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Abstract

Let K be a non-archimedean valued field which contains Qp, and suppose that K
is complete for the valuation [ j, which extends the p-adic valuation. We find
many orthonormal bases for C(Zp --~ ~’), the Banach space of continuous functions
from Zp to K, equipped with the supremum norm. To find these bases, we use

continuous linear operators on C(Zp -+ h’). Some properties of these continuous
linear operators are established. In particular we look at operators which commute
with the translation operator.

1. Introduction

Let p be a prime number and let Zp be the ring of the p-adic integers, Q p the field
of the p-adic numbers, and K is a non-archimedean valued field that contains Qp,
and we suppose that K is complete for the valuation [ ’), which extends the p-adic
valuation. N denotes the set of natural numbers, and K[x] is the set of polynomials
with coefficients in h’. In this paper we find many orthonormal bases for the Banach

space C(Zp -~ K) of continuous functions from Zp to K. To find these bases we
use continuous linear operators on C(Zp --~ We also establish some properties
of these operators. In particular we look at operators which commute with the
translation operator. We start by recalling some definitions and some previous
results.

Definition 1.1

A sequence of polynomials (pn) is called a polynomial sequence if the degree of pn
isn /9r every n N.
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In the classical umbral calculus ([3] and [4]) one works with linear operators op-
erating on R[x], the space of polynomials with coefficients in R. We define the
shift-operators EO on R[x] by (Eap)(x) = p(x + a), where a E R. Linear operators
Q which commute with EO are called shift-invariant operators and they have been
studied extensively in the classical umbral calculus. Such a linear operator Q is
called a delta-operator if Q commutes with Ea and if (~x is a constant different
from zero. If Q is a delta-operator, there exists a unique polynomial sequence (pn)
such that Qpn = npn-l, pn(0) = 0 (n > 1), po = 1. This sequence is called the

sequence of basic polynomials for the delta-operator or simply the basic sequence
for Q. If R is a shift-invariant operator and Q is a delta-operator with basic se-
quence (pn), then R = ak k! Qk with ak = An umbral operator U is

an operator which maps a basic sequence (pn) into another basic sequence (qn), i.e.
Upn = qn for all n E N. Remark that an umbral operator is an operator which is
in general not shift-invariant.

Now we look at the non-archimedean case. Let ~C be a non-archimedean Banach
space over a non-archimedean valued field L, ,C equipped with the norm A

family ( f =) of elements of ,C forms an orthonormal basis for £ if each element x
of ,C has a unique representation x = xifi where x= ELand xi ~ 0 if
i -+ oo, and if the norm of x is the supremum of the valuations of Xi. If M is a

non-empty compact subset of L whithout isolated points, then C(M --~ L) is the
Banach space of continuous functions from M to L equipped with the supremum
norm 11.1’00 : ~f~~ = sup{|f(x)|| x E M}.
Let Zp, K and C(Zp ~ K) be as above and let I denote the identity operator on
C(Zp -+ h’). All the following results in this section can be found in [6], except
mentioned otherwise. The translation operator E and its generalisation Ea are
defined on C(Zp -+ h’) as follows

(Ef)(x) = f (x + 1 )~

(Eaf )(x) = f U + «)~ it E Zp.
The difference operator A on C(Zp --~ K) is defined by

(0394f)(x) = f(x + 1) - f(x) = (Ef)(x) - f(x).

The operator A has the following properties : if f : Zp -3 ~i is a continuous function
and = 0, then f is a polynomial of degree not greater dan n. If p is a polynomial
of degree n in K[x], then Ap is a polynomial of degree n - 1. If f : Zp --> K is a
continuous function then

(0394nf)(x) ~ 0 uni formly in x (1.1)

([5], exercise 52.D p. 156).
We introduce the polynomial sequence (Bn ) defined by

Bn(x) = (x n),
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where

x _ 0 I ’ n x ^ ... n! (x -- n + 1) if n " > I.

The polynomials (:) are called the binomial polynomials. If Q is an operator on

C(Zp --~ k’ ), we put
bn = (QBn)(0) n = 0,1, ....

L. Van Hamme ([6], proposition) proved the following :

Theorem 1.2

If Q is continuous, linear and commutes with E then the sequence (bn) is bounded
and Q is uniquely determined by the sequence (bn).

Such an operator Q which is linear, continuous and commutes with E admits an
expansion of the form

This expansion is called the A-expansion of the operator Q, Q° = I. The equality
holds for the pointwise convergenge and not for the convergenge in operatornorm.
Conversely, every operator of the form Q = 03A3~i=0 bi0394i with bounded sequence (bn)
in K is linear, continuous and commutes with E. Further,

~Q~ = supn~0{|bn|} (1.2)

where ~Q~ denotes the norm of the operator Q : : .

