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Spectral density estimation for p-adic stationary processes

Mustapha RACHDI and Vincent MONSAN

Ann. Math. Blaise Pascal, Vol. 5, N° 1, 1998, pp.25-41

Abstract

In this paper, we propose two asymptotically unbiased and consistent estimators for
the spectral density of a stationary p-adic process X = . The first estimator

is constructed from observations X = Un being the p-adic ball with center 0
and radius and the second, from observations where (Tk)kez is a
sequence of random variables taking their values in Qp, associated to a Poisson counting
process N.
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1 Introduction

In mathematical physics, we use real and complex numbers, since space time coordinates are
well described by means of real numbers.
Recently, to answer many questions in physics, an increasing interest has been given to p-adic
numbers: they are used in superstrings theory (using very small distances, of the order of
Planck length) where there are no grounds for believing the usual ideas to be valid.
P-adic numbers are going to be used, not only in mathematical physics, but also in other
scientific grounds, where are met fractals and hierarchical structures (turbulence theory,
dynamical physics, biology... )(cf. [13] and [1]).
Brillinger, in (2~, was the first to introduce spectral estimation for stationary p-adic processes, ,
and he constructed the peridogram analogously to the real case.
This paper has two focuses developing a consistent estimates of the spectrum of a p-adic
stationary process: observed on a p-adic ball and observed at the points process like in [8]
and [9]. .
First we give some preliminaries about p-adic numbers.

2 Preliminaries

2.1 p-Adic numbers

Let p be a prime number. The norm |.|p on the field Q of rational numbers is defined by:

where p is divisor neither of a nor of b.= {p-v(x) 0 if x = pv(x)a/b, if x = 0 
= where p is divisor neither of a nor of 6.

where E Z.

~.~p is a norm on Q and is called p-adic norm. The completion of Q for that norm is
denoted Qp, which called the field of p-adic numbers.
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Theorem 2.1 (Ostrowski’s theorem). The Euclidian norms and the p-adic norms (p being a
prime number), are the only non trivial (non equivalent) possible norms on the field ~.
Let x E Q~, (x ~ 0); then x can be represented in a unique manner under the canonical form
(Hansel representation):

00

x = pv(x) 03A3 ajpj where 0  aj  p, a0 > 0, j = 0,1, 2, ... ( 1 )
~=o .

where the series (1) converges for the norm. ,

Definition 2.1 The fractional part of a p-adic number x, denoted (x)P, or (x}, is the num-
ber :

f 0 if v(x) > 0,x = {pv(x)03A3-v(x)-1i=0 aipi if v(x)  0.
Remark 2.1 For all x E Qp; 0  (x)  1, if v(x)  0.

The ball with center Xo and radius pn is denoted by Un(x0), i.e.
Un(x0) _ {x E Qp / Ix - xolp ~ pn}.

We denote Un = Un(O), and we have the following properties:
1. . Un(x0) is compact, open in Qp.
2. If x1 E Un(x0), Un(x1) = Un(x0): Every point of the ball Un(x0) is its center.

3. If Un(x0) n Un1 (x1)~0 and n1 ~ n, then Un1 (x1) C Un(x0): Two balls in Qp are either
disjoint, or included one in the other.

(Qp, +, x ) is a complete separable metric space, locally compact and disconnected.

2.2 Characters of the group (Qp, +) and Fourier analysis on Qp
(Qp, +) is an abelien locally compact group; from Haar’s theorem there exists a positive
measure on Qp, uniquely determined except for a constant, denoted which verifies the

following properties: for a E Qp, d(t+a) = dt, d(at) = |a|pdt and (Zp) = l, where Zp = U0.
If A E BQp ; is the Haar measure of A, where BQp is the borelian o-field on Qp. This
measure is explicited in [6] (pages 202-203).
The characters 7 of Qp are defined by 03B3 : (Qp, +) ~ (C, x ), continuous and verifying:

1. ~(t)1= ~ t~~(--t) = ~.

2. Vt, s E Qp, 03B3(t + s) = 03B3(t)03B3(s)
From [4], [6] (pages 400-402), we get the following expression for characters of Qp:
d~ E Qp, ~~y E Qp; , Vt E Qp = where (yt) is the fractional part of the p-adic
number ’1t and Qp denotes the dual group of Qp.
The Fourier transform of f is given by: Vu E Qp, Ff(u) = Qp f(x) e2i03C0uxdx.
It is defined for all absolutely integrable functions ( f E L1(Qp)).
If f E L2(QF), we have the inverse relation: f(x) = c Qp e-2i03C0uxFf(u)du, where c is a

positive constant.

Moreover, Plancherel’s formula is: = c / |Ff(u)|2du.
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Example 2.1 l. Dn(a) = f~n Dirichlet kernel. If we calculate Dn(a), we

~ ) ( 0 elsewhere 
~

2. ,~’~ =1 and ~’~ = 6

Usual Fourier transforms are calculated in (4j, (12~.

