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From binomial expectations to the
Black-Scholes formula:

the main ideas.

I.P. van den Berg and F. Koudjeti

Ann. Math. Blaise Pascal, Vol. 4, N° 1, 1997 pp.93-101

Résumé

Nous montrons comment une variable aléatoire discrete sur un espace de

probabilité fini muni d’une distribution binomiale peut etre proche d’une vari-
able aléatoire continue, dans un sens qui respecte les espérances. Comme ap-
plication, nous approximerons la variable aléatoire d’un processus multiplicatif
discret par des exponentielles continues, et par consequent, nous dériverons
une formule donnant les valeurs des options qui généralisera la formule de
Black et Scholes.

Abstract

We show how a discrete random variable on a finite probability space
endowed with a binomial distribution may be close to a random variable on
the continuum, in a way which respects the expectation. As an application, we
approximate the random variables of a discrete multiplicative binomial process
by continuous exponentials, and thus derive an option pricing formula, which
contains the formula of Black and Scholes as a special case.

Keywords: Binomial distribution, standard normal distribution, expecta-
tion, Rieman-sums , shadow, Wiener walk, option

1 Introduction

We study continuous approximations of discrete expressions in the context of ele-
mentary probability theory and option pricing. The main result is a sort of extension
of the De Moivre-Laplace central limit theorem, and concerns the approximation of
the expectation of a random variable with respect to a binomial distribution by an
expectation with respect to the standard normal distribution.

Our study is motivated by the derivation of the Black-Scholes formula (see [?])
for the pricing of European call options. In [?], J. C. Cox, S. A. Ross and NI.
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presented an option pricing formula in the form of a discrete binomial expectation,
and then they showed that in the limit it converged to the Black-Scholes formula.

As a consequence of our main theorem we obtain a pricing formula for continuous
options, of which the Black-Scholes formula is a special case. Our derivation is both
more direct and more general than the derivation of Cox, Ross and Rubinstein: we
reduce their sum formula to a Riemann-sum of the Black-Scholes integral formula.
However, our setting is still their simple discrete pricing model, and thus avoids

entirely the complications of limits of stochastic processes, continuous stochastic
processes and measure theory. Instead, we apply nonstandard analysis, and following
N. G. Cutland, E. Kopp and W. Willinger [6], we assume that the time steps of the
discrete model are infinitesimal. With respect to their approach to option pricing,
we obtained a further simplification, by avoiding the transitions between a standard
and a nonstandard model, and Loeb-measure theory.

2 Notations and an informal presentation of the
main result

Let

BN,p(j)=( ) pj (1- p)N-j

be the jth binomial coemcient and put

N.p
03C3p = N.p(1-p)

xj = 
j - p 03C3p

Qp = . (2.I)
dzj = 

Notice that the Xj are "normalized" with respect to the probability distribution
BN,p(j~: their mean is 0 and their standard deviation equals 1. For large N we have
the well-known approximation

BN,p(j)~ 1 203C003C3p.e -()2/2 =

1 203C0.e -x2j/2dxj
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It may be expected that the approximation carries over to sums:

BN,p(i) ~ 1 203C0. e-x2i/2 dxi
Thus we sketched a derivation of the De Moivre-Laplace central limit theorem

BN,p(i) ~N()ij 

1 ’~’ 

9 /

where N is the normal distribution function given by

N(y) = e-x2/2dx. (2.2)

Our main result concerns expectations of the form

N

E(h) = 03A3 h(xi)BN,p(i) (2.3)
==o

where h is a discrete random variable defined on the xi’s.

We show that under a suitable condition the above reasoning can be extended
to this sum, leading to the approximations

h(xi)BN,p(i) ~ 1 203C0. h(xi)e-x2i/2dxi

~ 

1 203C0 h(x) .e-x2/2dx

where h is a continuous real function, closely related to h. Indeed we have the

following main result

Theorem 2.1 (Main Theorem). Let +oo, 0  p  1 and Qp be the proba-
bility space given by ( 2.I ) and endowed with the binomial distribution BN,p. Let
h : : Qp --~ R be a random variable of class S°, and of S-exponential order in +oo.
Then

E h ~ 1 2.4( ) J2; -00 (x).e-x=-x-/2dx (2 .4 )

The theorem transforms an expectation with respect to the binomial distribution
into an expectation with respect to the standard normal distribution. We remark
that the formal nonstandard proof is very similar to the observations above. See [3].
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3 Discrete arithmetic and geometric Brownian
motions

Our application concerns the approximation of the expectation of a random variable
with respect to a discrete geometric binomial process S(t, x). This process will be

. defined on an arithmetic binomial network. Let T > 0, N E N, and dt > 0 be such
that Ndt = T. . Then WT,dt is the network given by

r ~m,n ~ N, 0 m  n  N 1
andWT,dt = {(t,x) ~ [0,T]  IR and (3.5)

t = ndt, x = (-n + 2m)dt

We call dt the period of the network and

T = ~0, dt, 2dt, . , . Ndt = T } (3.6)

the time line of the network. Notice that WT)dt is the union of all trajectories
of the discrete arithmetic Brownian motion ( "Wiener walk" ) on the time line T.
Sometimes we simply write WT instead of WT,dt. We write WT(t) for the vertical
sections of the network; they correspond to the values reached at time t by the sample
paths of the discrete arithmetic Brownian motion. Usually dt is infinitesimal, and
then we speak also of an infinitesimal arithmetic binomial network. Notice that
in this case the vertical step dt, though still infinitesimal is infinitely large with
respect to the horizontal step dt. See also Figure 1.