~Q~ = in f{J ~ [0,~) : ~Qf~~ ~ J~f~~ I f E C(Zp ~ K)}.
We remark that in the classical umbral calculus one considers linear operators work-

ing on the space of polynomials R[x], and so there are no convergence problems for
operators on R[x] of the type R = This is different from what we do

here, since here we consider linear operators on the Banach space C(Zp --~ K) into
itself.

Remarks

1) Let Q = bi0394i, (N > 0), with bN ~ 0. If p is a polynomial, then Qp is a
polynomial. If p is a polynomial of degree n > N, then the degree of the polynomial
Qp is n - N. If p is a polynomial of degree n  N, then Qp is the zero polynomial.
2) The set of all continuous linear operators on C(Zp --~ K) that commute with E
forms a ring under addition and composition. This ring is isomorphic to the ring
of formal power series with bounded coefficients in la.

3) Let Q and R be continuous linear operators that commute with E. Then QR =
RQ. If Q is a continuous linear operator that commutes with E, then Q also
commutes with Ea.
4) If Q is a continuous linear operator that commutes with E, then Q has an inverse
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which is also linear, continuous and commutes with E if and only if ~Q~ = ~ 0.
If in addition |b0| = 1, then ~Q~ = = 1 = |(Q-1B0)(0)|. This can be found
in [I], corollaire p. 16.06.

Definition 1.3

A delta-operator is a continuous linear operator on C(Zp --~ h’) which commutes
with the translation operator E, and such that the polynomial ~?x is a constant

different from zero.

L. Van Hamme proved (see [6] , theorem)

Theorem 1.4

If Q is a continuous linear operator on C(Zp --~ K) that commutes with E, such that
bo = 0, |b1| =1, |bn|  1 for n > 2, then

1) there exists a unique polynomial sequence (pn) such that

QPn = pn-1 if n ~ I, Pn(0) = 0 i f n > 1 and po = 1,

2) every continuous function f : Zp - K has a uniformly convergent expansion of
the form

co

f ’ 03A3(Qnf)(0)pn
n=0

where

~f~~ = .

It is easy to see that the operator Q of the theorem is a delta-operator. Just as in
the classical case, we’ll call the sequence (pn) the basic sequence for the operator
Q. Remark that here we have Qpn = pn-i, instead of Qpn = npn-i which is used
in the classical umbral calculus.

Remarks

1) The sequence (pn) forms an orthonormal basis for C(Zp --~ K). In the classical
case, the basic sequence for the delta-operator forms a basis for ~8(x~. So this theorem
is an extension of the classical case.
2) The polynomial sequence that corresponds with the operator A is the sequence
((n)) which is known as Mahler’s basis for C(Zp --~ A’) ([2]). If f is an element of

C(Zp -+ fi), we have f(x) = ~~° 0(~1~ f )(o)(~y

An example

Let Q be the operator Q = ~°° ~ ,_, then we find for the unique polynomial se-
quence (pn) : po(x) = 1 and pn(x) = 03A3ni=1(-1)n-i(xi)(n-1i-1) if n > 1. We show
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this by (double) induction. For n equal to zero or one this is obvious. Suppose the
statement is true for n, then we prove it is also true for n-{-1. We have to prove that

E~E-.r-(:)(.~)=D-.-(:)(;:.’)
Now the expression on the left-hand-side equals

~n+i~n+i/ .~+i-t/ ~ B/ ~ Bj=1 i=j () (i-j)(i-1)

= 03A3n+1j=103A3n+1k=0(-1)n+1-j-k(xk)(nk+j-1) (where k = i - j)

And so we have to prove that, if 0~k~n,

(-1)1-j()=() (1.3)

where we put (") equal to zero. We prove this by induction on k. For k equal
to n this is obvious. Now suppose it holds for~===~+l(0~~20141), then
we show that it holds for k = s. Expression (1.3) for k equal to s + 1 gives us

= ("7’) and if we put I + 1 = t this gives

(-1)t()=() (1.4)

The left-hand-side of (1.3) for k equal to s is - 03A3n+1-sj=1(-1)j (ns+j-1) and with the
aid of (1.4) this equals (~) - ("~) = (~) which is the right-hand side for (1.3)
for k equal to s. This finishes the proof.

