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Abstract

Properties of quasi-invariant measures relative to dense subgroups
are considered on topological groups. hlainly non-locally compact
groups are considered such as

(i) a group of diffeomorphisms Di f j(t, M) of real or non-Archimedean
manifold lit in cases of locally compact and nonlocally compact M,
where t is a class of smoothness,

(ii) a Banach-Lie group over a classical or non-Archimedean field,
(iii) loop groups of real and non-Archimedean manifolds.

Recently quasi-invariant measures on a group of diffeomorphisms w ere
constructed for real locally compact ~! in (8, 2:i~ and for non-locally compact
real or non-Archimedean manifolds M in [10, 12, 14, 18, 20, 21]. Such groups
are also Banach manifolds or strict inductive limits of their sequences. Then
on a real and non-Archimedean loop groups and semigroups of families of
mappings from one manifold into another they were elaborated in [13,15, 16,
17]. On real Banach-Lie groups quasi-invaraint measures were constructed
in [3].

This article is devoted to the investigation of properties of quasi-invariant
measures that are important for analysis on topological groups and for con-
struction irreducible representations [8, 23]. The following properties are
investigated:

(1) convolutions of measures and functions,
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(2) continuity of functions of measures,
(3) non-associative algebras generated with the help of quasi-invariant

measures. The theorems given below show that many differences appear to
be between locally compact and non-locally compact groups. The groups
considered below are supposed to have structure of Banach manifolds over
the corresponding fields.

1. Definitions. (a). Let G be a Hausdorff separable topological
group. A real (or complex) Radon measure  on is called left-

quasi-invariant (or right) relative to a dense subgroup H of G, if h (or h)
is equivalent to ~c for each h E H, where B f (G) is the Borel a-field of G,
Af (G, is its completion by h(A) :_ (h-1A), h(A) := for
each A E Af(G, ), d (h, 9) := h(dg)/ (dg) Or d (h, 9) := h(dg)/ (dg))
denote a left (or right) quasi-invariance factor. We assume that the unifor-
mity 7G on G is such that G|H C TH, (G, G) and (H, TH) are complete. We
suppose also that there exists an open base in e E H such that their closures
in G are compact (such pairs exist for loop groups and groups of diffeomor-
phisms and Banach-Lie groups). We denote by H) (or Mr ( G, H)) the
set of left-( or right) quasi-invariant measures on G relative to H with a finite
norm ~ ~ := supA~Af(G, ) | (A)|  cn.

(b). Let LH(G, ~, C) for 1  ~  co denotes the Banach space of func-
tions f : : G -> C such that fh(g) E for each h E H and

~f~LpH(G, ,C) := suph~H ~fh~Lp(G, ,C)  ~,

where fh(g) := for each g E G. For  E Ml(G,H) and v E M(H)
let

(v * )(A) := k h(A)03BD(dh) and (q*f)(g) := JH f(hg)q(h)v(dh)
be convolutions of measures and functions, where M (H) is the space of Radon
measures on H with a finite norm, v e M(H) and q E v, C), that is

(H|q(h)|3|03BD|(dh))1/s=: ~q~Ls(H,03BD,C)  oo for 1  S  oo.

2. Lemma. The convolutions

* : : M(H) x Ml(G, H) ~ Ml(G, H) and
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* : L1 (H, v, C) x L1H(G, , C) ~ L1H(G, , C).

are continuous C-bilinear mappings
Proof. It follows immediately from the definitions, Fubini theorem and

because g) E L1(H x G, v x C). In fact one has,

~03BD * ~ _ ~03BD~  ~ ~, ~q*f~L1H(G, ,C) ~ ~q~L1(H,03BD,C) X ~f~L1H(G, ,C).
3. Definition. For  E M(G) its involution is given by the following

formula: := (A-1), where b denotes complex conjugated b E C,
A E A f (G, ).

4. Lemma. Let  E Ml(G, H) and G and H be non-locally compact with
structures of Banach manifolds. Then * is not equivalent to .

Proof. Let T : G -~ T G be the tangent mapping. Then ,u induces quasi-
invariant measure a from an open neighbourhood W of the unit e E G on
a neighbourhood of the zero section V in TeG and then it has an extension
onto the entire TeG. Let at first TeG be a Hilbert space. Put Inv(g) = g-1
then T o I nv o T -3 =: K on V is such that there is not any operator B

of trace class on TeG such that M03BB C B1/2TeG and KTeG C where

Re(1 - 8{z)) ~ 0 for (Bz, z) ~ 0 and z ~ TeG, 03B8(z) is the characteristic

functional of a, M03BB is the set of all x E TeG such that 03BBx is equivalent to .1

(see theorem 19.1 ~25J ) . Then using theorems for induced measures from a
Hilbert space on a Banach space [2, 9~, we get the statement of lemma 4.