3 Spectral density estimation for a p-adic stationary process
from non-random sampling

3.1 The periodogram
Let X = be a real valued p-adic stationary second order process, with mean
zero, continuous covariance function c2 = cum{X(t + u), X(t)} for all t, u E Qp, element of
L1(Qp), such that

H1) X is stationary up to order 4, and the fourth cumulant function

c4(u1, u2, u3) = cum{X(t + u1), X(t + u2), X(t + u3), X(t)},

is absolutely integrable.

~l2) there exists no E N such that, for n > no, , and Fn = Qp, Un

Fn |c2(t)|dt  const/pn,

where const denotes a positive constant.

The covariance c2 is semi definite positive and continuous; then from Bochner’s theorem,
there exists a measure Fx with bounded variation on Qp, such that

c2(u) = Qp e2i03C0uxdFx(x),
where Fx is the spectral measure of X, and is uniquely determined from c2.
As c2 ~ L1(Qp) , the spectral density f X is defined by

fx (x) = c2 (t) e-2i03C0txdt, t12 E Qp.

First, we study the periodogram. The studied process is observed for all t belonging to U,~.
The finite Fourier transform is then: = fUn X (t) e-2i03C0t03BBdt, ~03BB E Qp,
and the periodogram is:

IX,a(03BB) = 

n |2 = 1 pndx,n(03BB)dx,n( -03BB)

= 1 pn / X (t)X (s) (2)
pn U2n

X(t)X(s) e-2i03C0(t-s)03BBdtds. (2)

Lemma 3.1 Under H2), we have : cov{dX,n(u1),dX,n(u2)} = fX(u1)Dn(u2 - u1) + D(1).
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Proof. Since, = Un e-2i03C0(tu)X(t)dt.

cov{dX,a(u1),dX,n(u2)} = Un Un e-2i03C0t1u1-t2u2c2(t1 - t2)dt1dt2

= Un[Qp e-2i03C0tu1c2(t)dt] e2i03C0t2(u2-u1)dt2 (3)

- Un Fn e-2i03C0tu1c2(t) e2i03C0(u2-u1)t2dtdt2 (4)

Moreover, from H2), (4) is less than U n F n |c2(t)|dtdt2, which is bounded. Thus (4) is 0(1), ,
and

= fx(u1) Un e2i03C0t2(u2-u1)dt2 + D(1)
= fX(u1)Dn(u2-u1) + O(1).

Proposition 3.1 Let X = {X (t) }tEQp be a real variate p-adic stationary second order pro-
cess, with mean zero, continuous covariance f unction c~ element of L~ (Qp), such that ~l2) is
satisfied, then

IE[Ix,n(03BB)] = fX(03BB) + O(1 pn).
Therefore IX,n (a) is an asymptotically unbiased estimator for fx (a).

Proof. From lemma 3.1, we get

IE[IX,n(03BB)] = 1 pn[fX(03BB)Dn(0) + = fX(03BB) + O( 1 pn).
Proposition 3.2 Let X = be a real variate p-adic stationary second order pro-
cess, with mean zero, continuous covariance f unction c2 element of Ll(Qp), such that is

satisfied, then
lim var[IX,n(03BB)] = f2X(03BB) + f2X(0)

Therefore IX,n(03BB) is a non consistent estimator of fX(03BB).

Proof. We have

var[IX,n(03BB)] = 1 p2ncum{dX,n(03BB)dX,n(-03BB),dX,n(03BB)dX,n(-03BB)}

= 

1 p2n
cum{dX,n(03BB) , dX,n(-03BB), dX,n(03BB), dX,n(-03BB)} (5)

+ 1 p2ncum{dX,n (03BB),dX,n(-03BB)}cum{dX,n (-03BB),dX,n(03BB)} (6)

+1 p2ncum{ dX,n(03BB),dX,n (03BB)}cum{dX,n (-03BB),dX,n (-03BB)}. (7)

From [2], page 162, we can write :

cum{dX,n(03BB1),...,dX,n(03BBk)} = Dn(03BB1 +... + ak) / e-2i03C003BB1u1+...+03BBk-1uk-1

xck-1(u1,..., uk-1)du1 ... duk-1, k = 2,... (8)
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Then, the term (5), can be writen

1 p2nDn(0) Un Un Un e-2i03C003BBu1-03BBu2-03BBu3c4(u1, u2, u3)du1du2du3,

thus,

|(5)| ~ 1 pnQ3p |c4(u1,u2,u3)|du1du2du3.

Since c4(., ., .) E L1(Qp3) (from H1), we obtain that (5) is O(1/pn) .

From proposition 3.1, we have lim = / e2 (~c) = f x (a), ,
n+oo 

t 

JQp
then, the limit of (6) is f X (a). As for (6); (7) is

1 p2n|Dn(203BB)|2 e-2i03C0u03BBc2(u)du e2i03C003BD03BBc2(v)dvn Un 2 Un 2

= U" (9) )

and (9) converges to f2X(0). Thus lim n~~ var[IX,n(03BB)] = f2X(03BB) + f2X(0).

