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Abstract

This paper aims to construct adaptedness and stochastic integration on
Poisson space in the abstract setting of Hilbert spaces with minimal hypothesis,
in particular without use of any notion of time or ordering on index sets. In
this framework, several types of stochastic integrals are considered on simple
processes and extended to larger domains. The results obtained generalize the
existing constructions in the Wiener case, unify them, and apply to multi-
parameter time.
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1 Introduction

The theory of stochastic integration has been developed in an abstract setting, cf.

[9], and [19], [20], [21], for the case of abstract Wiener spaces. This construction

is closely related to quantum stochastic calculus, cf. [16]. In this paper we present
a construction of Poisson stochastic integration in an Hilbert space setting. We

consider both the point of views of quantum and anticipating stochastic calculus

and since it is based on the Fock space, our approach can be adapted to deal with

the Wiener case. Let r(H) denote the symmetric Fock space over a given Hilbert

space H, and let ~ and o respectively denote the ordinary and symmetric tensor

product of Hilbert spaces. A notion of adaptedness is introduced on Fock space,

relatively to an abstract measure space {X, ,~’X, ~c), and allows to extend the Skorohod

integral operator via an Ito type isometry to square-integrable adapted vectors (or
"processes") in r{H~ ~ H. Then we define the Poisson integTal of simple vectors
in r(H) ~ H, and study its extensions and relationship to the Skorohod integral.
No ordering is required on the index set X, moreover we do not make use of a

mapping from X to R or of the real spectrum of a self-adjoint operator to induce
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an order on X as in [5], resp. [19]. Our integral operator is originally defined for

simple process, and if one removes adaptedness assumptions it still admits several

extensions via limiting procedures, although no one is canonical in the sense that

they all depend on the particular type of approximation chosen for the integrand. In

this sense this type of integral is close to the pathwise integrals of forward, backward

and Stratonovich types. Our construction of stochastic integration is also valid in the

Wiener interpretation of r(H), but in the Poisson case it presents several important
differences with its Brownian counterpart, due to the particular properties of Poisson

measures.

In classical probability, a 7-algebra can be identified to a space of bounded

measurable functions in In quantum probability, is replaced with

an operator algebra A, a-algebras are then identified to a sub-algebras of A, and

quantum stochastic integrals act on operator processes. The point of view developed

in this paper is intermediate between classical and quantum probability. Namely,

L2(S~) is replaced with the Hilbert space r(H), stochastic integrals act on vectors in

f(H) 0 H, and u-algebras are identified to vector subspaces of F(H). Our integral

has some similarities with quantum spectral stochastic integrals, but its purpose is

different since we map vectors in ~ H to vectors in 0393(H).
The first two sections of this paper are only relative to the general symmetric

Fock space, not to a particular type of random measure (Gaussian or Poisson). The

remaining sections deal with the Poisson case, but each construction is related to

its Gaussian counterpart. We proceed as follows. In Sect. 2 we give a definition of

measurability of vectors in the Fock space r(H), using a projection system indexed

by a ~-algebra on a measurable space X. In Sect. 3 we introduce a notion of strong

adaptedness under which the Skorohod integral operator V+ satisfies the Ito isometry

~u~20393(H)~H,

which allows to extend V+ to a larger class of square-integrable processes without

hypothesis on the Fock gradient The Poisson "pathwise" integTal is defined

for simple processes in Sect. 4 and its relation to the Skorohod integTal is studied in

Sect. 5. Under a weak adaptedness condition, the Poisson stochastic integral opera-

tor S coincides with the Skorohod integral V+ on simple weakly adapted processes,

hence as the Skorohod integral, it can be extended by density to as space of strongly

adapted processes. As an application we construct a Fock space-valued multipa-
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rameter Poisson process. Other extensions of S without adaptedness conditions are
discussed in Sect. 6, in relation with the quantum spectral stochastic integrals of

[2]. Sect. 7 recalls the Poisson probabilistic interpretation of the Fock space r(H),
to be used in Sect. 8, and contains an independent remark on the relation between

Guichardet Fock space and Poisson space. In Sect. 8 we work in the Poisson inter-

pretation of r(~f), using a Poisson random measure on an abstract measure space,
and show that our integral coincides with the classical Ito-Poisson stochastic inte-

gral under adaptedness conditions. Without adaptedness conditions it becomes a

Stratonovich type anticipating integral.