5. Lemma. For  E Ml(G, H) and 1 ~ p  oo the translation map

(q, f) ~ fQ{9) is continuous from H x LpH(G, , C) into LpH(G, , C).
Proof. For metrizable G in view of the Lusin theorem (2.3.5 in ~5~) and

definitions of T~ and TH for each E > 0 there are a neighbourhood V ~ e in H
and compacts Kl and K in G such that the closure clGVK1 =: K2 is compact
in G with K2 c K, the restriction f|K2 is continuous and 
E, where (dg) := f(g) (dg).

6. Proposition. For a probability measure  E M(G) there exists an
approximate unit, that is a sequence of non-negative continuous functions
~~ : G ---> R such that fG =1 and for each neighbourhood U ~ e
in G there exists io such that supp(03C8i) C U for each i > io.

Proof follows from the Radon property of  and the existence of count-
able base of neighbourhoods in e E G.

7. Proposition. If : i E N) is an approximate unit in H relative to
a probability measure v E then limi~~ 03C8i * f = f in the L1H(G, , C)
norm, where  E Mz(G, H), f E L1H(G, , C) .
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Proof follows from lemma III.11.18 [6] and lemmas 2, 5.
8. Lemma. Suppose g E LqH(G, , C) and (gx|H) E Lq(H, v, C) for each

x E G, f E Lp(H, v, C) with 1  p G oo, 1/p+1/q = 1, where gx(y) := g(vz)
for each x and y E G. Let  and v be probability measures,  E Ml(G,H).
v E M(H). . Then f*g E L1H(G, , C) and there exists a function h : G --> C
such that h|H is continuous, h = f*g -a.e. on G and h aanishes at o0 on
G.

Proof. In view of Fubini theorem and Holder inequality we have

~f*g~L1H(G, ,C) = sup GH |f(y)|  |g(z)|03BD(dy) ((ys)-1dz) 

sup(GH|g(z)|q03BD(dy) ((ys)-1dz))1/q x (GH|f(y)|p03BD(dy) ((ys)-1dz)1/p ~
~f~Lp(H,03BD,C) X ~g~LqH(G, ,C) X 03BD(H) (G).

The equation := fH f(y)03C6(y)03BD(dy) defines a continuous linear func-
tional on v, C). In view of lemma 5 the function _: h((sz)-’-) -.
w(s, x) of two variables s and x is continuous on H x H for s, x E H, since
the mapping (s, x) (sx)-1 is continuous from H x H into H. By Fubini
theorem (see §2.6.2 in (5~)

~G h(y)03C8(y) (dy) = ~G ~H f(y)g(yx)03C8(x)03BD(dy) (dx) =

~x 
for each 1/1 E , C), since

Jc Jx  o~,

where |03BD| denotes the variation of the real-valued measure v, h(y) := h(y-1).
Here 03C8 is arbitrary in Lp(G, , C), from this it follows, that ({y : h(y) ~
(f*g)(y), y E G}) = 0, since h and (f*g) are -measurable functions due to
Fubini theorem and the continuity of the composition and the inversion in a
topological group. In view of Lusin theorem (see §2.3.5 in (5)) for each e > 0
there are compact subsets C C H and D c G and functions f’ E v, C~
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and g’ E LX(G, C) with closed supports supp( f’) C C, supp(g’) c D such
that clGCD is compact in G,

~f’ - f~Lp(H,03BD,C)  E and ~g’ -  ~,

since by the supposition of §1 the group H has the base BH of its topology
TH, such that the closures clGV are compact in G for each V ~ BH. From
the inequality

|h’(x) - h(x)| _ (~f~Lp(H,03BD,C) + ~)~ + ~~g~LqH(G, ,C)
it follows that for each b > 0 there exists a compact subset K C G with

 6 for each x E G B K, where := 

9. Proposition. Let A, B E ~ and v be probability measures,
 E Ml(G, H), v E M(H). Then the function 03B6(x) := (A fl xB) is con-

tinuous on Hand 03BD(yB-1 fl H) E v, C). . Moreover, if (A) (B) > 0,
EL({y E G : yB-1~H E Af(H, v) and 03BD(yB-1~H) > 0}) > 0, then 03B6(x) ~ 0
on H.