4 Smoothing the periodogram
The method is analogous to the smoothing in real time processes. Let (Mn)n~ be a sequence
of rational numbers, the terms of which are powers of p, and such that:

lim Mn = 0 and lim pnMn = +~. ( 10)
n+oo n+oo

For example, we choose Mn = , where (~] is the integer part of ~. That sequence

verifies (10). .
Let us consider a function W : : Qp --3 IH, which is continuous, positive and even, and
verifies:

W E L~(Qp) ~ L1(Qp) and Qp W(A)dA = l. (11)

For each t E Qp, we denote by the Fourier transform of W that is

= QpW(03BB) e-2i03C0t03BBd03BB.

Let Wn(03BB) = 1/MnW(Mn03BB) be the spectral window.

The smoothed estimator of f x is

X,n(03BB) = Qp Wn(03BB - u)IX,n(u)du.
Proposition 4.1 Let X = {X(t)}t~Qp be a real valued p-adic stationary second order pro-
cess, with mean zero, continuous covariance function ca E satisfying H2) , then

IE[X,n(03BB)] = Qp Wn(03BB-u)fX(u)du+O(1 pn).
Therefore X,n(03BB) is art asymptotically unbiased estimator for fX(03BB).



30

Proof. From proposition 3.1, and with the change of variates v = Mn03BB - Mnu, we get:
ae f x,n(n) - ( W(v)fX(03BB - v )dv + O(1/pn).. QP Mn

Since c2 E L1(Qp), fX is continuous; and as Qp W(u)du =1, then by dominated convergence
theorem, we get the result.
In the sequel, for a~ E Qp, we denote by b~ the p-adic Dirac delta function, given for all a E Qp
by:

1 if.1=~~
03B4x(03BB) = 0 otherwise. 

and shortly, 03B4(03BB) = 03B40(03BB).

Proposition 4.2 Let X = {X(t)}t~Qp be a real variate p-adic stationary second order pro-
cess, with mean zero, contanuous covariance function c2 element of L1 (Qp), such that hypoth-
esis ~l~) and ~l2) are satisfied, then for all al, ~2 in Qp

pnMncov[X,n(03BB1),X,n(03BB2)]
= [03B4(03BB1 + 03BB2) + 03B4(03BB1 - 03BB2)] f2X(03BB1) Qp W2(u)du + 0(1) + O(Mn).

Therefore X,n (a) is a consistent estimator for fX (03BB).

To prove proposition 4.2, we need the following lemma:

Lemma 4.1 We denote 0394n(u) = 1/pn|Dn(u)|2 the p-adic Fejer kernel,
and Jn(03BB) = Qp Wn(03BB - u)0394n(u)du - Wn(03BB).
Then Jn(03BB) = o(1/Mn), unaformly in a.

Proof of lemma 4.1. With t = (1/p~)a, we obtain

Dn(vpn) = |03BB|p~1 e-2i03C0v03BB|1/pn|p d03BB = pnD0(v), where D0(v) = |03BB|p~1 e-2i03C0v03BBd03BB.

As, Qp 0394n(u)du = pn { | u|p ~ p- n}, moreover {| |p ~ p- n} = p-n, then

Qp 0394n(u)du =1. With the change of vaariates u = vpn,

Jn(03BB) = 1 Mn 

Qp [W(Mn03BB-pnMnv)-W(Mn03BB)]0394n(vpn) dv pn

n QP p

= 1 M [W(Mn03BB - pnMnv) - W(Mn03BB)] |D0(v)|2dv.
n ’~P

As, W(a) = fQP we have

|W(Mn03BB _ pnMnv) _ W(Mn03BB)| ~ Qp | e-2i03C0tpnMnv -1|FW(t)| dt,

thus, |MnJn(03BB)| ~ Qp[Qp|e-2i03C0tMnpnv - 1| FW(t)|dt] |D0(v)|2dv.

Then, |MnJn(03BB)|  Qp 03B8(v)dv, where 8(v) = 2|D0(v)|2 fQP |FW(t)|dt E L1(Qp).QP

Indeed, QP |03B8(v)|dv = 2|FW|L1(Qp)  oo. Then, by dominated convergence theorem, we

get: lim n~+~ |MnJn(03BB)| ~ Qp Qp lim n~+~|e-2i03C0tMnpnv>-1|FW(t)||D0(v)| dv.
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Since, (tvMnpn)n~N is a p-adie sequence, and, lim n~+~ pnMn = +~,

lim n~+~ |tvMnpn|p = lim n~+~ |t|p|v|p|Mn|p|pn|p = lim n~+~ |t|p|v|p/Mnpn = 0,
thus, lim n~+~ MnJn(03BB) = 0 uniformly in a, i.e. Jn(03BB) = o(1/Mn).
Proof of proposition 4.2. Let al, a2 E Qp. We have

cov{X,n(03BB1), X,n(03BB2)} = Qp Qp Wn(03BB1 - u1)Wn(03BB2 - u2)cov{IX,n(u1), IX,n(u2)}du1du2.
Let us comput cov{IX,n(u1), IX,n(u2)}.
For this, we have IX,n(u2)} = A1 + A2 + A3, where