2. Orthonormal Bases for C(Zp -~ K)

In this section we are going to construct some orthonormal bases for the Banach
space C(Zp 2014~ K). To do this we’ll need the following theorem :

Theorem 2.1

Let be a polynomial sequence in C(Zp ~ K), which forms an orthonormal basis

for C(Zp 2014~ K), and let (rn) be a polynomial sequence in C(Zp 2014~ A~) such that

n

A’.

7=0
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Then the following are equivalent :

1 ) (rn) forms an orthonormal basis for C(Zp ~ !{),
n = 0,1, ... ,

9)  1, = I, n = ~,1, ... ; 0  j  n.

Proof

This follows from [7], theorem 3, by putting M = Zp 0

If (an) is a sequence in Zp, then it is easy to see that the polynomial sequence
( ~x n ") ) forms an orthonormal basis for C(Zp - h’). To see this, put p~ = .B~ = ~~)
in theorem 2.1 ( j = 0,1, ...). Further, if k  n, L1 k (~ na) = ( n~k) since the sequence
( (n) ) is of binomial type (see [1], p.16.06, lemme 1 and théorème 5).

We’ll need the next two lemma’s to prove the main theorem of this section. deg p
denotes the degree of the polynomial p.

Lemma 2.2

Let N be a natural number different from zero, let a be a fixed element of Zp and let
p be a polynomial in such that p(a + i) = 0 if 0  i  N. Then (0394kp)(03B1) = 0

Proof

If deg p  N, there is nothing to prove. Now suppose deg p = n > N. We can
write p in the following way : p( x) = b~ since p(a + i) = 0 if 0  i  N.

Then, for 0  k  N, (0394kp)(x) = (remarks following theorem 2.1)
and so (A kp)(a) = 0 if 0 ~ k  N []

Lemma 2.3

Let Q = bN ~ 0, N > 1, (bn) a bounded sequence in K, and let
a be a fixed element of Zp. Then there exists a unique polynomial sequence (pn)
such that (Qpn) = if n > N, pn(a + i) = 0 if n > N, 0  i  N, and

pn(x) = if n  N.

Proof

The series (pn) is constructed by induction. For n = 0,1, ... , N ~-1 there is nothing
to prove. Suppose that po, pl, ... , pn-1 (n > N) have already been constructed.
Write pn in the following way :

n-l

= anxn + L aipi(x).
~~o
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Since pn is a polynomial of degree n > N, ~pn is a polynomial of degree n - N.
Put Qxn = P(x), a polynomial of degree n - N. So Qpn = anP + aipi-N
and this equals pn-N. This gives us the coefficients an, an_1, ... , aw. The fact that
pn(a + i) must equal zero for 0  i  iV gives us the coefficients ao, ... , , aN_1 :

o- P n ( n+i ) =an ( a+i ) n+ 
N-1 

-an ( a+i ) n+ , .o = pn(03B1 + i) = an(03B1 + i)n ajpj(03B1 + i) = an(03B1 + ’ aj().
From this it follows that the polynomial sequence (p" ) exists and is unique A

Now we are ready to prove the main theorem of this section.

Theorem 2.4

Let Q = N > 1 with |bN| = 1, 1 if n > N, and let a be an
arbitrary but fixed element of Zp.

1~ There exists a unique polynomial sequence (pn) such that

~pn = pn-N 2 f n > N,

if n>_N, 0iN,

pn(x) = n  N.

This sequence forms an orthonormal basis for K).
2) If f is an element of C(Zp - K), there exists a unique, uniformly convergent
expansion of the form

00

f = 03A3cnpn
n=0

where

2f 

with

~f~ = 

Proof

1) The existence and the uniqueness of the sequence follows from lemma 2.3. ~Ve

only have to prove that the sequence forms an orthonormal basis. We give a proof
by induction on n, using theorem 2,1. We put

pn = cn,jCj, where Cj(x) = x-a .
3=0 ~ J
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The sequence (Cj ) forms an orthonormal basis for C(Zp - K), see the remarks
following theorem 2.1. If we apply theorem 2.1 on the sequence (Cj ) we find the
following :

(pn) forms an orthonormal basis for C(Zp -~ h’)

i f and on I y i f  1, =1 n = 0,1, ... , 0  j  n.