Proof. Let gx(y) := chA(y)chB(x-ly), then g2(y) E LqH(G, , C) for
1  q  ~, where chA(y) is the characteristic function of A. In view of

propositions 6 and 7 there exists limi~~ 03C8i * gz = gx in L1H(G, , C). In

view of lemma III.11.18 [6] and lemma 8, is continous. There is the

following inequality:

1 > rH (A fl xB)v(dx) = fx Jc chA(y)chB(x-1y) dy)03BD(dx).

In view of Fubini theorem there exists

f H chB(x-1y)03BD(dy) = v((yB-1) n H) E C), hence

Jx (A fl xB)v(dx) = fG 03BD(yB-1 fl H)chA(y) (dy).

10. Corollary. Let A, B E Af(G, v E M(H) and u E Ml(G, H) be
probability measures. Then denoting IntHV the interior of a subset V of H
with respect to TH, one has

(i) IntH(AB) n H ~ 0, when

({y E G : v(yB n H) > 0}) > 0;
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(ii) IntH(AA-1) e, when

({y E G : 03BD(yA-1 n H) > o}) > 0.

Proof. AB n H D f ~ E H : n > 0}.
11. Corollary. Let G = H. If ~. E is a probability measure,

then G is a locally compact topological group.
Proof. Let us take v = ~c and A = C U where C is a compact

subset of G with (C) > 0, whence (yA) > 0 for each y E G and inevitably
IntG(AA-1) e.

12. Lemma. Let tc E Ml(G, H) be a probability measure and G be
non-locally compact. Then (H) = 0.

Proof. This follows from theorem 19.2 [25] and theorem 3.21 and lemma
3.26 [19] and the proof of lemma 4, since the embedding TeG is a
compact operator in the non-Archimedean case and of trace class in the real
case (see also the papers about construction of quasi-invariant measures on
the groups considered here [3, 8, 10; 12. 13, 14, 16, 17, 18], [20, 21, 24]).
Indeed, the measure ~c on G is induced by the corresponding measure v on a
Banach space Z for which there exists a local diffeomorphism A : W --~ V,
where W is a neighbourhood of e in G and V is a neighbourhood of 0 in Z.
The measure ,u on G is quasi-invariant relative to H. Therefore, the measure
v on U is quasi-invariant relative to the action of elements ~ E W’ C W n H
due to the local diffeomorphism A, that is, v~ is equivalent to v for each § :=

where AW’A-1U C v, W’ is an open neighbourhood of e in Hand
U is an open neighbourhood of 0 in Z, vo(E) := ~ is an operator
on Z such that it may be non-linear. The quasi-invariance factor v) has
expression through and the quasi-invariance factor q03BD(z,x) relative
to linear shifts z E Z’ given by theorems from §26 [25] in the real case and
theorem 3.28 [19] in the non-Archimedean case:

~det~~’(~~1~~)~?~q~(x - ~-I(x), x),
where x E U, 03C6 = E W’. Then E Z’ for each v E V
and 03C8 E W’, where v on Z is quasi-invariant relative to shifts on vectors
z E Z’ and there exists a compact operator in the non-Archimedean case
and an operator of trace class in the real case of embedding 0 : Z’ ~ Z such
that v(Z’) = 0.
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13, Theorem. Let (G, ’To) and (H, TH) be a pair of topological non-locally
compact groups G, H (Banach-Lie, Frechet-Lie or groups of diffeomorphisms
or loop groups) with uniformities TG, TH such that H is dense in (G, TG) and
there is a probability measure  E Ml(G, H) with continuous d (z, g) on
H x G. . Also let X be a Hilbert space over C and U(X) be the unitary group.
Then (1) if T : G --> U(X) is a weakly continuous representation, then there
exists T’ : G ~ U(X) equal -a.e. to T and T’|(H,H) is strongly continuous;

(2) if T : G --~ U(X) is a weakly measurable representation and X is
separable, then there exists T’ : G ~ U(X) equal to T -a.e. and T’|(H,H) is
strongly continuous.