2 Measurability in Hilbert space with respect to
an abstract index set

In this section we give a definition of measurability for vectors belonging to the

symmetric Fock space r(H) = (with H°° = R) over H, by using the
notion of projection system. If hl, ... , hn E H we denote by hi o ... o ~,~ E Hon the

symmetrization of h,Z ® ~ ~ ~ ~ hn E > 1, and by S the vector space generated

by
: Ai,..., ~ E H, n E N}.

Let V- : r(H) --~ r(H) ~ H and V+ : r(H) ~ H -~ r(H) denote the gradient and

Skorohod integral operators, densely defined on S as

i=n

(hi o ... o h; o ... o hn) ~ hi,

where hi means that ~t is omitted in the product, and

extended by linearity and density as closed operators with domains Dom(V-) and

Dom(V+). Let 03C8(f), / E H, denote the exponential vector defined as

03C8(f) = 1 n!fon.

Definition 1 Let be a measurable space, and let (pA)A~FX be a projection

system inde~ed by (x’,.~’X) on an abstract Hilbert space H, i.e. a family of self-adjoint

operators p,~ : H - H, A E , that satisfies .
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and
00

= pA ’
k=0

for any A E and any countable partition (Ak)keN C ~’X of ,~.

The above assumptions imply that p~ = 0. We may further assume as in Sect. 8 that

px is the identity of H, but this is not necessary in general. The following definition

is apparent in [9], [16], [19].

Definition 2 A vector F E r(H) is said to be FpA-measurable, A E FX, if F E

Dom(V-) and

(Id ® pAc)~-F = 0,

where Ac stands for the complement of A and Id denotes the identity on 0393(H).

Each projection system (pA)A~FX determines a family of vector subspaces of r(H)
which play the role of 7-algebras .~’ ~ . The conditional expectation of a

vector
co

n=o

with respect to .~A is naturally defined as
m

= 

n=0

Condition (2.1) ensures the relation

After fixing cp E H, the projection system (pA)A~FX defines a finite measure  on

(X, .~’,Y ) as

p.(A) = E ~’X.

If H is unitarily equivalent to L2(X, ~c) via the Hahn-Hellinger theorem (cf. ~8J, [16]),
i.e. there exists a unitary operator U H --~ L2 (X, ~c), then pA can be identified to

1~ with pA = however such an identification may not be always possible.

In particular, when working with the probabilistic interpretation of r’(H) under a

Poisson random measure on a set M, i.e. H = L2(M, 03C3), we allow the index set X
to be different from Af.
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3 Adaptedness and Ito isometry in Hilbert space
The definitions introduced in this section are not specific to the Poisson case.

Proposition 1 The Skorohod integral operator V+ satisfies the isometry
;=n

~~+(u)~20393(H) = ~u~20393(H)~H + ((ui, ~-Fj)H, (uj, ~-Fi)H)0393(H), > (3.1)

for a simple process of the form u = 03A3i=ni=1 Fi ~ u;, where u; E H and F; E Dom(V-),
i=1,...,n.

Proof. This result is well-known, however it is generally stated in the case where
H is a LZ space. By bilinearity, orthogonality and density it suffices to choose
u = ~ g E r(H) ~ H, f, g E H, and to note that

~~+(u)~20393(H) = ~fon o g~20393(H) = 

1 (n + 1)2 ~ f~i ~ g ~ f~(n-i)~20393(H)
’=o r(H)

- 

(n -f 1)2 ((n -f-1)!(~ + ~~ -I-1)!n(n -i-1) ~~ f ~~H 2~f ~ 9)H) 
_ 

= n!~f~2nH~g~2H + (n - 1)!n2~f~2n-2H(f,g)2H
= ~u~20393(H)~H + ((g, ~- fon)H, (g, ~-fon)H)0393(H). [] .

This isometry has been related to the quantum Ito formula in (I3~. From this formula,
a bound on the norm of 0+(u) can be deduced as

 + 

This bound allows to extend V+ to a domain in r(H) ~ H, closed for the ~~ . ~y,2
norm defined as

~u~21,2 = ~u~20393(H)~H + ~~-u~20393(H)~H~H,

however it imposes some regularity on the process u via its gradient ~-u.