We prove that |cn,j| [  1, |cn,n| = 1 by induction on n. For n = 0,1, ... , N - 1
the assertion clearly holds. Suppose it holds for’i = 0,..., n -1, n > N, then
Pn = Cn,jCj = cn,jCj since pn(03B1 + i) = 0 for 0  i  N. So |cn,j|  1

for 0  ’  N. Qpn = Pn-N = where ‘c n-N,’n-N ~ =1 ~ 
1, 0 $ j 5: n - N by the induction hypothesis.
Now Qpn = bk0394k03A3nj=N cn,jCj
- 03A3nj=N cn,j 03A3jk=N bkCj-k (since 0394kCj = Cj-k)

= 

03A3n-Nj=0 cn,j+N 03A3jk=0 bk+NCj-k
= 03A3n-Nj=0 cn,j+N 03A3jk=0 bj-k+NCk

= 03A3n-Nk=0 Ck 03A3n-Nj=kbj-k+Ncn,j+N.
If k = n - N, then, since Qpn = pn-N,

bNCn,n = Cn-N,n-N

so ICn,nl =1. If n = N we may stop here. If n > N, we proceed by subinduction.
Suppose, if 0  k  n - N, that then |cn,j+N| I  1 if k  j  n - N. Since

Qpn = pn-N, it follows that = cn-N,k, which implies that

n-N

bNCn,k+N .- Cn-N~k _ L.~ bj_k+NCn~j+N.
j=k+1

Then  I, whichwe
wanted to prove. This finishes the proof of 1).
2) Let f be an element of C(Zp ---~ ~.’). Since the sequence (pn) forms an orthonor-
mal basis for C(Zp --; K), there exists coefficients cn such that f = cnpn

uniformly. We prove that cn equals if n equals i + kN, 0  i  N.

Since f = 03A3~n=0 cnpn, we have

CnPn-kN = cn+kN () 
CY 

+ cn+kNpn.

If we put 03A3~n=N cn+kNpn = f , then (0394i)(03B1) = 0 by lemma 2.?. Further, since

0394i(x-03B1n) = 0 if i > n, 0394i() = ( n a) if i  n, and in particular = 1,
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we have = ci+kN. This gives us the coefficients cn. Since (pn) forms
an orthonormal basis for K), it follows that

~f~ = .

a

An example

Let Q be the operator Q = E~2 ~’ i and put a = 0. Then we find for the unique
polynomial sequence (pn)

= 1

and
p2n+1(x) = (-1)k-1()() if n~0

p2n+2(x) = (-1)k()() if n~0
The proof is more or less analogous to the proof of the example in the introduction.

We want to construct more orthonormal bases for K). To do this we need
the following lemma

Lemma 2.5

Let Q = (N ~ 0) with i = |bN| ~ |bn| if n > N, and let p be a

polynomial in of degree n > N, = where 1, 0  ~ 

n, |cn| = 1. Then Qp = r where = with 0 ~ j 
n - N, |an-N| = 1.

Proof

It is clear that r is a polynomial of degree n - N. Then

= = = Now ~Qp~~ =

~r~~. Since |cj| I  1 and |bi| I ~ 1 (i ~ N, 0 ~ j  n) we have ~Qp~~  1 and so

1. If = then we must have |aj|
(otherwise > 1 ). So it suffices to prove that |an-N| = 1’ Since Qp = rand
since the coefficients of () on both sides must be equal we have cnbN = an-N
and so |an-N| = 1 since |bN| = 1 and |cn| = 1 a

And now we immediately have
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Theorem 2.6

Let (pn) be a polynomial sequence which forms an orthonormal basis for C(Zp ~ K),
and let Q = bi0394i (N > 0) with 1 - |bN| > |bn| if n > N. If QPn =
rn-N (n > N), then the polynomial sequence (rk) forms an orthonormal basis for

11’).

Proof

This follows immediately from theorem 2.1 and lemma 2.5 a

3. Continuous Linear Operators on C(Zp -~ K)

In this section we establish some results on continuous linear operators on C(Zp ~ K).
In particular we look at operators which commute with the translation operator E.
Our first theorem in this section concerns delta-operators. To prove this theorem
we need the folowing lemma’s

Lemma 3.1

~0394n~ = 1 for all n N.

Proof

This follows immediately from (1.2). a

Lemma 3.2

Let Q be an operator such that Q = b=0=, with  1 if i > N,

bN ~ 0 (N E N). Then we have

2 ) il N  1, then (Qnf)(x) -+ 0 uniformly if n tends to infinity.

Proof

1) This follows immediately by considering the corresponding power series biti.