Proof. Let R(G) :_ (I) where I is the unit operator on L~.
Then we can define

’- + G >

where ah(g) := Then

~) ~ _ G 9) - a(9} I I (T9~~ >

hence Aah is strongly continuous with respect to h ~ H, that is,

lim |Aah03BE -Aa03BE| = 0.
h~e

Denote Aah = T’hAa as in §29 [22], so T’h03BE = Aah03BE, where 03BE = Aa03BE0, a E L1.
Whence

_ (Aah03BE0, Aah03BE0) =

Gah(g)(Tg03BE0, Tg’03BE0)d (h-1, g)d (h-1,g’(ah(g’) (dg) (dg’)

- Ga(z)a(z’)(Uz03BE0, Uz’03BE0) (dz) (dz’) = (03BE, 03BE).

Therefore, Th is uniquely extended to a unitary operator in the Hilbert space
X’ C X . In view of lemma 12, ~c(H} = 0. Hence T’ may be considered equal
to T Then the space spanC[Aah : h E H] is evidently dense in X since

(Aah03BE1, Axg03BE0) = (~G ah(g)Tgd(h-1,g) (dg)03BE1,Gxq(g’)Tg’d(q-1,g’) (dg’)03BE0) =

(Th G -’ (Tq-1hAa03BE1, AxSO).



40

For proving the second statement let
R := [03BE : Aa03BE = 0 for each a E L1(G, )]. If

G ~) (dg) = G (T’g03BE, ~) (dg)

for each a(g) E L1(G, , C), then (Tg03BE, ~) = (T’g03BE, ~) for -almost all g E G.
Suppose that n E N} is a complete orthonormal system in X. If 03BE ~ X,
then

= 0

for each g E G B Sm, where = 0. Therefore, 03BEm) = 0 for each
m E N, if g E GB S, where S := Sm. Hence Tg~ = 0 for each g E GB S,
consequently, 03BE = 0. Then (Tg03BEn,03BEm) = for each g E G B 03B3n,m,
where = 0. Hence 03BEm) = (T’g03BEn,03BEm) for each n, m E N and

each g E G B 03B3, where 03B3 := ~n,m 03B3n,m and (03B3) = 0. Therefeore, R = 0.
14. Definition and note. Let {Gi : i E No} be a sequence of topo-

logical groups such that G = Go; Gi+1 C Gi and Gi+1 is dense in Gi for
each i E No and their topologies are denoted Ti, C T;+1 for each i,
where No := ~0,1, 2, ...}. Suppose that these groups are supplied with real
probability quasi-invariant measures i on Gi relative to For example,
such sequences exist for groups of diffeomorphisms or loop groups considered
in previous papers [10, 12, 13, 15, 16, 17, 18], [20, 21]. Let L2Gi+1 (G:. i, C)
denotes a subspace of L2(G~, ~c=, C) as in ~1 (b}. Such spaces are Banach and
not Hilbert in general. Let L2( Gi, C)) := H1 denotes the
subspace of L2(Gi, C) of elements f such that

~f~2i := [~f~2L2(Gi, i,C) + ~f~’2i]/2  oo, where

~f~’2i ’- 
Gi+1Gi

|f(y-1x)|2 i(dx) i+1(dy).

Evidently H1 are Hilbert spaces due to the parallelogram identity. Let

fi+1 * fi(x) := Gi+1 fi+1(y)fi(y-1)x) i+1(dy)

denotes the convolution of f i E H;.
15. Lemma. The convolution * : x Hi ---~ Hi is a continuous

bilinear mapping.
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Proof. In view of Fubini theorem and Cauchy inequality:

16. Definition. Let 12((H; : : I e No}) =: H be the Hilbert space
consisting of elements f = ( f" : fi e H;, I e No) for which

oo

~f~2 := 03A3~fi~2i  ~.

I=0

For elements f and g e H their convolution is defined by the formula: f*g =
h with h’ := * g’ for each I e No. Let * : H --+ H be an involution
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such that f * := (fj^ : j E No), where := fj(y-1j) for each yj E Gj,
f := No), z denotes the complex conjugated z E C.

17. Lemma. H is a non-associative non-commutative Hilbert algebra
with involution *, that is * is conjugate-linear and f** = f for each f E H.

Proof. In view of Lemma 15 the convolution h = f * g in the Hilbert
space H has the norm  ~~ f (I ~~9~~, hence is a continuous mapping from
H x H into H. From its definition it follows that the convolution is bilinear.
It is non-associative as follows from the computation of i-th terms of ( f *g)*q
and f * (g * q), which are ( f ‘+2 * gi+1) * q= and fi+1 * (g‘+z * qi) respectively,
where f , g and q E H. It is non-commutative, since there are f and g E H
for which are not equal to * Ii. Since = and
Z = z. one has f ** = ( f * ) * = f .

