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Abstract

Properties of quasi-invariant measures relative to dense subgroups
are considered on topological groups. Mainly non-locally compact
groups are considered such as

(i) a group of diffeomorphisms Dif f(t, M) of real or non-Archimedean
manifold M in cases of locally compact and nonlocally compact M,
where t is a class of smoothness,

(ii) a Banach-Lie group over a classical or non-Archimedean field,

(iii) loop groups of real and non-Archimedean manifolds.

Recently quasi-invariant measures on a group of diffeomorphisms were
constructed for real locally compact M in (8, 24] and for non-locally compact
real or non-Archimedean manifolds M in [10, 12, 14, 18, 20, 21]. Such groups
are also Banach manifolds or strict inductive limits of their sequences. Then
on a real and non-Archimedean loop groups and semigroups of families of
mappings from one manifold into another they were elaborated in [13, 15, 16,
17]. On real Banach-Lie groups quasi-invaraint measures were constructed
in [3].

This article is devoted to the investigation of properties of quasi-invariant
measures that are important for analysis on topological groups and for con-
struction irreducible representations [8, 23]. The following properties are
investigated:

(1) convolutions of measures and functions,
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(2) continuity of functions of measures,

(3) non-associative algebras generated with the help of quasi-invariant
measures. The theorems given below show that many differences appear to
be between locally compact and non-locally compact groups. The groups
considered below are supposed to have structure of Banach manifolds over
the corresponding fields.

1. Definitions. (a). Let G be a Hausdorff separable topological
group. A real (or complex) Radon measure u on Af(G,p) is called left-
quasi-invariant (or right) relative to a dense subgroup H of G, if uy (or u*)
is equivalent to u for each h € H, where Bf(G) is the Borel o-field of G,
Af(G, ) is its completion by , pa(A) := u(h™'A), u*(A) := p(Ah™?) for
each A € Af(G, ), du(h,g) := pn(dg)/u(dg) (or du(h,g) = u*(dg)/p(dg))
denote a left (or right) quasi-invariance factor. We assume that the unifor-
mity 7¢ on G is such that 7¢|H C 7w, (G, 7¢) and (H, 75) are complete. We
suppose also that there exists an open base in e € H such that their closures
in G are compact (such pairs exist for loop groups and groups of diffeomor-
phisms and Banach-Lie groups). We denote by M)(G, H) (or M, (G, H)) the
set of left-( or right) quasi-invariant measures on G relative to H with a finite
norm ||ufl := supseaz(c ) (A)| < oo.

(b). Let L% (G, 1, C) for 1 < p < oo denotes the Banach space of func-
tions f : G — C such that fi(g) € LP(G, u, C) for each h € H and

I llz ey = sup | frll oo uey < o0,

where fr(g) := f(h™'g) for each g € G. For s € My(G, H) and v € M(H)
let

(v u)(A) = [ i(A(dh) and (F)(0) = [, F(ha)a(hw(dh)

be convolutions of measures and functions, where M (H) is the space of Radon
measures on H with a finite norm, v € M(H) and q € L*(H, v, C), that is

([, la®I (@) =: llgllzemcy < 00 for 1< s < oo.

2. Lemma. The convolutions

*: M(H) x Mi(G,H) - M)(G,H) and
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%: L'(H,v,C) x LY4(G, u,C) — Ly(G, 1, C).
are continuous C-bilinear mappings

Proof. It follows immediately from the definitions, Fubini theorem and
because d,(h, g) € L*(H x G,v x u,C). In fact one has,

o pll < Il x ell, le*fllzyemey < lalln@mey X 1fllLycuo)

3. Definition. For p € M(G) its involution is given by the following
formula: p*(A) := p(A-T), where b denotes complex conjugated b € C,
A€ Af(G,p).

4. Lemma. Let p € My(G, H) and G and H be non-locally compact with
structures of Banach manifolds. Then p* is not equivalent to p.