2) ~Qnf~~ ~ ~0394nN f~~ and so (Qn f )(x) tends to zero uniformly
if n tends to infinity since f )(x) tends to zero uniformly if n tends to infinity
(by 1.1) a

For delta-operators Q with norm equal to one and with |QB1(0)| = 1 we can prove
a theorem analogous to theorem 1.2 of the introduction. Let a be an arbitrary but
fixed element of Zp and let (Pn) be the polynomial sequence as found in theorem
2.4. If (dn) (n = 0, 1, ...) is a bounded sequence in K, then we can associate an
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operator T with this sequence such that (T pn)(a) = dn. In order to see this we
define the operator T in the following way

(Tf)(x) = dn(Qnf)(x) (3,1)
n=0

where Q° = I and where f denotes an element of C(Zp --~ k’). Then T is clearly
linear and commutes with E since Q commutes with E. The operator T is also
continuous. To see this, take f E C(Zp --~ K). Since -+ 0 uniformly if
n tends to infinity (lemma 3.2 2)), the series converges uniformly and defines a
continuous function T f. . T is continuous since (lemma 3.1 and lemma 3.2 1))

~Tf~~ ~ supn~0{|dn| ~Qn f~~} ~ ~f~~supn~0{|dn|}. (3.2)

Further, dn = (T pn)(a) since (T pn)(a) = 03A3nk=0dk(Qkpn)(03B1) = 03A3nk=0 dkpn-k(a) =
dn. We’ll denote the operator T defined by (3.1) as T = we remark
that the equality holds for the pointwise convergence, and not for the convergence
in the operatomorm. We’ll call T = ~°_°° the Q-expansion of the operator T.

We can ask ourselves whether every continuous linear operator that commutes with
E is of the form 03A3~i=0 diQi where the sequence (dn) is bounded. The answer to
this question is given by the following theorem. To prove this theorem we need the
following lemma, where Ker T denotes the kernel of the linear operator T.

L e mma 3.3

Let T be a continuous linear operator on C(Zp -+ K) which commutes with the
translation operator. If K er T contains a polynomial of degree n, then T lowers the
degree of every polynomial with at least n + 1.

Proof

If T = ~k ° and Ker T contains a polynomial of degree n, then bo = ... =
bn = 0. Suppose that this were not true, let then ko  n be the smallest index such
that bk0 ~ 0. Since A lowers the degree of a polynomial with one, Tp is a polynomial
of degree n - ko and then p is not in the kernel of T. . So bo = ... = bn = 0 and we
conclude that T lowers the degree of every polynomial with at least n + 1 []

For delta-operators Q with norm equal to one and with |QB1(0)| = 1 we can prove
the folowing

Theorem 3.4

Let Q be a delta-operator such that ~Q~ = |QB1(0)| = 1, let a be an arbitrary but
fixed element of Zp and let (pn) be the polynomial sequence as found in theorem 2.4.

1) Let T be an operator on C(Zp -+ K) and put dn = (TPn)(a). . If T is continuous,
linear and commutes with E then the sequence (dn) is bounded and T = dnQn.
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2) If (dn) is a bounded sequence, then the operator defined by T = dnQn is
linear, continuous and commutes with E. Furthermore, dn = (T pn)(a).

Proof

We only have to prove 1) since 2) is already proved. This proof is similar to the
proof of the proposition in [6]. Suppose that T is a continuous linear operator on
C(Zp --~ K) and T E = ET. . By the remarks following theorem 1.2 it follows that
Tpo is a constant. , Define

do = Tpo.. 
’

Then Ker(T - doI) contains po since Tpo "" do = 0. By lemma 3.3, (T - doI)pi is
a constant, and so we can define d1 by

(T - d0I)p1 = dj.

Ker(T - doI - d1 Q) contains p1 since (T - d0I)p1 - d1Qp1 = dl = 0. So

Ker( T - dol - d1 Q) contains p1 etc.... If do, dl, ... , dn-1 are already defined,
then we have that Ker(T - dtQ=) contains So (T - diQi)pn is a
constant, hence we can put

n-1

(T - 03A3 diQi)pn = dn.
i=O

Then dn = (T - diQi)pn = Tpn - 03A3n-1i=0 dipn-i.
We now prove that the sequence ( dn ) is bounded. Now 
~T~. By induction : suppose ( ~ ~T~ ] for j = 0,1, ... , n -1. Then, since

= 1 for all k,

|dn|  max{~T~, |d0|, |d1|...,|dn-1|} = ~T~. (3.3)

So the sequence (dn) is bounded.
It follows from the construction that the kernel of the continuous operator (T -

d;Q’) contains pn for all n E N and so it contains K[x] (lemma 3.3). Since

K[x] is dense in C(Zp ~ K) ([5], theorem 43.3, Kaplansky’s theorem) it is the

zero-operator and so
~xJ

T 
i=O

If f is an element of C(Zp --i K), then (T f )(x) _ and the series

on the right-hand-side is uniformly convergent since (~~ f )(x) --3 0 uniformly if n
tends to infinity (lemma 3.2 2)). Clearly we have dn = (Tpn)(a), since = 