Definition 3 Let U c I‘(H) ~ H denote the space of simple processes of the form
i=n

u = 03A3 Fi ~ (pA;cp;), Fl, ... Fn E Dom(~-), Al, ... , .4" E (3.2)
~=i

03C61, ... , 03C6n E H, n E N.
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If H = L2(X, p), X = R and pAh = lAh, A E a simple process u =

03A3i=ni=1 Fi1|ti,ti+1| is usually said to be adapted if F; is Fp[0,ti]-measurable, i =1, ... , n.
It is well-known that in this case, the term 03A3i=ni,j=1((ui, ~-Fj)H, (uj, ~-Fi)H)0393(H) in

(3.1~ vanishes and that the Ito isometry ,

~~+(u)~20393(H) = ~u~20393(H)~H

holds in place of the Skorohod isometry, thus allowing to extend the Skorohod integral
to square-integrable processes indexed by R. In the general case, due to the lack of

ordering on the index set X, there is no analog for the "past" of a set A~.

We introduce in our abstract setting a definition of adaptedness under which the Ito

isometry will hold.

Definition 4 A simple process u E U c r(H) ® H is said to be strongly adapted if
it has a representation of the form

~~n

~=~Fi~(pA~~i~~ ,
i=I

Ar, ... An E FX, F1, ... , Fn E s, 03C61, ... , 03C6n E H, such that

(id ~pAi)~- Fj = 0, or (Id = 0, i,j = 1,...,n,

is FpAci-measurable or Fi is FpAcj-measurable, i, j = I, ... , n. . We denote by UAd
the set of strongly adapted simple processes.

The set UAd of simple strongly adapted processes is not a vector space: F ® (pA03C6) +

G ® (pB03C6) may not be strongly adapted even if F ~ (pA03C6) and G ® are.

Moreover the strong adaptedness property is not independent of the representation
chosen for u E UAd. If X = R+, the usual adapted processes u = 03A3i=ni=1 Fi ~ (p[0,ti]03C6),
0  tl  ...  Fl, ... , Fn E S form a vector space which is contained in the set

of strongly adapted processes.

Definition 5 The set of strongly adapted square-integrable processes is defined to be

the completion in r(H) ® H of the set of simple strongly adapted processes.

The Ito isometry holds on strongly adapted processes because the second term of

the Skorohod isometry vanishes for such processes.
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Proposition 2 The Itô isometry

~~+(u)~0393(H) = ~u~0393(H)~H (3.3)

holds for all square-integrable strongly adapted process u. .

Proof. . If u E UAd is of the form

~=n

,

i~l

Al, ... An E Fl, ... , Fn E s, then the condition

(Ia ~ pAi)~-Fj = 0, or (Id ~ pAj)~-Fi = 0, a, j =1, ... n,

shows that

((pAi03C6i, ~-Fj)H, (pAj03C6j, ~-Fi)H)0393(H) = a, 2y = 1, ..., n.

Hence (3.3) holds from the Skorohod isometry (3.1), and a density argument con-

dudes the proof.
0

Although the sum u + v of two square-integrable strongly adapted processes may not

be strongly adapted itself, we have u + v E Dom(V+) C r(H) ~ .~, and V+(u + v)
satisfies V+(u + v) = ~+(u) + ~+(v), however the Ito isometry (3.3) may not hold

for u + u.

4 Poisson integral

We introduce an integral that will be the analog of a pathwise Poisson integral, and

will coincide with the Skorohod integral on strongly adapted processes.

Definition 6 Let p E H be such that

pA03C6 = 0 ~ PA = 0, dA E (4.1)

A vector u E 0393(H) ~ H is said to be a simple 03C6-process if it can be written as

t=n

u = ® (pAi03C6), a E FX, > F1,...,Fn E S, n ~ N.
i=I

We denote by U03C6 the vector space of simple p-processes.
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The p-simple processes are relative to a single ~p E H. In the Gaussian case, we

could work with U itself, i.e. a simple process could depend on n vectors 03C61, ... , cpn

instead of a single ~p E H, cf. [19] for the case X = R.

Definition 7 Let u E U03C6 be a simple 03C6-process written as

I=n

u = 03A3Fi~(pAi03C6), F1,..., Fn ~ S, A1,..., An ~ FX , n> I. . (4.2)
~=1

We define the Poisson stochastic integral of u as

~=n

S(u) = 03A3~+(Fi ® + + (pAi03C6, ~-Fi)H. (4.3)
i=1

This definition is formulated on the Fock space r(H) and it will have a concrete

meaning under the Poisson probabilistic interpretation of r(H) in Sect. 8. The

operator S is in fact analog to a pathwise Stratonovich type integral.

Proposition 3 The definition (4.3) of S(u) is independent of the particular repre-
sentation (4.2) chosen for u. Moreover, S is linear on the vector space of simple

cp-processes: .

S(u ~ v) = S(u) + S(v), ~c, v E Ll~.