Proof. Let T : G — TG be the tangent mapping. Then p induces quasi-
invariant measure A from an open neighbourhood W of the unit e € G on
a neighbourhood of the zero section V' in T.G and then it has an extensmn
onto the entire T,G. Let at first 7.G be a Hilbert space. Put Inv(g) =
then T o InuvoT~! =: K on V is such that there is not any operator B
of trace class on T.G such that M, C BY?T,G and KT.G C My, where
Re(1 — 6(2)) — 0 for (Bz,2) — 0 and 2 € T.G, 6(z) is the characteristic
functional of A, M, is the set of all z € T.G such that ), is equivalent to A
(see theorem 19.1 [25]). Then using theorems for induced measures from a
Hilbert space on a Banach space [2, 9], we get the statement of lemma 4.

5. Lemma. For u € M;(G,H) and 1 < p < oo the translation map
(g, f) — f,(9) is continuous from H x L%(G,u, C) into Lg(G, p, C).

Proof. For metrizable G in view of the Lusin theorem (2.3.5 in [5]) and
definitions of 7¢ and 7 for each € > 0 there are a neighbourhood V' > e in H
and compacts K; and K in G such that the closure clgV K =: K is compact
in G with K, C K, the restriction f|, is continuous and (|2|+|u|)(G\ K?) <
¢, where fi(dg) == f(g)u(dg)-

6. Proposition. For a probability measure p € M(G) there ezists an
approzimate unit, that is a sequence of non-negative continuous functions
¥; : G — R such that [;9i(g)p(dg) = 1 and for each neighbourhood U > e
in G there exists ig such that supp(y;) C U for each i > .

Proof follows from the Radon property of 1 and the existence of count-
able base of neighbourhoods in e € G.

7. Proposition. If (; : i € N) is an approzimate unit in H relative to
a probability measure v € M(H), then lim; .o i * f = f in the LY (G, u,C)
norm, where p € My(G, H), f € L(G, 1, C).
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Proof follows from lemma II1.11.18 [6] and lemmas 2, 5.

8. Lemma. Suppose g € L}(G, 11,C) and (¢%|5) € L(H, v, C) for each
z€G, f€ LP(H,v,C) withl < p < oo, 1/p+1/q =1, where ¢*(y) := g(yz)
for each z and y € G. Let pu and v be probability measures, p € My(G, H),
v € M(H). Then f*g € L(G,p,C) and there erists a function h: G — C
such that h|y is continuous, h = f¥g p-a.e. on G and h vanishes at co on
G.

Proof. In view of Fubini theorem and Holder inequality we have

I3gliycmo =su [ [ 17@)]x la@Iv(dg)u(ys)dz) <

sup( [ [ lo()"u(dn)ul(ys) a2 x ([ [ |f@)Pv(dyIn((ws)dz)? <

1 fll oz vc) X ”9“L" Gmo) X V(H)u(G).
The equation af(®) := [y f(¥)6(y)v(dy) defines a continuous linear func-

tional on L4(H, v, C). In view of lemma 5 the function o (¢¢9)™") =: h((sz)™Y)

w(s, ) of two variables s and z is continuous on H x H for s,z € H, since
the mapping (s,z) — (sz)~! is continuous from H x H into H. By Fubini
theorem (see §2.6.2 in [5))

/ h(y)(y)p(dy) = / / 9(yz)¥(z)v(dy)u(dr) =

[, F@)L[ s (@u(dz)lv(ay)
for each ¥ € LP(G, p, C), since

L J f @@ 1vdy) 1ul(da) < oo,

where |v| denotes the variation of the real-valued measure v, h(y) := h(y™?).
Here 9 is arbitrary in L?(G, u, C), from this it follows, that p({y : h(y) #
(f*9)(y),y € G}) =0, since h and (f#*g) are y-measurable functions due to
Fubini theorem and the continuity of the composition and the inversion in a
topological group. In view of Lusin theorem (see §2.3.5 in [5]) for each € > 0
there are compact subsets C C H and D C G and functions f’ € L?(H,v,C}
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and ¢ € LY(G, p, C) with closed supports supp(f’) C C, supp(g’) C D such
that ¢lgCD is compact in G,

Wf' = flleegpracy < € and |lg' — g"L},(G,p,C) <§,

since by the supposition of §1 the group H has the base By of its topology
Ty, such that the closures clgV are compact in G for each V € By. From
the inequality

I (z) — h(=)] < (Ifllzeancy + €)e + ellgllzy, 6,u0)

it follows that for each § > 0 there exists a compact subset K C G with
[h(z)| < 6 for each z € G\ K, where h'(z7!) := ay(¢7).