A1 = 

1 p2n cum{dX,n (u1), dX,n (-u1), dX,n (u2), dX,n (-u2)} (12)

A2 = 
1 p2n

cum{dX,n(u1), dX,n(u2)}cum{dX,n(-u1), dX,n(-u2)} (13)

A3 = 

1 p2n cum{
dX,n (u1), dX,n (-u2)cum{dX,n (u2), dX,n (-u1)} (14)

Thus, cov{X,n(03BB1),X,n(03BB2)} = I 1 + I2 + I3, where Ii is the contribution of Ai for a =1, 2, 3.
For the first term I1 : From the proof of proposition 2.2, we have Ai = 0(1/pn) , thus

|I1| ~ 1 pn Qp|Wn(03BB1 - u1)| du1 Qp|Wn(03BB2 - u2)| du2 Q3p |c4(v1, v2, v3)|dv1dv2dv3.

W is integrable, and from x = Mn03BB -- Mnui, for a =1, 2, we get

Qp|Wn(03BBi - ui)|dui = Qp |W(x)| dx  ~.

From H1), we get pnI1 = 0(1) i.e. pnMnI1 = 0(Mn).
The second term I2 : From lemma 3.1, we get

A2 = 1 p2n{[fX(u1)Dn(u2 - u1) + O(1)][fX(u1)Dn(u1 - u2) + O(1)]}
- 2n 1 -u1)I 2 + 2n 1 u1) ..

pn pnp p 
1

+ 1 p2n O(1)fX(u1)Dn(u2 - u1) + O(p 2n 1 ).pn pn

Since 1/p2n -a o and 1/p2nfX(u1)Dn(u2 - u1) -+ o as n ~ +~, we deduce

121
A2 = 1 p2n |fX(u1)Dn(u2 - u1)|2 + o( 1 pn).

As, 0394n(u) = 1/pn|Dn(u)|2, we have

I2 = 1 pn Qp Wn(03BB1 - u1)|fX(u1)| 2[Jn(03BB2 - u1) + Wn(03BB2 - u1) ]du1 + O(1 pn).
From lemma 4.1, and by dominated convergence theorem, we get

I2 - 1 pn Wn(03BB1 - u1)|fX(u1)|2Wn(03BB2 - u1)du1
pn QP

+ 1 n Wn (03BB1 - u1)| fX(u1)|2o(
1 

Mn)du1 + 0( 1 )
- w I2,1 + I2,2 + O(1 pn ),
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where, pnMnI2,2 = 0(1) u1)|fX(u1)|2du1.
As, W E L1(Qp) and fX E L~(Qp), we have, pnMnI2,2 = 0(1).
With v = Mn03BB1 - Mnu1, we get:

pnMnI2,1 = W(v)W (Mn(03BB1 - 03BB2) - v) f2X(03BB1 -
If 03BB1 = 03BB2 : Note that we have, W is a even function, fX is a continuous and bounded

function and ~v E Qp; lim n~+~ v/Mn = 0 in Qp, then

pnMnI2,1 = Qp W(v)2[f2X(03BB1 - v Mn) - f2X(03BB1)] dv + Qp W(v)2f2X(03BB1)dv.
Thus, by dominated convergence theorem, pnMnI2,1 = 0(1) + f2X(03BB1)Qp W(v)2dv.

If 03BB1~03BB2 : Since = e-2i03C0xtFW(t)dt, the Fourier transform of FW, it is uni-

formly continuous; and since lim |Mn(03BB2 - 03BB1)|p = lim n~~ |(03BB2 - 03BB1)|p/Mn = +~. Then
from the dominated convergence theorem, lim pnMnI2,1 = 0.

Thus we get, 03BB1, 03BB2 E Qp, pnMnI2,1 = 03B4(03BB2 - 03BB1)f2X(03BB1) Qp W2(v)dv + 0(1). .
So, pnMnI2 = 03B4(03BB2 - 03BB1)f2X(03BB1) Qp W2(v)dv + O( 1) + O(Mn).
With analogous calculations, we get

pnMnI3 = 03B4(03BB2 + 03BB1) Qp W(v)2dvf2x(03BB1) + o(1) + O(Mn).

Thus,

pnMncov [X,n(03BB1),X,n (03BB2)] " [03B4(03BB2 + 03BB1) + 03B4(03BB2 - 03BB1)] f2X(03BB1) QpW2(v)dv+o(1)+O(Mn) ’

and X,n is consistent, thus proposition 4.2 is proved.

Corollary 4.1 Under H1) - H2), we have X,n(03BB) converges to fX(03BB) in quadratic mean as
n - oo.