Proof. This proof uses the assumptions of Def. 1 and Def. 6. Let n > 1 and

F1,...,Fn,G~,...,Gn E S, A~,...,A~,B~,...,Bn with

Ai ~ Aj = , , i ~ j, 2, y’ 1, ... , n. (4.4)

Assume that u has two representations
i=n ~=n

u = 03A3 Fi ~ (pAi03C6) = 03A3 Gi ~ (pBi03C6).
i-1 i=1

Applying successively Id ~ (pBJ) and Id ® on both sides we obtain

i=n j=n

Fi ~ (pBj~Ai03C6) = Gj ~ (pBj03C6), and F= ® = 03A3 Gj ~ pAi~Bj 03C6) .

i=I j=1

By scalar product with pAi~Bj03C6, this implies from (4.4):

Fi = Gj if pAi~Bj03C6 ~ 0, i,j =1, ... , n,

and
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i.e. from the assumption (4.1 ) on 03C6:

j=n ~=n

pa~ _ ~ and pBJ 
j=1 i=1

Consequently,

I=n

03A3~+(Fi ® + ® + (pAi03C6, ~-Fi)H
~m

I=n

= ~+(Fi ~ pAi~Bj03C6) + ~+((Id ~pAi~Bj)~-Fi) + (pAi~Bj03C6, ~- Fi)H
~_~

= ~+(Gj ~ pAi~Bj03C6) + + (pAi~Bj03C6, ~-Gj)H
i=ri

- ~ + + 
j=1

If Al, ... , An are not disjoint sets we choose a partition of Al U ... U An
such that for all i =1, ... , n, the set .~4; is written as A~ = We have

~=n t=n j=n
u = 03A3 Fi ~ (pAi03C6) = 03A3 Fi ~ (pCi,j03C6) , pAi = 03A3Ci,j, (4.5)

~m 
’~ ’ 

a= 

and

~=n

03A3 ~+(Fi ~ (pA;03C6)) + ~+((Id ~ pAi)~-Fi) + (pAi03C6, ~-Fi)H
i=

i=n

= ~+(Fi ~ (pCi,j03C6)) + ~+(Id ~ pCi,j)~-Fi) + ~-Fi)H

- ~+(Gj ~ (pBj03C6)) + ~+((Id ~ pBj)~-Gj) + (pBj03C6, ~-Gj)H.
;m

In order to show that S is linear on the simple p-processes U03C6 we choose two simple

03C6-processes

~_~

.~1,...,AnE.~’~’, , ~n~l, ,
i=1

and
ty~

G1,...,Gn ~ S, B1,...,Bn ~ FX, n ~ 1,
I=I

w~ith

A~n.~~=~, BtnBj=0, , i,~=1,...,n..
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We have

t=n i=n ;=m

u + v = ~ ~F= ~ + ~ = ~ ~~ ® (1~D;SP) ~ (4.6)
i~l i=1 

’ 

i= 
’

where D1, ... , Dm ~ FX are disjoint sets with

Fi if Dj ~ Ai B Bi,
Hj = Gi if Dj ~ Bi 

B 
Ai,= { Fi + Gi if Dj ~ Ai ~ Bi,

i =1, ... , n, j =1, ... , m. Moreover,

j=m j=n j=n
= + 03A3(Id

j=1 i~l i=1

hence S(u + v) = S(u) + S(v).’ 

0

In the Gaussian case, the above proposition is obvious since the analog of S is defined
as

T(u) = ~+(Fi~(pAi03C6i))+(pAi03C6i,~-Fi)H = V+(u)+trace (~-u), u ~ u. (4.7)
i=1

Remark 1 Given ~a, E H satisfying (~. ~~, the operator S is linear on and on

U03C8, but not on the linear space spanned by and U03C8.

More precisely, let u E U03C8, u E U03C8, be simple p-process, resp. 03C8-process, with

i=n i=n

U , >

i=1 i=1

then u + v may be a simple ;~ + $-process (if A= = B~, i =1, ... , n) but even in this
case «te may not have S(u + 2~) = S(u) + S(v) :

I=n

S{u + v) = 03A3~+(Fi ® + 03C8) + (Id ~ pAi)~-Fi + (pAi(03C6 + 03C8), ~- Fi)H
i=I

i=n

= S(u) + S(v) - 03A3 ~+((Id ~ pAi)~-Fi).
i=1 

’

The linearity property of S holds on a given class of processes which is determined

by ~. This corresponds to the fact that Poisson random measures with same jump
sizes are stable by addition but not by linearity. The Gaussian setting, however, is

fully linear because in this case the term ~+((Id ~ in (4.3) is absent of
the definition (4.7) of T(u).
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5 Skorohod and Poisson integrals
In this section we deal with the relationship between S and the Skorohod integral
operator V+. First we note that S coincides with V+ on a vector space of weakly
adapted simple ~-processes which is larger than the set of strongly adapted simple
p-processes. Under the strong adaptedness condition, S can (as V+) be extended to
a class of square-integrable processes via the Ito isometry (3.3j. .