9. Proposition. Let A, B € Af(G, i), u and v be probability measures,
u € My(G,H), v € M(H). Then the function {(z) := u(ANzB) is con-
tinuous on H and v(yB~' N H) € L}(H,v,C). Moreover, if u(A)u(B) > 0,
w({y € G:yB™INH € Af(H,v) and v(yB~*NH) > 0}) > 0, then{(z) # 0
on H.

Proof. Let g,(y) := cha(y)chg(z~ly), then g.(y) € LE(G,p,C) for
1 < ¢ < oo, where chu(y) is the characteristic function of A. In view of
propositions 6 and 7 there exists lim; .o %; * gz = g in L}(G,u,C). In
view of lemma I11.11.18 [6] and lemma 8, {(z)|y is continous. There is the
following inequality:

> = -1 .
12 /H u(AnNzBYv(dr) /H /G cha(y)ehp(z™ y)u(dy)v(dz)
In view of Fubini theorem there exists

/H cha(z~'y)v(dy) = v((yB~Y) N H) € L'(G, s, C), hence

[ ANZB)(dz) = [ v(yB™ 0 H)cha(y)u(dy).

10. Corollary. Let A,B € Af(G,pu), v € M(H) and p € M|(G,H) be
probability measures. Then denoting IntgV the interior of a subset V of H
with respect to Ty, one has

() Intg(AB)N H # @, when

v({ye G:v(yBNH)>0}) >0

37



38

S.V. Ludkovsky

(22) Inty(AA™Y) > e, when
v({y € G:v(yA ' nH) > 0}) > 0.

Proof. ABNH D> {ze€ H:pu(ANzB™!) > 0}.

11. Corollary. Let G = H. If p € M)(G. H) is a probability measure,
then G is a locally compact topological group.

Proof. Let us take v = gy and A = CU C-!, where C is a compact
subset of G with u(C) > 0, whence u(yA) > 0 for each y € G and inevitably
Intg(AA™Y) de.

12. Lemma. Let p € M)(G, H) be a probability measure and G be
non-locally compact. Then p(H) = 0.

Proof. This follows from theorem 19.2 [25] and theorem 3.21 and lemma
3.26 [19] and the proof of lemma 4, since the embedding T,H — T.G is a
compact operator in the non-Archimedean case and of trace class in the real
case (see also the papers about construction of quasi-invariant measures on
the groups considered here 3, 8, 10, 12, 13, 14, 16, 17, 18}, [20, 21, 24]).
Indeed, the measure 4 on G is induced by the corresponding measure v on a
Banach space Z for which there exists a local diffeomorphism A : W — v,
where W is a neighbourhood of e in G and V is a neighbourhood of 0 in Z.
The measure p on G is quasi-invariant relative to H. Therefore, the measure
v on U is quasi-invariant relative to the action of elements y € W c WNH
due to the local diffeomorphism A, that is, v, is equivalent to v for each ¢ =
AYA~1, where AW'A~'U C V, W' is an open neighbourhood of e in H and
U is an open neighbourhood of 0 in Z, v,(E) := v(¢~1E), ¢ is an operator
on Z such that it may be non-linear. The quasi-invariance factor pv(4,v) has
expression through |det(¢')| and the quasi-invariance factor g, (z, z) relative
to linear shifts z € Z’ given by theorems from §26 [25] in the real case and
theorem 3.28 [19] in the non-Archimedean case:

v4(dz)/v(dz) = |det{¢'(¢™"(z))}au(z — ¢ (z), 2),

where z € U, ¢ = AYA~", ¢ € W’. Then (AYA~'v—v) € Z’ foreachv € V
and ¥ € W', where v on Z is quasi-invariant relative to shifts on vectors
z € Z' and there exists a compact operator in the non-Archimedean case
and an operator of trace class in the real case of embedding 6 : Z’ — Z such
that v(Z’) = 0.
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13. Theorem. Let (G, 7¢) and (H,Ty) be a pair of topological non-locally
compact groups G, H (Banach-Lie, Frechet-Lie or groups of diffeomorphisms
or loop groups) with uniformities 7, Ty such that H is dense in (G, 1g) and
there is a probability measure p € M(G, H) with continuous d.(z,g) on
H x G. Also let X be a Hilbert space over C and U(X) be the unitary group.
Then (1) if T : G — U(X) is a weakly continuous representation, then there
exists T' : G — U(X) equal p-a.e. to T and T'|(g+y) is strongly continuous;

(2) f T : G — U(X) is a weakly measurable representation and X is
separable, then there ezists T' : G — U(X) equal to T p-a.e. and T'|(g 1, is
strongly continuous.

Proof. Let R(G) := (I) U LY(G, ), where I is the unit operator on L!.
Then we can define

Aperan =M + [ an(9)ld(h™, 0)|Tou(dg),

where ax(g) := a(h™'g). Then

[(Apesan — Arerabs )] < [ lon(9)du(h,9) - al9)] I(T€, mlu(do),
hence A,, is strongly continuous with respect to h € H, that is,
’llim |Ag, & — Akl =0.

Denote A,, = TLA, as in §29 [22], so Tr€ = A,, €, where £ = Auo, a € L.
Whence
(Tilx&" ;;6) = (Aah&)v Aah€0) =

/G an(9)(Tobo, Tyo)du(h™Y, g)du (R, ¢')an(g ) 1u(dg)u(dg’)
= /Ga(z)a(z,)(UzEO’ Uz'{O)u(dz)/‘(dzl) = (E’ f)

Therefore, T}, is uniquely extended to a unitary operator in the Hilbert space
X' C X. In view of lemma 12, u(H) = 0. Hence 7" may be considered equal
to T p-a.e. Then the space spanc[A,, : h € H] is evidently dense in X, since
(Aan€r, Az o) = ( /G an(9)Ted(h™", g)u(dg)és, /G 24(¢)Twd(q™, 9 )u(dg')6o) =

(T, [ a(0)Topsd9)6s, Ty [ 2(6)Tymlde) = (TyrinAaka, Aske).
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For proving the second statement let
R:=[€: A, =0 for each a € LY(G, p)]. If

(Au€,n) = fca(g)(TgE, nu(dg) = /Ga(g)(Tg’&n)u(dg)

for each a(g) € L}(G, 1, C), then (Teé,n) = (T,€,7) for p-almost all g € G.
Suppose that {&, : n € N} is a complete orthonormal system in X. If € € X,

then
|, a(9)(T,6. Emn(dg) = 0

for each g € G\ Sm, where p(Sn) = 0. Therefore, (T4€,&n) = 0 for each
m € N, if g € G\ S, where S := Uj;_; Sm. Hence T, =0 for each g £ G\ S,
consequently, £ = 0. Then (Tyé,,6m) = (Tyén.&m) for each g € G\ Yom,
where ((Ynm) = 0. Hence (Tpén,&m) = (Ty6n,&m) for each n,m € N and
each g € G\ v, where 7 := U, ; Yam and p(7y) = 0. Therefeore, R = 0.

