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Wick product and stochastic partial differential

equations with Poisson measure

A. Dermoune

Ann. Math. Blaise Pascal, Vol. 4, N° 2, 1997, pp.11-25

Universite Du Maine, Equipe de Statistique et Processus
’ 

BP 535, 72017 Le Mans Cedex, France.

Abstract. We establish the existence and uniqueness of the solution for

one conservation equation perturbed by a Poisson noise and when the initial

value is afhne. We give also the existence and uniqueness of the solution for

a multidimensional linear Skorohod stochastic differential equation driven by a

Poisson measure.

Resume. En utilisant la theorie de noyaux et symboles sur l’espace de Fock,

nous obtenons un resultat d’existence et d’unicité de la solution a une equation

de conservation perturbee par un bruit Poissonien et lorsque la condition initiale

est affine. Nous donnons aussi un resultat d’existence et d’unicite de la solution

a une equation differentielle stochastique lineaire multidimensionnelle au sens

de Skorohod et perturbee par un bruit Poissonien.
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1 Introduction

In stochastic analysis on the Wiener space the Wick product is natural because

it is implicit in the Ito integral (and, more generally, in the Skorohod integral

if the integrand is anticipating). The Skorohod integral coincides with the Ito

integral if the integrand is non-anticipating see e.g. Nualart, Pardoux (1988).

Today the Wick product and the Skorohod integral are important in the study

of stochastic ordinary and partial differential equations see e.g. Nualart, Zakai

(1989), Holden, Lindstrom, Oksendal, Uboe, Zhang (1994). In the Poisson case

some works were also done on this subject Dermoune, Kree, Wu (1988), Carlen,

Pardoux (1988), Nualart, Vives (1990), Dermoune (1995). Here we study one

stochastic partial differential equation (SPDE) and one stochastic differential

equation (SDE) in order to show that the Wick product also arrives naturally

in the Poisson case. The first SPDE is the following conservation equation

perturbed by a Poisson measure (see e.g. Whitham (1974)) :

~t( u(x,t)-q(( 0,t])) +~x( au(x,t)2 +bu(x,t)) =0 x ~ IR, t > 0, ( 1)

where q(t) = ~s bt; (t) - dt is the centered Poisson measure on 7R+, and a, bare

two random variables on Poisson space. 8t, as denote the partial derivatives with

respect to t and z. Since t -~ q( t) is a distribution and not a smooth function,

we interpret the equation (1) in the distribution sense, and the products

(au(z, t) are interpreted as the Wick product of generalized random

variables. The second SDE concerns the following problem : Let E be a locally
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compact set, B be the Borel u-field over [0, 1] x E, and v be a positive Radon

measure on ([0,1] x E,8) such that v({(t, x)}) = 0, d(t, x) E (0,1~ x E. We

denote by q the centered Poisson random measure on [0,1] x E with intensity v,

and Ft, 0  t  1, is the natural filtration of q. Consider the SDE of the form

Xt = Xo + + / B~X~ds, 0  t  1, (2)

where Xo is a d-dimensional random vector, A(s, x) and Bs are d x d deter-

ministic matrices. The latter SDE was studied by Buckdahn, Nualart (1994),

when the Wiener noise takes the place of the Poisson measure q. If Xo is not

a deterministic vector then the process (Xs_ ) is anticipating, and the inte-

gral fo fE A(s, x)Xs-dq(s, x) can not be defined in Itô’s sense. Nevertheless if

A E L~((0,1) x E, v), and B E L1((0,1~, dt) then this integral can be interpreted

as a pathwise integral with respect to q, and the equation (2) has a unique

pathwise solution

Xt = [Id + ~01...tnt (~EA(t1, x1)dq(t1,x1) + B(t1)dt1)
... Xo,

where Id is the identity of d x d matrices. But if A E L~((0,1) x E, v) then the

equation (2) has neither pathwise interpretation nor Ito’s interpretation. In this

case we propose to interpret the stochastic integral fo fE A(s, x)Xs-dq(s, x) in
the Skorohod sense given by Dermoune, Kree, Wu (1988), Nualart, Vives (1990),

and to study the equation (2) in this sense. Note that if X,- is non-anticipating

then the Skorohod integral of (A(s, x)Xs_) coincides with its Itô’s integral. But
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if (Xa_) is anticipating and A E L2({0,1] x E, v) (~ L1({0,1~ x E, v), then the

pathwise and the Skorohod interpretations do not coincide.

The plan and the main results of this work are the following : in the section 2

we recall some definitions and results Kree (1986), Dermoune, Kree, Wu (1988),

Nualart, Vives (1990), which will be used in the section 3. The combined

characteristics and symbol method is used in the first part of the section 3 to

establish the existence and the uniqueness of the solution for the SPDE (1) when

the initial value is affine. In the second part of section 3 we show that nearly

all the results of Buckdahn, Nualart (1994) rest valid for the SDE (2) and we

emphasize some differences.