Definition 8 A simple process u E U c r(H) ® H is said to be weakly adapted if it
has a representation

i=n

u = ~ (pAi03C6i) , F1,..., Fn E S, 03C61,..., 03C6n E H, n E N, (5.1)
i=1

such that

(Id ® F! = 0, ~ -1, ... , n..

We denote by U03C6ad the set of p-processes in U03C6 that are weakly adapted.

This definition states that a simple process u = 03A3i=ni=1 Fi ~ (pAi03C6i) is weakly adapted
if F~ is ~~-measurable, i =1, ... , n. The weak adaptedness condition is in general
dependent on a particular representation (5.1~ of u. In the case of weakly adapted
simple 03C6-processes the situation is different.

Proposition 4 All representations (5.1~ of a given simple weakly adapted p-process
u E satisf y condition (5.2). Moreover, the set U03C6ad of weakly adapted simple
~-processes forms a vector space.

Proof. Let n > 1 and F’1, ... , Fn, GI, ... , Gn E S, .9I, ... , An; Bl, ... , Bn E FX with

A~ n A~ _ ~ and Bt n Bj = ~, i ~ j, i, j =1, ... n. Assume that

i=n j=n .

n=~F=®~A;~P)-=~G~~ ,

i=1 j=1

and that the representation u = 03A3j=nj=1 Gj ~ (pBj03C6) satisfies (5.2). We have as in

Prop. 3

a^n t~n

pAi = , pB; _ 03A3pBj~Ai, and Ft = G? if pAi~Bj r 0, i, j = 1, ... , n,
~=i 

~ ~ 

~~i
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hence

j"n ~=n

(Id ~ pAi)~-Fi = 03A3(Id ~ pAi~Bj)~- Fi = 03A3(Id ~ pAi~Bj)0394-Gj’ 

7=1 
’ ’ 

9=1 
’ ’

j=n ,

= 03A3(Id ~ pAi)(Id ~ pBj)~-Gj = 0,
. ’

i.e. (5.2) is also valid for all representations u = 03A3i=ni=1 Fi~(pAi03C6) of u, with Ai~Aj =

~, i ~ j, i, j = 1, ... , n. If A~, ... An are not disjoint sets we have the expression

(4.5) : .
==n j=n j=m ~=n

u = ~ j’= ~’ = ~ l’B; y-- ) L 1’= ~ .

=r1 j=1 j=I i=1
From the above discussion we have (Id ~ = 0, % =1, ... , n, j =1, ... , ra,

hence 
,

. j=m

(Id = ~ ( Id ~ = 0, a --1 ... , n.
j=1 

’~

In order to show that the weakly adapted processes form a vector space we proceed

as in the proof of the linearity of S on the simple 03C6-processes in (Prop. 3) : we

choose two 03C6-processes

t=n

~ nl,
i=1 

and 
i=n

V = ~ Gi ~ (PB;SP) , Gl, ... , Gn E s, B~, ... , Bn E n > 1,
~=i

with

A.~nA?=0, z~j=L,...,n.

Writing as in (4.6) of Prop. 3

u+v=Hi~(pDi03C6)
i=1 

’

we check that if u and v are weakly adapted, then (Id ~pDi)~-Hi = 0, i.e. u + v is

weakly adapted.
0

If X = R+ and (E(t))tER+ is an adapted operator process in the sense of quantum
stochastic calculus, cf. ~10~, then is weakly adapted in our sense, where

1 denotes the vacuum vector in r(H). The operators S and V+ coincide on simple

weakly adapted p-processes but the Ito isometry (and hence the strong adaptedness
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condition) is needed to extend this identity to a closed space of processes. The space
of square-integrable strongly adapted p-processes is the completion in r(H) 0 H of
the space of strongly adapted simple p-processes.