14. Definition and note. Let {G; : i € N,} be a sequence of topo-
logical groups such that G = Gy, Giy1 C G; and Gyy; is dense in G; for
each ¢ € N, and their topologies are denoted 7, Ti|g,,, C 7it1 for each i,
where N, := {0,1,2,...}. Suppose that these groups are supplied with real
probability quasi-invariant measures ' on G; relative to G;;1. For example,
such sequences exist for groups of diffeomorphisms or loop groups considered
in previous papers [10, 12, 13, 15, 16, 17, 18], [20, 21]. Let L%, (G:.4',C)
denotes a subspace of L2(G;, u', C) as in §1(b). Such spaces are Banach and
not Hilbert in general. Let L*(Giyy, u'tt, L3(G;, i/, C)) := H; denotes the
subspace of L(G;, i*, C) of elements f such that

IF12 == (11226, .c) + IFIIF]/2 < o0, where

2. _ =1,\12, i ( g it]
WAE = [, [ )P )+ ).
Evidently H; are Hilbert spaces due to the parallelogram identity. Let
FafE) = [ FPEF T D )
denotes the convolution of f* € H;.

15. Lemma. The convolution x : H;y; X H; — H; is a continuous
bilinear mapping.



Properties of quasi-invariant measures on .... 41

Proof. In view of Fubini theorem and Cauchy inequality:
Lo Jo 7w £ ) P o (d) =
/ / / fi+1( )fi( -1,-1 ) i+1(d fi+1 )-i -1_-1 ) i+l(d Hdnuiti(d
o Joi Jana ! W T y)/cm (@) f (g7 2 z)p  {dg) ' (dz)u't (d2)
< [ L @@y, 15 @ )
(/c‘:‘“ |fi(y—lz—lg;)li’ui+1(dy))l/Z(/C':Hl lfi(q—lz—lx)lzﬂiﬂ(dq))1/2ﬂi(dz}pg+1(dz) <

ey A A e R G (Ol
[/G-ﬂ /G'+1 |f (g 2 o) P+ (dg) ' (d)) i (dz) <

1 e [, [ [ 1@ a)Pa a2 )
Gi+1/Gi JGin1

o Vi e ¢ A B IR T4 R C O Mg COLMCRR TGRS
) i+ i+1
llf”lll%z(cﬂl,m*rl,c:)/c /c Iff(z_11)|2#i+l(dz)ﬂi(dx), since
i i+1
(-1 i i+1 - i+1 iodn) =
L[ e e d2) [ w*d) [ ledn) = 1. Then

IF* % Fillieemc) = /GI A FH @) iy io)p T (dy) P (d
i i+1

<N ey [, [ 12 (d2)u(da). Therefore.
Gi JGi1
1% % £l < 1F a0 I F L
16. Definition. Let l,({H; : i € No}) =1 H be the Hilbert space
consisting of elements f = (f* : f* € H;,i € N,). for which

12 = ; IFEI2 < oc.

For elements f and g € H their convolution is defined by the formula: fxg:=
h with hi := f*1x g* for each i € N,. Let * : H — H be an involution
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such that f* := (f_J'A : j € No), where fj/\(yj) = fj(yj'l) for each y; € Gj,
f=(f:3j € N,), Z denotes the complex conjugated z € C.

17. Lemma. H is e non-associative non-commutative Hilbert algebra
with imvolution *, that is * is conjugate-linear and f** = f for each f € H.

Proof. In view of Lemma 15 the convolution 2 = f x g in the Hilbert
space H has the norm |Jh]| < [|f]] |lg]l, hence is a continuous mapping from
H x H into H. From its definition it follows that the convolution is bilinear.
It is non-associative as follows from the computation of i-th terms of (f*g)*xq
and f x (g * q), which are (fi*2 x g"*1) x ¢* and fi+! x (¢"*?! * ¢*) respectively,
where f, g and ¢ € H. It is non-commutative, since there are f and g € H
for which f*! + g* are not equal to g"t! * f*. Since f7"(y;) = fi(y;) and
Z=z onehas f*=(f*)=7f.

18. Note. In general (f x g*)* # g f* for f and g € H, since there
exist f7 and g7 such that ¢/*! * (f7)* # (f7+! % (¢?)*)*. If f € H is such that
Fil, = £7*1, then

(P )@ = [, PRGIP@0 ) = 1 g
i+
where j € N,.

