A 6 N
such that /(B(K,0,1)) C . This measure is pseudo-differentiable
of order b, since V’0 is bounded in  and there exists a neighbourhood W’e of
e in G’ and local coordinates in W~ such that depends on Suite
number of local coordinates.
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More general classes of quasi-invariant and pseudo-differentiable of order
b measures i/ with values in [0, oo~ or in Kq exist in view of Theorems 3.23,
3.28 and 4.3 [14] on V’0 relative to the action of 03C6 E W’e such that (03C6, 03C5) ~
v + S03C6(03C5), where v E V’0.

This measure induces a measure ~ on We with the help of T such that

(23) = for each A E 

since > o. The monoids G and G’ are separable and metrizable,
hence there are locally finite coverings i e N} and : i E N}
of G and G’ with ~s E G’ such that W; are open subsets in W~, ~W’; are open
subsets in W’e, 03C61 = e, W1 = We and = W’e [8], that is,

«

~ 03C6i  Wi = G and ~ 03C6i  W’i = G’.
ieN i~l

Then  can be extended onto G by the following formula

~ ~

(24) := ( ((03C6i-1 o A) tl u(Wi)ri)
==! =1

for each A E B f(G), where o  r  1 for real ~i or r = q for ~i with
values in Kq. This ~ is the desired measure, which is quasi-invariant and
pseudo-differentiable of order b relative to the submonoid ?" = G’ (see §§3.3,
3.4).
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