2 Differential calculus relative to the Poisson

measure

Let X be a locally compact set, B be the Borel u-field over X , and  be a positive

Radon measure on (X,,~) such that ~(~x}) = 0, dx EX. Let U be a subspace

of which is dense in The set S~ :~ Mp(X)

is the space of Radon point measures on X. A generic element of U is denoted

by z, and a generic element of 03A9 is denoted by w. The duality between Q and

U is denoted by  j,2r >. We have the triplet U ~ H = L2(X,,~, ~ S~.

The scalar product over H is denoted by  ., . >, and the norm by ( ~ ~ ~ 2. The

triplet (03A9, .P, P) is the probability space of the Poisson measure on (X, B, ).
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We denote by L2(~) the space of the square integrable random variables with

respect to P, and E denotes the expectation. The centered Poisson measure q

is defined by q(z) = > - fX It follows from the characteristic

functions of P that jE* [|q(z)|2] = ~z~22. From this we see that if z E H, and we

choose z" E U such that zn --~ z in H then q(z) := limn-+oo q(zn) in H and the

limit is independent of the choice of {zn ~.

Wiener-Itô isomorphism. The symmetric Fock space over H is defined by

Fock(H) = ~~k=0Hok, Ho0 = R and for k E IN*, the space Hok is the set of

the class of square integrable functions with respect to ~®k, which are symmet-

ric with respect to the k parameters x1, ..., xx. We will denote the norm over

also by ~~ ~ The scalar product  ., . > over Fock(H) is defined by

 (fk), (9k) >=  fk, gk >. For h E H, we denote by eh the ex-

ponential vector, element of Fock(H), defined by eh = ; h~° : = 1.

For k E IN* and for fk E the random variable Ik(fk) is the symmet-

ric multiple integral with respect to q defined in Surgailis (1984) and denoted

formally by Ik(fk) = fXk fk(x1, ..., xk) dq(xl)...dq(xk). The random variables

Fx = k E ~V are such that

IE[FkFj ] = 0, for j ~ k. (3)

The Wiener-Ito expansion for the centered Poisson measure q means the iso-

morphism I from Fock(H) into L~(Q) defined by ( fk) E Fock(H) --~ F =

Ik(fk). For z E H n L1(X, p), the image E(z) of the exponential vector



16

e~ by the Wiener-Ito isomorphism I is given by

:= 7(~)(~) = e- ~ J][ (l + (4)
j

where w = 03A3n(03C9)j=1 03B4xj. We can see from (3) that for all fix E z E H,

_ fk,z~k > . (5)

Distributions on (03A9, F, P). Let S(U) be the space of all tensors over

U. It is well known that the set S(U)* of linear forms on S(U) is the space of

formal series on U, and we have the triplet

S(U) -. Fock(H) - S(U)* (6)

We define the duality between S(U) and S(U)* as an extension of the scalar

product over Fock(H), i.e. for all z E U, F = ~~ Fn E S(U)*,  F, >_

n!Fn(z). From (6), an element of Fock(H) is interpreted as a formal series on

U defined by z E H -~ F, ex >:= F(z).

Generalized random variables. For simplicity we put = The image

of S(U) by the isometry I is the space P(O) spanned by k E ~V, and

z E U. Moreover, if z E LP(X) then E see

proposition 3.1 in Surgailis (1984). The set P(Q)* of linear forms on P(Q) is

called the set of generalized random variables. From that we obtain the triplet

~ LZ(~) ~ P(f~)*. (7)

The isomorphism 1 from Fock(H) into L2(03A9) is such that I (S(U)) = P(03A9).

Thus the transpose I*, of the restriction of I from S(U) into P(Q), defines
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an isomorphism from P(S2)* into S(U)*. The Wiener-Ito expansion I is ex-

tended to an isomorphism between the triplets (6) and (7), and we denote it

also by l. For A > 0 the space Ha, defined by F = 

=  oo, is a subspace of P(03A9)*.

Gradient operator and divergence operator. In the triplet (6) the gradient

operator D is defined from S(U) to S(U)®U by Dzn = b’z E U, n E

The transpose DT of D defines the divergence operator from (S(U) @ U)*

to S(U)*, and we have for all F E (S(U) ® U)* and z E U the following equality

in the formal series sense ~~ a n,  zn >_ ~~° o n,  F, Dx" >. .