Proof of corollary 4.1. We know that, the mean square error is:
MSE(n) = bias2(X,n) + var{X,n(03BB)}.

From propositions 4.1 and 4.2, we get MSE(n)-0 as n --~ +oa.
This implies mean quadratic convergence.

5 Spectral density estimation of a p-adic stationary process
from random sampling

5.1 Preliminaries

Let X = {X(t), t E Qp} be a p-adic stationary second order process, with mean zero,
continuous covariance function element of and with spectral density function f X.
From (3~ and ~7~, there exists a counting process, denoted by N, which is associated to a
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sequence (k)k~z of random variables taking their values in Qp.
The process ,JV is defined by

N : BQp x 03A9 ~ N

{A, w) H = 03A3 1A (k(03C9))
kEZ

and is the number of Tk’s belonging to A.
We suppose that, for every A element of BQp, the random variable N(A) has a Poisson
distribution P (A(A)) (such a process exists by [3, 7]), where A(A) = 03B2 (A) and p, is the
Haar measure on Qp. In the sequel, we suppose also that also the mean intensity 03B2 = IE{U0}
is known.
For every A, B disjoint in Qp; N(A) and N(B) are independent.
Thus IE[N(A)] = 03B2 (A) = which implies IE[N(dt)] = .8dt.

Qp
Let A, B E BQp, we have

= IE[N(A n + IE[N(A n B)N(A n B)]
+ IE[N(A n B)N(Ä n B)] + n n B)],

where A denotes the complement of A in Q~.
Since N(A) is Poisson for every A in BQp, we get:

.~ N{A n B)2 = n B)2 +,~~(A n B).

Thus, since = Qp f (x, y) [Qp dbx(y) dx, we have
IE [N(A)N(B)] = 03B22 (A) (B) + 03B2 (A n B)

= A B 03B22dxdy + A B 03B2d03B4x(y)dx,

Then
E [N(dt)N(ds)] = 03B22dtds + 03B2d03B4t(s)dt

E [N(t + dt)N(t + s + ds)] = 03B22dtds + 03B2d03B4(s)dt.
Since N(A) is Poisson, IE [N(t + dt)] = E [N(dt)] = 03B2dt and

cov [N(t + dt),N(t + s + ds)] = 03B22dtds + 03B2d03B4(s)dt - 03B22dtds
= 03B2d03B4(s)dt.

5.2 Construction of the spectral density estimator

Definition 5.1 The sample process Z is defined by

Z(A) = X (t)N(dt) _ 03A3X(k)1A(k) = 03A3 X(Tk), VA E BQp.
A kEZ TkEA
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This definition may be written, too: Z(t + dt) = X (t)N(t + dt).
Since X and N are independent, we get

E = IE[X(t)N(dt)] _ IE [X(t)] IE [N(dt)] = o

and 
,

cov [Z(t + dt), Z(t + s + ds)] = E (X (t)X (t + s)] lE [N(t + dt)N(t + s + ds)]
= c2(s)[03B22ds + 03B2d03B4(s)]dt.

Thus the increment process Z is second order stationary.
Since c2 E we define the measure BZ, for all B element of by:

03B8z(B) = B03B8Z(dt) = Bc2(u) [03B22dt + 03B2d03B4(t)],

then

03B8Z(dt) = C2(t) [03B22dt + 03B2d03B4(t)] .

Defining the measure 03B8N, for every B in BQp by: = IB [,B2du + 03B2d03B4(u)]
(under differential form = [,82dt + ~id~(t)~ ), then we have

03B8Z(B) - c2(u)03B2d03B4(u) + / c2(u)03B22duB B

= + 
B

The Haar measure being a-finite on Qp, then the measures 03B8N and 03B8Z are also a-finite.
The spectral density f Z associated to the process Z is defined, for A E Qp by:

fZ(03BB) = Qp e-2i03C0t03BB03B8Z(dt).
By definition of 03B8Z, we get

fZ(03BB) = 03B2 Qp e-2i03C003BBtc2(0)d03B4(t) + 03B22 Qp e-2i03C003BBtc2(t)dt
= 03B2c2(0) + 03B22fX(03BB). (15)

In order to estimate fX, we write from the formula (15): = 1/03B22 [fX(03BB) - 03B2c2(0)].
So we have to estimate c2(o) and fz.

1. Estimation of 2 (0).
We propose the estimator: = Un X2(t)N(dt).

2. Estimation 

First we introduce a sequence (Mn)neN of rational numbers, a p-adic kernel W, like in
section 2.1, formula (11) ; and the same spectral window, i.e. 
Let dZ,n(03BB) be the finite Fourier transform associated to the observations Z(t), t E Un,
i.e.

dZ,n(03BB) = Une-2i03C003BBtZ(dt) = Un e-2i03C003BBtX(t)N(dt).
The associated periodogram is:

IZ,n(03BB) = 1 pn |dZ,n(03BB)|2 = 1 pn |Un e-2i03C003BBtX(t)N(dt)|2 .