.

di(Qipn)(03B1) = 03A3ni=0 dipn-i(03B1) = dn 0
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Remarks

1) If T = 03A3~i=0 diQi is a continuous operator, then T satisfies

~T~ = supn~0{|dn|}. (3.4)

This follows immediately from (3.2) and (3.3).
2) The coefficients dt in the Q-expansion are unique.
3) The composition of two such operators corresponds with multiplication of power
series. The set of all continuous operators of the type ~ °°_~ ( d s ) bounded in
K, forms a ring under addition and composition which is isomorphic to the ring of
formal power series ~°__°o where (d=) is bounded.

Let T be a continuous linear operator on C( Zp --~ Ii ) which commutes with .~, and
suppose that T = 03A3~n=0 bn0394n = 03A3~n=0 dnQn where Q is a delta-operator such that

= 1 = |(QB1)(0)|. Then it is easy to see that T has the following properties
(N E N) :

bi = 0 if 0iN, b~~0 if and only if d; = 0 if 0 ~ z  ~ 0.

Further, if J is a positive real number, then for all n > N : : |bn| ~ J if and only if
for all n > N : : |dn| ~ J. In addition we have that 

’ 

’

|bN| = |dN|.

It follows that
= |bN| [ if and only if ~T~ = |dN|.

If we use the same notation of the theorem, then the operator T is a delta-operator
if and only if do = 0, d1 ~ 0 i.e. (Tpo)(a) = 0, (Tp1)(03B1) ~ 0. It also follows that

the operator T has an inverse which is also linear, continuous and commutes with
E if and only if

~T~ = |d0| ~ o.

In addition,
~T~ = ~T-1~ l if and only if ~T~ = Idol = 1.

This follows immediately from the properties above and remark 4) following theorem
1.2.

Some examples

Let us consider the delta-operator
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and put a equal to zero. Then the basic sequence ( pn ) for the operator Q is

pn(~) _ 
i x .n -- 1 i f rt > 1Po (x) = 1, pn(x) = 1

(example following theorem 1.4). For the operators E and A~ (k > 1) we find

1) do = (EPo)(o) =1 and for n > 1 we have dn = (Epn)(0) = 03A3ni=1(-1)n-i()()=
(-1)n-1. This gives us the following expansion for the operator E

E = I + (-1)n-1Qn.

n=1

2) dn = = 0 for n  & and for n ~ ~ we have

dn = = E~t(-l)""(.~)(~) = (-l~n~k ‘k-1). This gives us the

following expansion for the operator ~k

0394k = (-1)n-k()Qn.
3) For the operator 03A3~n=2 0394n of the example of section 2 we find
~o0 2 Qn - Qn ~ ~ - Q - = r.o~ 2(_~)n~n

Theorem 3.5

Let (pn) and (qn) be polynomial sequences in h’(xJ which form orthonormal bases
for C(Zp --~ K) and let N be a natural number.

1 ) For the linear operator T on C(Zp --~ .~’) such that T pn = qn-N if n > N,
Tpn = 0 if n  N, we have that =1 and so T is continu.ou.s. If in addition T
is of the form T = (by lemma 3.3), then |bN| =1.
~~ If (rn) is a polynomial sequence which forms an orthonormal basis for C(Zp - K),
then the sequence also forms an orthonormal basis for C(Zp -+ K).

Proof

1) If f is an element of C(Zp -+ Ii’), then since (pn) forms an orthonormal basis for

C( Zp --> h’), there exists a uniformly convergent expansion of the form
00

f(x) _ 03A3 anpn(x)
n=0

and then we put

= anqn-N(x).
n=N
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It is then obvious that Tpn = qn-N if n > N, T pn = 0 if n  N. Since

an tends to zero if n tends to infinity, the series on the right-hand-side is uni-
formly convergent and so T f is a continuous function. T is clearly linear. Further,
~T f~~ = maxn~N{|an|}  maxn~0{|an|} = ~f~~ and so  1. Furthermore,
~TpN~~ = ~q0~~ = 1 = ~pN~~ and so ~T~ = 1. So T is continuous. If in

addition T is of the form T = ~°°Q then since Tpn = qn-N if n > N, Tpn = 0
if n  N, we have T = and then from TpN = qo it immediately follows
that |bN| = 1.
2) Since (rn) and (pn) are polynomial sequences which form orthonormal bases for
C(Zp --~ h’), we can write by theorem 2.1 rn in the following way : :

rn = 03A3nj=0 bn,jpj (bn,i E K) with 1, |bn,n| = 1 for 0  j  n, n E N, and

so if n > N we have TTn = ~~ N bn.jqj-N and so by theorem 2.1 the sequence
forms an orthonormal basis for C(Zp - K) since (qn) forms an

orthonormal basis for C(Zp --~ K) o

We can consider two special cases :

1) Take pn = qn, n = 0,1, ... where N > 0. Then we look for an operator T such
that Tpn = if n > ~ Tpn = 0 if n  N.