Skorohod integral with respect to the centered Poisson measure. Us-

ing the isomorphism I between the triplets (6) and (7) we define the gradient

operator V on and the divergence operator ~ on ® U)*. An element

of (P(S~) ® U)* is called a generalized stochastic process. For F E ® U)*

we have the generalized integration by parts formula  >=

 F, ~In(zn) >, where  ., . > denotes the duality between P(03A9)* and P(03A9). If

X = [0,1] x E then the It6 integral with respect to the centered Poisson measure

q is extended by the divergence operator 6, Dermoune, Kree, Wu (1988).

Wick product of two generalized random variables. A generalized ran-

dom variable F E P(SI)* is characterized by its symbol z E U --> F(z) =

 F, In(zn) >. . If F, G E P(SI)* then the Wick product FoG of F and

G is the element of P(f2)*, defined by F o G(z) = F(z)G(z), V z E U.

Example, i) Let x EX, , the generalized random variable q( x) is defined by
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the symbol z --~ q(z)(z) = z(x). If F is a generalized random variable then the

Wick product F o q(x) has the symbol z ~ F(z)z(x).

ii) For n E IN*, and F E P(03A9)*, we denote by the Wick product F o ... o F

n-times. If J(t) = ~n antn is an analytic function, then means the sum

03A3n anFn .

3 The main results

Here U = C~ (~+) is the set of continuously differentiable functions from R+

to IR, with compact support, and C1(IR x IR+, P(03A9)*) is the set of functions

(x, t) ~ u(x,t) E P(03A9)* which have the symbol u(x, t, z) continuously differ-

entiable with respect to (x, t) ~ IR x IR+. We suppose that a, b E P(SI)*, and

we seek solution of the SPDE (1) in the space C1(IR x IR+, P(03A9)*), with initial

value x --~ in If u is such a solution then its symbol

u( x, t, z) is solution of the deterministic following quasi-linear PDE :

~tu(x, t, z) + t, z) + t, z) = z(t), (8)

the initial value x -+ u(x, 0, z) belongs to The system of characteristic

equations, for the PDE (8), see e.g. Whitham (1974), are

dX dt 
= a(z)V + b( z) , 

dV dt 
= z( t) . (9)

Under the initial conditions

~(=0)=/, v(t = 0) = 0, x)
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the solution of (9) is given by

t

X(y, t, z) = a(z) (t - s)z(s)ds + (a(z)u(y, o, z) + b(z))t + y, (10)0
and

t

V(y, t, z) = u(y, o, x) + x(s)ds. (I1)0
Thus, the solution u(ac, t, x) of (8) may be described in two different ways: on

the one hand we may consider it at a fixed point of space, at time t. This is

the so-called Eulerian description. On the other hand, we may follow the wave

evolution along the characteristic X(y, t, x), defined by the initial coordinate

y. This description is a Lagrangian one, with y the Lagrangian coordinate. To

pass from the Lagrangian approach to the Eulerian one it is necessary to find an

initial Lagrangian coordinate t) such that x = X(y(z, t), t, x). From (10),

( 11 ) we have

u(x, t, x) = u(y, o, x) + z(s)ds, (12)

and

t t

y = z - a(z) (t - s)z(s)ds - ta(z)V(y, t, z) + ta(z) z(s)ds - tb(z).0 0
If the initial value is affine then we have the following result.

Proposition 3.1.Let the initial value u(y, 0) = ay + 03B2, where a, 03B2 E P(03A9)*.

Suppose that a(o)a(o) > 0, then z --~ (a(z)a(x)t + 1)-1 is the symbol of a

generalized random variable denoted by A(a, a, t), and the SPDE ~I) has a
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unique solution in C~(1R x 1R+, P(~)*) given by

u(x,t)-A(a,a,t)o (x03B1-t03B1~b+03B1~03B1~ ~t0 sdq(s)+03B2+q((0,t])).

In partic ular if a, a are deterministic and such that aa > 0 then

t

u(x, t) = (aat +1)-1(x03B1 - tab + aa % sdq(s) + 03B2 + q((0, t]).
But if aa  0 then this solution is only defined for 0  t  -a’la’1. .

Proof. First, it is well known that a series z --~ S(z), such that S(0) ~ 0, is

invertible in S(U)* . From that and from the condition a(o)a(Q) > 0 we conclude

that for all t E IR+, z ~ (a(z)a(x)t + 1)‘I belongs to S(U)*. It follows that

x --~ (a(z)a(x)t + I)’1 is the symbol of a generalized random variable A(a, a, t). .

Under the hypothesi,s on the initial value and from (12) we have

t

u(z, t, z) = (ta(z)a(x) + 1)‘1 (x03B1 - tb(z)03B1(z) + a(z)a(z) % sz(s)ds+
0

Q(z) + % .