18. Note. In general ( f * g*)* # g * f * for f and g E H, since there
exist f ? and gj such that gj+1 * (fj)* ~ (fj+1 * (gj)*)*. If f E H is such that
f ~ = f ~+l, then

((fj-1)* * fj)(e) = Gj+1fj+1(y-1)fj+1(y) j+1(dy) = ~fj+1~2L2(Gj+1, j+1,C),
where j E No.

19. Definition. Let l2(C) be the standard Hilbert space over the field
C be considered as a Hilbert algebra with the convolution a * {3 = ~y such
that ;’ := where a := E C,i E No), a, /3 and, E 12(C).

20. Note. The algebra l2(C) has two-sided ideals Ji := {a E 12(C) :
aj = 0 for each j > i}, where i E No. That is, J*12(C) c J and 12(C)*J = J
and J is the C-linear subspace of l~(C), but J * l2(C) ~ J. There are also
right ideals, which are not left ideals: Ki := {a E l2(C) : a~ = 0 for each
j = 0...., i}, where j E No. That is, l2(C) * Ki = Ki, but Ka * l2(C) = K~_1
for each i E No; where K-l := l2(C). The algebra l~(C) is the particular
case of H, when Gj = ~e} for each j E No. We consider further H for
non-trivial topological groups outlined above.

21. Theorem. If F is a maximal proper left or right ideal in H, then
H/F is isomorphic as the nonassociative noncommutative algebra over C
with I~(C).

Proof. Since F is the ideal, it is the C-linear subspace of H. Suppose,
that there exists j ~E No such that f’ = 0 for each f E F, then /’ s = 0
for each i E No, since the space of bounded complex-valued continuous
functions C) on G~ := G~ is dense in each H~ := : f E H}
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and C) ~ Fj = {0} and C0b(Gj,C)|Gj+1 ~ C0b(Gj+1, C). Therefore, . "
{0} for each j E No, consequently, C ~---~ F~ for each j E No. Since C

is embeddable into each Fy, then there exists the embedding of t2(C) into F,
where jHj := {/~ : : f E ~}, ~ : H --~ H~ are the natural projections.

The sub algebra F is closed in H, since H is a topological algebra and F
is a maximal proper subalgebra. The space H~ := ~j~No H; is dense in each
Ha and the group Goo := ~j~No Gj is dense in each Gj.

Suppose that Fi = Hi for some i E No, then Fj = Hj for each j E No,
since C0b(G~, C) is dense in each Hj and C0b(Gj, C)|Gj+1 ~ C0b(Gj+1, C). The
ideal F is proper, consequently, JE~ as the C-linear subspace for each
j E No, where Fj = 03C0j(F).

There are linear continuous operators from 12(C) into 12(C) given by the
following formulas: ~ ’-~ (o, ..., 0, x°, xl, x2, ...) with 0 as n coordinates at the
beginning, x ~ for n E N; x H k = E

(~, l, ..., t-1)), where N ~ l > 2, ~~ E Sl are elements of the symmetric group
Si of the set (0,1, ..., l -1). Then f * (g * h) + l2(C) and ( f * g) * ~ + 12(C)
are considered as the same class, also f * g + l2(C) - g ~ f + 12(C) in
Hj12(C), since ( f + 12(C) ) * (9 + 12(C) ) = f * 9 + 12(C) for each f, g and
hE H. For each f , g, h E F: 
are considered as the same class, also f * g + l2(C) = 9 * f + ~2(C) in
F//2(C), since ( f + LZ(C)) * (g + t2(C)) = f * 9 + l2(C) C F for each f and
g E F. Therefore, the quotient algebras and F/l2(C) are associative
commutative Banach algebras.

Let us adjoint a unit to and As a consequence of the
Gelfand and Mazur theorem we have, that (H/l2(C))/(F’/t2(C)) is isomor-
phic with C (see theorem V.6.12 [6] and theorem III.11.1 [22]). On the other
hand, as it was proved above F~ ~ H~ for each j E No, hence there exists the
following embedding l2(C)  (H/F) and (H/F)/l2(C) is isomorphic with
(H/l2(C))/(F/l2(C)). Therefore, H~F is isomorphic with t2(C).
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