Proposition 5 Let u E U03C6ad be a simple weakly adapted 03C6-process. We have

~’(u) = o+(u~~

i. e. the Poisson and Skorohod integrals of u coincide. This relation extends to the

square-integrable strongly adapted 03C6-processes via the Ito isometry

~~+(u)~0393(H) = ~S(u)~0393(H) = ~u~0393(H)~H.

Proo,f. We apply the definition (4.3) of S, the fact that (Id ~ = 0, since

Fz is FpAci-measurable, i = 1,..., n, and use the self-adjointness of pAt which implies
p, = = 0 in r(H). Since strongly adapted processes

are also weakly adapted and satisfy the Ito isometry for V+, the operators S and
V+ coincide on the set of square-integrable strongly adapted p-processes.

o

In the Gaussian case we also have T(u) = V+ (u) if u E U is a simple weakly adapted
process, and T can be extended as in Prop. 5 to the completion of the set UAd of

simple strongly adapted processes.
A first application of the operator S is the construction of a multiparameter Poisson

process in Fock space. Taking X = R~ with its canonical (partial) ordering "-" we
let t = (tl, ... , td),

[s, t] = [s1, t1] x ... x [sd, td], s,t ~ Rd, s  t,

and we construct the d-parameter compensated Poisson p-process in r(H) as

nt = t E ~,+.

This process has intensity ([0,t]) = ~p[0,t]03C6~2H, t E P,+, and 03C6 controls the "size"
of jumps as noted in Remark 1. The Hilbert space H needs not be equal to L2(lR,+).
In this case we can adopt the notation

Rd+ 
udnt := S(u)
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for the compensated Poisson stochastic integral of a simple 03C6-process u E U03C6 with

respect to Let u be a simple p-process of the form

i=n

u = ~ ~i ~ (p(a;,ss+~1~P)’
i=l

If si - =1, .. , , n --1, and u is adapted in the usual sense, i.e. Fj is Fp[0,si]-
measurable, 1 ~ j  i ~ n, then Fy is Fp[si,si+1]c-measurable, 1 ~ j ~ i  n, and u is

strongly adapted (in particular it is also weakly adapted in our sense). In this case,

udn := S(u) = ~+(u)

and this relation extends to square-integrable strongly adapted processes by density
from Prop. 5.

6 Other extensions of S as a linear operator on Up
In this section we deal with the possibility to extend the operator S without the

strong adaptedness condition. Clearly, the operator S is not closable because it

involves traces of the gradient D’~ and there is no canonical way to extend it to a

larger domain. We mention two possibilities of extension, one of them being based

on the relation of S with quantum spectral stochastic integrals.

a) Let u ~ Dom(~-) C and let II be a set of partitions 03C0 = ... E

FX of X with > 0, i =1, . , . , n, and |03C0| = sup0~i~n-1 (Ai), 7r E II, such that

(i) we have

lim sup 1 (A)~(u,pA03C6)H (A) ~ (pA03C6) - (Id ~ pA)u~ 
21,2 

= 0

(ii) E Dom(~-), dA E 03C0, and there exists an element of I‘(H) ® H

denoted trace V-u, such that

lim sup 1 (A)~1 (A)(Id ~ pA)~-(u,pA03C6)H - (Id ~ pA)trace ~-u~21,2 = 0.

(This requires the existence of at least one sequence (03C0n)n~N C II such that

limn~~ |03C0n| = 0). We let

u03C0 = (u,pA03C6)H (A) ~ (pA03C6) ~ U03C6, ( 6.1 )
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and

trace ~- u03C0 = 1 (A) (Id ~ pA) ~- (u, pA 03C6) H .

Under the above assumptions, un and (trace 03C6)H converge respectively to u
and (trace cp)H in r(H), and trace converges to trace V-u for the ~.~1,2
norm as |03C0| goes to 0, due to the bounds

~u03C0 - u~21,2 ~ (X) Sup 
1 (A)~(u,pA03C6)H (A) 

® (pA03C6) - (Id ~ pA)u~21,2,
[[trace trace 

 sup )) A (Id ~pA)~-(u,pA03C6)H - (Id ® 

and

~(trace ~-u03C0,03C6)H-(trace ~-u,03C6)H~20393(H)  ~trace ~-u03C0-trace ~-u~20393(H)~H~03C6~2H.