It is easy to see from (5) that ~t0 sz(s)ds, ~t0 z(s)ds are respectively the symbol of
the random variables ~o sdq(s) and q((o, t~). From that and from the definition
of the Wick product we have the result.

Example, Suppose that a is deterministic, a ~ q((O,T’~) and T > 0. The

symbol A(a, a, t, z) of the generalized random variable A(a, a, t) is given by
~y~ -1 

~ T

1 + x(s)ds)ta = 03A3(-03B1t)n(~ z(s)ds)n.~ d ~ n~0 a
It is easy to prove that ( is the symbol of In(1~n(0,T]). From that we

have A(a, a, t) 03A3~n=0(-t03B1)nIn(1~n(0,T]), and does not belong to U03BB>0 Ha.
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Now we study the SDE (2). We denote by Md the space of d x d matrices,

H = L2(~0, l~ x E, $, v) and U is a dense subset of H. The set Hf is the

space spanned by In(fn),n E IN, fn E and are the

corresponding spaces of JRd-valued random variables (Hx is defined in paragraph

generalized random variable section 2). Let A E H ® Md, B E L~ ((0,1~; dt) ®

Md and Xo be a generalized random vector such that the formal series Xo(z)

converges for all z E U. The linear stochastic differential equation

Xt = Xo + it + ~t0BsXsds
has a unique solution in (P(03A9) ® U)* given by Xt = 03BEt o Xo, where 03BE is the

solution of the linear stochastic differential equation

03BEt = Id + ~t0~EA(s,x)03BEs-dq(s,x) + ~t0Bs03BEsds.
Let us suppose that for all s, t E [0, 1], z E E the matrices A(s, x), B=, Bs

commute, under this hypothesis the solution Xt of the SDE (2) is given by

expel; Bads) (£t(A) o Xo), where = £(A1(o,tl). We can express ~t(A)~X0

as a product where T-At is a linear transformation on Hf(IRd).

The proof of these results and nearly all the results in the Wiener case go exactly

as in Buckdahn, Nualart (1994), but there is one difference, due to the fact that

the product formula £(z)£(z’) is not the same. In the Poisson space we have

£(z)£(z’) = exp(~ + z’ + zz’). (13)

The following proposition shows that in the Poisson case we obtain an additional

term for the operator T-At.



22

Proposition 3.2. If (Id + e L" ([0, 1] x E,v) © Md then for aJl F e

Hf(IRd), £t(A) o F = £i (A) . The linear operator T-At is defined for afl

m e lV, fm e by

m

= 03A3(mk)(-1)kIm-k ( ((Id + fm >) .
k=o 

Proof. Let z e U, from (13), (5) we have

E [( £t (A) o Im ( fm ) )£(z)] = exp  fm , z"’ >

and,

E I£t(A) *

exp(~t0~E z(s, z)A(s, z)dv(s, z))E [£( A1[0,t[ + z(Id + A1[0,t[))T-At(Im(fm))] .

We want to get for aV z e U

E ( £( A1[0,t[ + z(Id + Aljo,ij) ) T-At(Im(fm))] ] = fm,zm > .

By putting Z = A1[0,t[ + z( Id + A1[0,t[) we obtain

El £(z) I * (((z - A1[0,t[)(Id + A1[0,t[)-1)~m, fm
m

* 03A3(mk)(-1)k(A1[0,t[)~k © ((Id + )~m fm )
k=0

By identification we obtain the expression of .

Example. If f, A e H such that (I + e L°’ ([0, 1] X E, v), then

T-At (I1 (f))= I1 ((1+ A1[0,t])-1f)- ~t0 ~E A(s,x) 1+(A(s,x) f(s, x)dv(s, x).
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= E, ~,~) ~ ~ then (~(~)) (~) = (~(~))’ where =

It follows that contrary to the Wiener case

the transformation f~, and is only a linear operator on 

The operator T~ can be extend to but the estimate of its norm is

slightly different from the Wiener case.

Proposition 3.3. Let F e A > 0, and A  ~ 0 M~ such that

(7d + A)-1 6 L~([0,1] x E,03BD) 0 Md, then

(F)j~ ~ ’~!’2A!!(/.+~i~{)-~~ ’

Proof. Let F = 03A3Nn=0 In(fn) from the definition of T-At we have

N

n=0

2
N N

E~’~’ E~)(-~’"’  >

j=0 n=j 
~ ~ 

~

N N

’~ ~~
j=0 n=j

=2(nk)n! k!03BB2n (~A1[0,t[~22 03BB2)k 2n~((Id +A1[0,t[)-1)~nfn ~22.

Using the inequality

1 k!(~A1[0,t[~22 03BB2)k ~ exp(~A1[0,t[)~22 03BB2)
we obtain

~TAi(In(fn))~203BB ~
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