19. Definition. Let [;(C) be the standard Hilbert space over the field
C be considered as a Hilbert algebra with the convolution a x 3 = 7 such
that »' := o'*14*, where o := (o* : ' € C,i € N,), o, B and 7 € I5(C).

20. Note. The algebra I3(C) has two-sided ideals J; := {a € [5(C) :
o’ = 0 for each j > i}, where i € N,. That is, J*l2(C) C J and [p(C)xJ = J
and J is the C-linear subspace of l,(C), but J x l3(C) # J. There are also
right ideals, which are not left ideals: K; := {a € I5(C) : & = 0 for each
Jj=0....,i}, where j € N,. That is, [5(C) *x K; = K;, but K; x[,(C) = K;_;
for each i € N,, where K_; := [3(C). The algebra [(C) is the particular
case of H, when G; = {e} for each j € N,. We consider further H for
non-trivial topological groups outlined above.

21. Theorem. If F is a mazimal proper left or right ideal in H, then
H/F is isomorphic as the nonassociative noncommutative algebra over C
with ,(C).

Proof. Since F is the ideal, it is the C-linear subspace of H. Suppose,
that there exists j € N, such that f7 = 0 for each f € F, then f* = 0
for each i € N,, since the space of bounded complex-valued continuous
functions C3(Gece, C) on Goo := N2 G; is dense in each H; := {f’: f € H}
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and C§(Gw,C) N F; = {0} and C{(G;,C)lg,,; O C2(Gj1.C). Therefore,
F; # {0} for each j € N,, consequently, C — F; for each j € N,. Since C
is embeddable into each F}, then there exists the embedding of lo(C) into F,
where H; := {f7 : f € H}, ; : H — H; are the natural projections.

The subalgebra F is closed in H, since H is a topological algebra and F
is a maximal proper subalgebra. The space Hy, := (;en, Hj is dense in each
H; and the group G := ;jen, Gj is dense in each G;.

Suppose that F; = H; for some 7 € N,, then F; = H; for each j € N,,
since Cy (G, C) is dense in each H; and CP(Gj;, C)|g,,, D C§(Gjs1,C). The
ideal F is proper, consequently, F; # H; as the C-linear subspace for each
Jj € No, where F; = m;(F).

There are linear continuous operators from l(C) into lo(C) given by the
following formulas: z — (0, ..., 0, z°% z?, 22, ...) with 0 as n coordinates at the
beginning, z + (z*,z"*!, 22 ..) forn € N; z — (X0 . k € N,.i €
0,1,...,1-1)), where N 3 1 > 2, 0}, € S are elements of the symmetric group
Sy of the set (0,1,...,1 — 1). Then f* (g* k) + Ix(C) and (f xg) x h + I5,(C)
are considered as the same class, also f x g + [5(C) = g~ f + ,(C) in
H/ly(C), since (f + 12(C)) * (g + I2(C)) = f % g + lo(C) for each f,g and
h € H. For each f,g,h € F: fx(gxh)+ l5(C) and (f xg) » o + I5(C)
are considered as the same class, also fx g + [5(C) = g~ f + [o(C) in
F[l5(C), since (f +15(C)) * (g + 12(C)) = f x g+ [5(C) C F for each f and
g € F. Therefore, the quotient algebras H/Il>(C) and F/I5(C) are associative
commutative Banach algebras.

Let us adjoint a unit to H/l3(C) and F/I3(C). As a consequence of the
Gelfand and Mazur theorem we have, that (H/I2(C))/(F/l2(C)) is isomor-
phic with C (see theorem V.6.12 [6] and theorem II1.11.1 [22]). On the other
hand, as it was proved above F; # H; for each j € N,, hence there exists the
following embedding l3(C) — (H/F) and (H/F)/l5(C) is isomorphic with
(H/12(C))/(F/13(C)). Therefore, H/F is isomorphic with l5(C).
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