Under the above assumptions we can define S(u) as the limit in r(H)

S(u) = lim = V+(u) + V+(trace V-u) + (trace (6.2)
|03C0|~0
03C0~03A0

An example of a vector u E r (H) @ H satisfying the above assumptions is provided
by letting u = G ~ pBi03C6 E Dom(V+) c r(H) ~ H, where C is

a disjoint family and C Dom(V"), with  oo. In

this case, trace V-u is defined to be 03A3~i=0(Id ~ pBi)~-Fi, and (6.2) defines S(u).
Conditions (i)-(ii) are naturally satisfied since ~ (pA03C6) = (Id ~ pA)u and

~ pA)D (u, pAcp) H = (Id ~ pA) trace V-u, A E ~r, ~r E n. Here, II can

be defined as the set of partitions ?r = {A 1, ... , An} E of X with (Ai) > 0,

i =1, ... , n, such that all A E II is contained in a Bj for some j E N.

b) The integral S(u) can also be linked to the quantum spectral stochastic integrals
of [2], ~3~, which provide a different extension of S. Given a simple operator process

defined as E(x) = E X, where El,...,En: r(H) -~--~

r(H) are bounded operators, the quantum spectral stochastic integral of (E(x))x~X
is the operator denoted by
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and defined on exponential vectors ~( f ) := ~~° o ~, f °", f E H, as

(X E(x)(a+03C6(p(dx)) + a-03C6(p(dx)) + 03C8(f)

= ~+(Ei03C8(f) ® (pAi03C6)) + + ~+((Id ~ pAi)~-Ei03C8(f)).

Given u a simple process defined as u = ® we have the relation

= + a~ + ~ f E H.

If X = [0,1] and (E(t))t~[0,1] is an adapted operator process such that t H E(t)03C8(f)
is continuous from [0,1] into r(H), f E H, then as a consequence of Lemma 3.2
of [2] the quantum spectral stochastic integral of (E(x))x~[0,1] is well-defined on the

exponential vector in the sense that

lim S(E(ti)03C8(f) ~ (p[ti,ti+1]03C6))

exists in r(H), with 7r = {0  t1  ...  tn  1}. However, X should be an interval

of R and this requires to consider processes such as which then

satisfy a condition similar to (ii) above, due to the particular form of exponential
vectors which implies 0"~( f ) = ~( f ) ® f .

7 Isomorphism of Guichardet space and Poisson
space

This section recalls the Poisson probabilistic interpretation of the Fock space r(H),
which will be used in the next section, and presents a remark on the relations between

Poisson space, Fock space and Guichardet Fock space. The Guichardet interpretation

of r(H), cf. [7], has been used in connection with quantum stochastic integrals, cf.

[4], [5], usually in the particular case M = R+. We assume that H = 

where (A-f, ~, ~) is a measure space with finite diffuse measure Q. In this case, H°~n

is the space of symmetric square-integrable functions on Mn, n > 1. The

gradient V-F E r(H) ~ H of F ~ Dom(V-) C r(H) is denoted as (~xF)x~M and

u E r(H) 3 H is denoted by Let Po = ~~~,

Pn = {(x1, ... , xn) E Mn : xi ~ x j , i ~ j, 1  i, j  n}, n > 1
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and P = Pn. Let A denote the collection of subsets of B of P such that

B n Pn E ~®n, n > 1. The measure a defines a measure on 1, and a

measure Q on (P, A) as

Q(B) = 03C3~n(B  Pn),
°

i.e.
oo ~

Q = n!03C3~n
with the convention 03C3~0({Ø}) = 1. In the Guichardet interpretation of r(H), each el-
ement F = F (H) is isometrically identified to a square-integrable function

in L2 (~, Q) . The Guichardet interpretation of r(H) is not a probabilistic interpre-
tation because it does not induce a product on r(H).
On the other hand, the underlying probability space of a Poisson random measure

(N(A))A~G on M can be taken equal to P. We identify each element w 

U~n=0 Pn to a (finite) sum of Dirac measures

03C9 ~ 03B4x,

and for A E ~ we define N(A) : ~ ---~ ~. as

The compensated random measure N is defined by (A) = N(A) - 03C3(A). Let P

denote the Poisson probability measure with intensity o- on (p, A), such that for

disjoint sets A~, .... A.n E ~, the applications N(Ar), ... , N(An) are independent
Poisson random variables with respective intensities ~(A~), ... , Q(An), n > 1. This

measure can be written as

P .B = e-03C3(B) Q®n B Cl Pn) B E ,A.
°

In this setting, 03C9 ~ Pn corresponds to a Poisson sample of n points in M, we refer to