2) The other special case is where N is equal to zero. Such an operator T is then
called an umbral operator. See definition 3.7.

It is interesting to know whether the operator T of theorem 3.5 is of the form

T = 03A3~i=Nbi0394i, i.e. T commutes with E. The case where pn = qn for all n and

N = 1 can be found in [1], theoreme 5, p. 16.10. Another special case is the
following

Theorem 3.6

Let (pn) be a polynomial sequence which f orms an orthonormal basis for C(Zp ~ K)
and let Q be a delta--operator with =1= i(QB1)(0)~. Suppose that the formula

n

QPn = 03A3 pksn-k n = 0,1, ...
k=0

holds for some sequence of constants (sn) in Then there exists a continuous
linear operator R which commutes with E such that Rpn = if n > N and
Rpn = 0 if n  N (N >_ 1).

Proof

If f is an element of Ii’), there exists coefficients an such that

== anpn(x)
n=0



70

where the series on the right-hand-side is uniformly convergent, 11/1100 = 
and ar tends to zero if n tends to infinity. Let R be the operator defined as follows

= anpn-N(x).
n=N 

’

It is clear that R satisfies Rpn = pn-N if n > N and Rpn = 0 if n  N.
Since an tends to zero if n tends to infinity and since ~pn~~ = 1 for all n, the
series on the right-hand-side is uniformly convergent and thus R f is a continu-
ous function. R is clearly linear. We now show that R is continuous. We have

= maxn~N{|an|}  ~f~~. We conclude that ~R~  1

and thus R is continuous. We now show that RQk = Qk R (k ~ N). If n is at

least N then RQPn = R = 03A3nk=N pk-Nsn-k = pksn-N-k =

Qpn-N = QRpn and if n is strictly smaller than N we have Ropn = QRPn = 0
so by linearity QR = RQ on C(Zp -~ K) (since Q and R are continuous and since
(pn) forms an orthonormal basis) and continuing this way we have RQk = QkR on
C(Zp -~ K) (k EN). By theorem 3.4, there exists a bounded sequence (di) such
that E = and thus R commutes with E 0

We now consider the case where N = 0 in theorem 3.5. This leads us to the following
definition, which is more or less analogous to the definition of the classical umbral
calculus (see 1. Introduction)

Definition 3.7

Let (Pn) and (qn) be polynomial sequences which form orthonormal bases for C(Zp --~ K),
and let U be the linear operator which maps pn on qn for all n :

Upn = qn n = o,1, ....

Then we will call U the umbral operator which maps p.~ on qn for all n.

Theorem 3.8

Let (pn) and (qn) be orthonormal bases for C(Zp --~ K) consisting of polynomial
3equences, and let U be the umbral operator which maps pn on qn for all n.

1) Then U is an invertible, contin~uous operator for which = = 1.

2) If(rn) is a polynomial sequence which forms an orthonormal basis for C(Zp ~ K),
then (Urn) also forms an orthonormal basis for C(Zp ~ K).

Proof

1) We already know from theorem 3.5, by putting JV = 0, that U is continuous and
that = 1. If f(x) = anqn(x) (an E is an element of C(Zp - h’),
then we define the operator S as follows = Then S f is a



71

continuous function for which = maxn~0{|an|} = ~f~~ so the operator S
is continuous and ~~S~~ =1. S is linear and from the definition of S and U it follows
that SU = US = I
2) This follows immediately from 2) of theorem 3.5, by putting N = 0 0

The umbral operator U does not necessarily commute with E. In the following
special case U commutes with the translation operator :

Theorem 3.9

Let Q be a delta-operator such that = I = ~(~$1)(0)~ and let (pn) and (qn)
be polynomial sequences which form orthonormal bases for C(Zp -+ K) such that
Qqn = qn-l and Qpn = pn-1 (n > 1). The umbral operator U which maps pn on
qn for all n commutes with E. The operator U has an inverse which is also linear
continuous and commutes with E.