We estimate f z(a) by: f z,~(~) = fQp u) Iz,n (u)du.
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Then we propose the following estimator for fx (X) :

X,n(03BB) = 1 03B22 [Z,n(03BB) - 03B22,n(0)] .

5.3 Asymptotic behaviour of the estimators

The asymptotic behaviour of jx,n (X) will be established from the properties of the estimators
and &~,n(0).

Our hypothesis are the following:

H3) c2 6 L1(Qp) H4) c2 6 L2(Qp)
H5) J7W e L1(Qp) H6) c4(u, u, u) G L1(Qp)
H7) c4 (u, 0, 0) 6 L1(Qp) H8) c4 (u, u, 0) 6 L1(Qp)
H9) c4(u, V, 0) 6 L1(Q2p) H10) c4(u, ", ") 6 L1(Q2p)
H11) c4 (u, U + ", °) 6 L1(Q2p) H12) c4(u, U + V, W) 6 L1(Q3p).

Proposition 5,i under H4) and H8), 2,n(0) is unbiased and consistent.

Proof of proposition 5. I.

a. As, X and N are independent,

IE[c,n(0)] = 1 03B2pn Un IE[X2(t)N(dt)] = 1 03B2pn c2(0) Un03B2dt = c2(0).

Then, 2,n (0) is unbiased.

b. &2,n (0) is consistent. Indeed:

p2n03B22var[2,n(0)] = UnUn IE [X2(t)X2(s)N(dt)N(ds)] - p2n03B22c22(0)
= U Un IE [X2(t)X2(s)] IE [N(dt)N(ds)] - p2n03B22c22(0).

As x and N are independent, with s = t + u, we get

p2n03B22var[2,n(0)] = Un Un [c4(0, u, u) + 2c22(u) + c22(0)] [03B22du + 03B2d03B4(u)]dt - p2n03B22c22(0)

= 03B22pn Unc4(0,u,u)du+03B2pnc4(0,0,0) + 203B22pn Unc22(u)du + 303B2pnc22(0).
From H4) and H8), We deduce: var[2,n(0)] = O(1/pn).

Proposition 5.2 under H3) - H12), Z,n(03BB) is asymptotically unbiased and consistent.

Proof of proposition 5.2.

a. Z,n(03BB) is asymptotically unbiased.
with change of variate v = Mn03BB - Mnu, such that: dv = |Mn|p du = we get

IE[Z,n(03BB)] = IE [Qp W(Mn03BB - Mnu)IZ,n(u)du]
= Qp W(v)IE (Iz,nx - h>] n dv.