[14] for this construction of the Poisson measure. The n-th order multiple stochastic

integral of a symmetric function fn E is the functional in L2(p, P) defined
as

In(fn) = fnd(03C9 - Q) ... 03C3), G! E P,

with the isometry
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cf. e.g. [11], [18]. The isometric isomorphisms between the Fock space o~)),
the Guichardet Fock space L2(~, Q) and the Poisson space L~(p, P) can be described
as follows: 

.

fl r(H) ~ L2(P,P)
n!fn fn  In ( fn)

The isometric isomorphism between r (H) and the Poisson space L2 (P, P) will be
denoted by V, i.e. V associates f n E t2(Mn) to its multiple stochastic integral

cf. [12] for a recent account of this isomorphism via the Charlier polynomials.
The isometric isomorphism between r(H) and the Guichardet space L2(?~, Q) is

denoted by I, it maps fn e to the function n! fn in L~(?~, Q). The Guichardet

interpretation of the operators V" and V+ is

(7.1).

and for u E U a simple process,

D+(~)(’Y) = ~ ~(x~’Y ~ x)~ ’Y E ~, (7.2)
xe~

cf. e.g. [5], where we identified respectively F, u, ~’+(u) to J o F, J o ~-F,

J o u, J o D+(~c). On the other hand we know from e.g. [6], ~I1~, [15], [17], that the

probabilistic interpretation of D- is given by

ax F(w) = F(w U x) - F(c~), x E M, cv E p, F E s,

and

~+(u)(03C9)=u(x,03C9Bx)-Xu(x,03C9)d03C3(x), 03C9 ~ P, u ~ U,

with respectively F, V"F, ~c, V+(u) in place of Z o F, Z o V"F, Z o p+(~)~

8 Stochastic integration with respect to a Poisson
random measure

In this section the Hilbert space H is H = L~(M, a), Q is a finite measure, r(H) is

identified via J to the Poisson space L2(p, P), r(H) ® H is identified to x

® u), and (X,~’,Y) remains an abstract index set with projection system
the next proposition. We assume that px is the identity of H.
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Proposition 6 In the Poisson stochastic interpretation of F(H), the stochastic in-
tegral S(u) of a simple 1M-process u = & © (pAi1M) e u1M satisfies

S(u) " § G M (pA; iM) (Z) (N(dZ) - U(dZ) ) .I=I M

Proof. This result follows from the expression on Fock space of the multiplication

operator by jat (pAi1M) (z) (N (dz) - J (dz ) ) , cf. e.g. [1 6] :

F; / »I (pAi1M) (z) (N(dz) - 03C3(dx))
" © (PA; lM) ) + @ PAi)~-Fi) + (pAi1M, i7 "

The Poisson stochastic integral S(u) can be extended to square-integrable strongly
adapted processes via the It6 isometry (3.3) with the relation

S(u) = / »i u(z) (N(d+) - u(dz)).
The Poisson integral S(u) defined above is for simple processes. It can be extended

to a given process u by taking limits from a sequence of simple processes approaching

u, however the result depends in general on the choice of an approximating sequence.

Considering ux defined in (6. I) , we have

~u03C0~2L2 (M,03C3) 
= ~ (u, pA1M)L2 (M) (A) ~ (pA1M) ~2L2 (M,03C3)

= ~(a,pA1M)L2(M,03C3) (A) ~ (pA1M) ~2L2(M,03C3)
" 1 (A) 1 (u, pA1M)2L2(M,03C3) " £ 1 
= 1 (A) £ (pAu,pA1M)2L2(M,03C3)  £ (pAu,pAu)2L2(M,03C3)
 £ (u,pAu)2L2(M,03C3)  (U , u)fl; .,i,u> ,

AGX

i.e. ~u03C0~2L2(M,03C3)  ~u~2L2(M,03C3), P-a.s. On the last line we used the assumption that
px is the identity of H. Hence in assumption (I) of Sect. 6, L2 convergence can be

replaced by almost sure convergence of the approximation:

lim i>i h )) @ PAI»I> - Id © pA)u~2L2(M,03C3) = °, a.S. ,

and this suffices to define
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provided assumption (ii) is also satisfied.

As a particular case we can take X = M and the projection pA, A E can be

taken equal to the multiplication operator by lA. with the canonical

partial ordering "" and the projection system defined as pA f = 1Af,

f E H = o) = L2(X, ~c~, ~ = Q, then our definition of adaptedness extends
the usual definition and for strongly adapted processes the Poisson and Skorohod

integrals coincide.

A similar result in the Gaussian case can be obtained by replacing the compensated
Poisson random measure N with a Gaussian random measure with variance 0’.
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