Proof

The operator U is continuous and invertible (theorem 3.8). We prove that U com-
muts with E. The operator U commutes with Q : UQpn = Upn-1 = and

QUpn = Qqn = qn-1 if n > 1 and if n equals zero we have UQp0 = QUp0 since both
are equal to zero. By linearity, continuity and the fact that (pn) forms an orthonor-
mal basis, U commutes with Q. Continuing this way we find that U commutes with
Qk for all natural numbers k. By theorem 3.4, there exists an expansion of the form
E = 03A3~n=0 dnQn, (dt) bounded, and so U commutes with E. Since Upo = qo, it
follows that =1 and by remark 4) following theorem 1.2 it follows that
the operator U has an inverse which is also linear, continuous and commutes with
E. In addition, = 1 o

Consider the algebra of continuous linear operators on K) and let U be an
invertible element of this algebra. The map S --; USU-1 is an inner automorphism
of the algebra of continuous linear operators on C(Zp --~ K). Now let U be an
umbral operator. Then we are able to prove the following theorem which is more
or less similar to ~4~, section 2.7, proposition 1, p. 29.

Theorem 3.10

Let P and Q be delta-operators on C(Zp -; K), 1 = ~Q~ = =

and let pn and qn be polynomial sequences which form orthonormal
bases for C(Zp ~ K) such that Ppn = pn-1 and Qqn = qn-1. Let U be the umbral

operator which maps pn on qn for all n, and let S be a continuous linear operator
which commutes with E. Then we have the following properties : :

1) The map S ~ USU-1 is an automorphism of the ring of all continuous linear

operators on C(Zp ~ h’) which commute with E. Further, = ~USU-1~.
2) If S is of the form S = (N E N) with bN ~ 4 then USU-1 is of
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the form USU-1 = 03A3~n=N 03B2n0394n with 03B2N ~ 0. If in addition we have ~S~ _ |bN|,
then also ~USU-1~ = |03B2N|. If (sn) is a polynomial sequence such that Ssn = sn-N
(n > N ) and if rn is the polynomial sequence defined by Usn = rn then Rrn = rn_N
(n ~ N) where R = USU-1.
9) If S = dnVn, where V is a delta-operator such that = I = 

then USU-1 = where W = UVU-1 and W is a delta-operator such
that ~W~ =1= |(WB1)(0)|.

Proof

The inverse U-1 of U exists and is linear and continuous by theorem 3.8.
1) The map S -+ USU-1 is an inner automorphism of the algebra of continuous
linear operators on C( Zp --~ K). We have to show that the subalgebra of operators
which commute with E is invariant. We have (n > 1) UPpn = Upn-1 = qn-i =
Qqn = QUpn and UPpo = QUp0 = 0. So by linearity, continuity and since (pn)
forms an orhonormal basis we have UP = QU on C(Zp - K) thus UPU-1 = Q. So
we also have UPkU-1= Qk for all natural numbers k. There exists an expansion
of the form S = diPi with ~S~ = supn~0{|dn|} ((3.4) and theorem 3.4) and
so USU-1 = 03A3~i=0diQi and we have ~USU-1~ = supn~0{|dn|} = ~S~ (by (3.4)).
From the calculations it also follows that the map is onto (again theorem 3.4). So
the map is an automorphism from the ring of continuous linear operators which
commute with E onto itself. -

2) If S is of the form S = bn0394n with bN ~ 0 then S = 03B3nPn
with yN 7~ 0 (properties following theorem 3.4) and from the calculations in 1)
it follows that 03A3~n=N03B3nQn with 0 and so USU-1 is of the form
U SU-1 = ~ 0 (properties following theorem 3.4). If in addition

~S~ = |bN|, then = = ((3.4), 1) and properties folowing
theorem 3.4) and so |03B2N| = ~USU-1~ (properties following theorem 3.4). Further
we have Rrn = USU-1rn = USsn = Usn-N = rn-N.
3) Since W = UVU-1, we have W k = UVkU-1 (k EN). Thus if S = dnVn,
then USU-1 = = From 1) and 2) it follows that
W is a delta-operator and = 1 = ~( 4YB1 )(o} ~ o

Finally let us consider the following : let Vq be the subset of Zp defined as follows :
Vq is the closure of the set In = 0~ 1,...}, where a and q are two units of Zp, q
not a root of unity. C(Vq --~ K) denotes the Banach space of continuous functions
from Vq to fi. The operator Dq on C(Vq --~ K) is defined by

(D9f )(x} = (f(qx) - - ~))

We remark that results for the operator Dq on C(Vq --~ K) analogous to the results
in this paper can be found in [8] and [9], chapter 5.
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