36

As, Qp W(v)dv = I, we obtain
~~~~’~~~~~ ~~~~~ ~~ ~ ~~~~~l ~"’

Let gn,03BB(v) " W(V)E (Iz,n (A - - fz(X)] . With w = u - t, we can write
z - " )) = 1 pn / / IE[Z(dt)Z(du)]

= 03B22 pn / / c2(t - u)dudt
p~ un un

+ § / / u)d03B4t(u)dt
p un Un

= 
03B22 pn / ( / e-2i03C0(03BB-v/Mn)wc2(w)dw] dt + c2(0)03B2 pn {Un}

= 03B22 Un e-2i03C0(03BB-v/Mn)wc2(w)dw + c2(0)03B2. (16)

From dominated convergence theorem, and lim v/Mn = 0 in Qp, we obtain:

lim n~+~ E (Iz,n (X - j n )) = 03B2c2(0) + 03B22fx(03BB) = fZ(03BB).
Thus lim n~~ gn,03BB(v) = 0. Moreover, from (16) , and since |fZ(03BB)|  03B22|c2|L1(Qp)+|c2(0)/03B2|,
we have

|gn,03BB (v) | ~ W(v)[|c2(0) |03B22 + 03B2|c2|L1(Qp) + 03B22|c2|L1(Qp) + |c2(0) 03B2 |]. (17)

The right hand side of ( 17) is integrable, since c2 and Ware; from dominated conver-
gence theorem, we get the asymptotic unbiasedness of Z,n.

b. With the change of variates v = X - u, we get

Z,n(03BB)
= k / / / Wn(03BB - u) e-2i03C0u(t-s) X(t)X(s)N(t + dt)N(s + ds)du

p Qp u~ un
= 1 pn Un Un [Qp Wn(v) e2i03C0v(t-s)dv] e-2i03C003BB(t-s) X(t)X(s)N(t + dt)N(s + ds),

and, with u = Mnv, which implies dv = Mndu, we can write

/ = / w(u) e2iN(U((t-S)/Mn)) = ~7w ((t - ,

Q~ M~ Q~
Let Vn(u) = FW (u/Mn). We obtain

Z,n(03BB) = 1/pn UnUn Vn(t - S) X(t)X(s)N(t + dt)N(s + ds).
Let Xi and A2 be elements of Qp. We have from the independence of X and N:

p2ncov [Z,n(03BB1), Z,n(03BB2)]
- / / / U4n Vn(t _ v) e-2i03C003BB1(t-s)-03BB2(u-v)U4n Vn(t-s)Vn(u-v) e-2i03C0(03BB1(t-s)-03BB2(u-v)

x [E [X(s)X(t)X(u)X(v)] E [N(ds)N(dt)N(du)N(dv)]
- E lX (3>X (t>I E lN(d8)N(dt>I E lX (u)X(v)I E [N(du)N(dv)]].
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As,

lE (X (s)X (t)X (u)X (v)j - C4(t - s, n - s, v - S) + c2(t - s)c2(u - v)
+c2(t ~’ v)c2{s - v) + c2(t - v)c2(s - u)~
4

we have, p2ncov [Z,n(03BB1),Z,n(03BB2)] = 03A3 Ji, where
i=1

J1 = / / / U4n c2 (t - s)c2(u - v)Vn(t - s)Vn(u - u) e-2i03C003BB1(t-s)-03BB2(u-v)

x (~ (N(ds)N(dt)N(du)N(dv)j - E (N(ds)N(dt)j E (N(du)N(dv)j) ,
J2 = / / / U4n c2(t - v)c2(s - u)Vn(t - s)Vn(u - v)

x e~~z~r~at (~-s)-~2(~.-~,)5 ~ [N(ds)N(dt)N(du)N(dv)] ,

J3 = / / / U4n c2(t - u)c2(s - v)Vn(t - s)Vn(u - v)

x ,

J4 = / / / 
x [N(ds)N(dt)N(du)N(dv)] .

From [10], we get the following formulas : :

~ [N(ds)N(dt)N(du)N(dv)]
= 03B2d03B4t(s)d03B4s(u)d03B4s(v)dt + 03B22d03B4t(v)d03B4v(u)dtds + 03B22d03B4u(s)d03B4s(v)dtdu
+03B22d03B4t(s)d03B4s(u)dtdv + 03B22d03B4t(s)d03B4s(v)dtdu + 03B22d03B4t(u)d03B4s(v)dsdt
+ 03B22d03B4t(v)d03B4s(u)dsdt + 03B22d03B4t(s)d03B4v(u)dtdv + 03B23d03B4s(v)dsdtdu
+ 03B23d03B4s(u)dsdtdv + 03B23d03B4u(v)dsdtdu + 03B23d03B4t(s)dtdudv
+ 03B23d03B4t(v)dsdtdu + 03B23d03B4t(u)dsdtdv + 03B24dsdtdudv

and

E [N(ds)N(dt)] E [N(du)N(dv)]
+ 03B22d03B4t(s)d03B4v(u)dtds + 03B22d03B4u(s)d03B4s(v)dtdu

+ 03B22d03B4t(s)d03B4s(u)dtdv + 03B22d03B4t(s)d03B4s(v)dtdu + 03B22d03B4t(u)d03B4s(v)dsdt
+ 03B22d03B4t(v)d03B4s(u)dsdt + 03B23d03B4s(v)dsdtdu + 03B23d03B4s(u)dsdtdv
+ 03B23d03B4t(v)dsdtdu + 03B23d03B4t(u)dsdtdv.

Remark 5.1 Without any supplementary condition on X, we get
J1,1 .- J2,1 = J3,1 = J4,1 = O(pn).

Calculating Ji for i =1, ... , 4 we obtain the following lemmas.

Lemma 5.1

i) Under ~3)
= = 2, ... ,11,
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J2,j = O(pn) for ,? _ 2, 3, 4, 5, 6, ?, 9,10,1 I, i 2, i 3,14,
J3,j = O(pn) jor j = 2, 3, 4, 5, 9,10,11,12,13.

ii) Under 3~3) and ~l4),
J2,8 = J2,15 = J3,15 = J3,8 = O(pn/Mn).

Proof of lemma 5.1.

i) We give a detailed proof for the result: J1,3 = 0(pn), the other results follow analo-
gously. First, by definition, we get

J1,3 - 03B22 Un Un Un Un c2(t - s)c2(v - v)Vn(t - s)Vn(u 
-- v)

x 

= 03B22c2(0)Vn(0) r ( c2(t - u)Vn(t - u) e-2i03C003BB1(t-u)dtdu.Un Un
with x = {t - from Fubini’s theorem and definition of Vn, we get

|J1,3| ~ 03B22|c2(0)|FW(0) p n n Qp|c2(xMn)|FW(x)dx.
Let y = xMn. Then as FW is bounded, |J1,3|  const Qp |c2(y)| dy.
From ~l3), we get the result.

ii) We are going to prove: J~,15 = 0{pn/Mn).
First, we can write

J2,15 = 03B24 U" Un Un Un c2(t - v)c2(s - u)Vn(t - s)Vn(u ‘ v)
x e-2i03C003BB1(t-s)-03BB2(u-v)dsdtdudv.

Successively, let x = t - S; y = s - v + xMn; z = u-v Mn; and v = s - u.
By Fubini’s theorem and Vn being bounded, we get 

n

|J2,15| ~ const pn Mn |c2|L1(Qp)|FW|L1(Qp)|c2(v)| dv.
hl~ Qp

Thus, ~l3) and ~~) imply: J2,1~ = D( p n ).
Lemma 5.2

i) Under H4), J3,7 = J3,8 = ii) Under H5), J3,14 = 0(pn/Mn).
iai) Under H6), J4,2 = J4,6 = O(pn). iv) Under H7), J4,3 = J4,4 = J4,5 = O(pn).
v) Under H8), J4,7 = J4,8 = O(pn). va) Under H9), J4,9 = J4,10 = O(pn).
vii) Under H10), J4,11 = J4,13 = viii) Under H11), J4,12 = O(pn).
ix) Under H12), J4,15 = O(pn).

Proof. We only prove i) and iii); the other results are proved analogously.
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I) We can write

J3,7 = 03B22 Un Un Un Un c2(t - u)c2(s - v)Vn(t - s)Vn(u - v)

 e-2i03C003BB1(t-s)-03BB2(u-v))d03B4t(v)d03B4s(u)dsdt

= 03B22 Un Un c2(t - s)2Vn(t - s)2 e-2i03C0(03BB1+03BB2)(t-s)dtds.

From z = (t - , y = xMn , we get
|J3,7|  03B22pn / ) |c2(xMn)2|FW(x)2 dx MnQ~ n

~ n ~ 
i

 03B22 pn |FW|2L~(Qp) |c2|2L2(Qp),

thus, J3,7 = O(pn) by H2).

ii) We can write:

J4,2 = 03B22 Un Un Un Un c4(t - s, u - s, v - s)Vn(t - s)Vn(u - v)

x e-2i03C003BB1(t-s)-03BB(u-v)>d03B4t(v)d03B4v(u)dtds
= 03B22 Un Un c4(t - s, t - s, t - s)Vn(t - s)FW(0) e-2i03C003BB1(t-s)dtds,

with t - s/Mn = z and u = xMn, we obtain

|J4,2| [  const 03B22 Un [Qp |c4(xMn, xMn, xMn)|FW(x)dx] ds
 const 03B22pn |c4(u, u, u) |du.Q~

Then, J4,2 = comes from H6).
We come back to the proof of proposition 5.2.

From lemmas 5.I and 5.2, we get

J = 03A3 Ji = O(pn) + O( pn Mp) + O(1 M) = O( pn M),
;_~ 

n n n

and thus p2 ncov [Z,n(03BB1), Z,n(03BB2)] = O( n ),

Which implies, cov liz,n xi > , /z,n A2>1 = 
So, lim n~+~ cov [Z, n(03BB1), Z, n (03BB2)] = 0, for every 03BB1, 03BB2 e Qp..

n-+m 
’ ’

This proves that Z,n is consistent.

Our main result in this section is the following:

Theorem 5.I Under the hypothesis of propositions 5. I and 5.2, jx,n(A) is asymptotically
unbiased and consistent.
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Proof of theorem 5.1 . .

a) A.n(~) is asymptotically unbiased.
Indeed, ~ [A..(A)j = - [~ [/~.(A)] - /~(0)]. .
Under conditions of lemma 5.1, as is asymptotically unbiased, then

lim n~+~ IE[X,n(03BB)] = [Z(03BB) - 03B2c2(0)] = fX(03BB).

b) /x.~(~) is consistent. 
’

Let Ai and ~2 be elements of Qp. We have

cov[/~(Ai),/~(A2)] ] = 2014cov[/~(Ai),/~(A2)]-~cov[/~(Ai),c~(0)] ]
[/~(A2),c~(0)] + .

For t = 1,2, we can write |cov [Z,n(03BBi),2,n(0)]|  var [Z,n(03BBi)] var [2,n(0)].
The two propositions 5.1, 5.2 imply:

cov ~(A,)] ] = O(~) + O(~) + O(~) >
The theorem is then proved.

Corollary 5.1 Under H3)-H12), X,n(03BB) converges to fX(03BB) in quadratic mean as n - +~.

Proof of corollary 5.1 . . We know that = bias2(X,n(03BB)) + var{X,n(03BB)}.
Then, from theorem 5.1, we obtain as n -~ +00.

This implies mean quadratic convergence.

6 Discussion and extensions

This paper has been concerned with the case of real-valued process. Extensions to the

complex-valued and r-vector valued cases are immediate. We think that, it will be very

important to treat the case of p-adic valued process, and afterward, observe the almost sure

convergence and give the asymptotic distributions of the estimates.
As the convergence rate of the estimators depends on the sequence (Mn)n~N, we think that
the choice of this sequence is crucial, and methods like Cross-Validation procedure’s (cf. [11]
and [5]), will solve this problem.
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