The process S(t, x), called the discrete geometric Brownian motion, is defined
by induction on WT. Let So > 0, ~ E R, a > 0 and 0  p  1. We put

S(0, 0) = So

and for t ~ T, t  T

( S(t + dt, x + dt) 
= S t x .(1 + dt + 03C3dt) (3.7)S(t + dt, x - dt) = S(t,x).(1 + dt - 03C3dt)

Then indeed the process is defined on WT,dt. ~Ve assume that the upper increment
of (3.7) has conditional probability p, and the lower increment has conditional prob-
ability 1- p, and that the increments are independent in time. Then S(t, x) is

properly defined as a stochastic process, and up to elementary transformations its
random variables S(t) = S(t, . ) have binomial distributions. In particular

Pr = So (I + pdt + 03C3dt)j 1 + pdt - 03C3dt)N-j} = BN,p(j). .
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Figure 1: An arithmetical binomial network for N = 5.

Note that if p = 1/2, then is the relative conditional expectation, or drif t rate of
the process and o~2 its relative conditional variance, or volatility.

4 Expectations and option pricing

In the economic context of option pricing, the process S(t, x) endowed with the
conditional probability p = ~ is considered as a model describing the possible move-
ments in time of the price of a share of some stock; trading is allowed at the times
~0, dt, 2dt, ... , T }, the drift rate of the stock price being equal to ~u, and its volatility
cr. Given a real-valued function f, the random variable f(S(T)) models a claim on
that share at the future time T. For instance, let K > 0. Then the claim

f(S(T)) = (S(T) - K)+

is called the European call option with exercise date T and with striking price K. It
models the payoff of a contract giving its owner the right to buy the share S at time
T for the price K.

In fact, we described a stochastic process which is suitable for the discrete option
pricing model of Cox, Ross and Rubinstein. They argue (see also [4]) that if r is the
risk-free rate of interest, the correct price Cdt of the claim f must be the Present
Value (henceforth P1g) of the expectation of the random variable j(S(T)) in a
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risk-neutral world (that is, the drift rate  of the process S must be r). Let then

Er f(S(T)) (4.8)

denote the expectation of the random variable f (S(T)) in a risk-neutral world. Then

Cdt = (4.9)

Recall that the present value in a risk-neutral world of an asset A equals its future
value A(T) at time T discounted at the risk-free rate of interest. That is to say

=.=1(T)/(1 + rdt)T/dt

If the process S(t, x) is in a risky world, (that is, its drift rate /z is different from r)
then it is always possible to adjust its conditional probability p to some value p(r)
which will change its drift rate to the prescribed risk-free rate of interest r E R.
Note that p(r) must satisfy

so

p(r) 2 + r 2Q~ dt (4.10)

The expectation ( 4.8 ) can be written in the form ( 2.3 ); Indeed, let p := p(r) and
define the affine transformation vp : 03A9p ~ WT(T) by

~~ (4.11)

Then we have

N

Erf(S(T)) 03BDp(xj))BN,p(j) (4.12)
j=o

Due to the rapid trading at stock markets, economists prefer a market model
with a continuous time line: the Black-Scholes market, for which the option price
Co becomes the Black-Scholes formula [4]. Now both the formulation of a Black-
Scholes market model, and a derivation of the Black-Scholes formula within such a
model are very intricate (see [8] for a survey). Instead, as argued by Cutland, Kopp
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and Willinger in [6], the Cox-Ross-Rubinstein model is a good alternative, provided
the period dt is infinitesimal: it expresses rapid trading, it has the simplicity of a
discrete model, and the option price Cdt almost does not depend on the length of dt.
In fact, the difference between Cdt and the Black-Scholes price Co is infinitesimal
under some natural conditions on the order of magnitude of the parameters involved.
Indeed, using straightforward approximations of vp

vp(x) ~ (
r - )

. T + xT

(see Lemma 2.1 of [3]), of S(T, x)

x) ~ S0 . e( -03C32/2)T+03C3x

(see Proposition 3.1 of [3]), and the main theorem, we prove that

(4.13)

The integral of the right-hand side of ( 4.13 ) is the Feynman-Kac formula
(see [8]). From this we obtain the Black-Scholes formula by a straightforward stan-
dard transformation.

Theorem 4.1 (Black-Scholes formula). . Let T > 0 be appreciable and WT be
an infinitesimal arithmetic binomial network. Let S(t, x) be the discrete geometric
Brownian motion on WT with appreciable initial value So > 0, limited drift rate
,u and appreciable volatility 03C32. Let r be a limited risk-free rate of interest. Let

Co = ° (PYr(Er f (S(T)))) be the shadow of the price of a the European call option
(S(T) - K)+ with striking price K and exercise date T. . Put

_ log(So/K) - (r - a2/2)T
x0 = 

03C3T

Then

C0 ~ So . N xo + 03C3T) - .N (xo). . (4.14)

Notice that ( 4.14 ) becomes an identity if So, K, and T are standard.

There are three main differences between the work of Cutland, Kopp and Will-
inger [6] and our approach in [3]. First to estimate S(T) they use a nonstandard
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Ito-calculus, while we use a "method of lines." Second to relate the discrete and the
continuous they use the Loeb-measure and Loeb-spaces [12], while we use Riemann-
sums, such as sketched above, and the external numbers of [10] and [11]. Third,
their setting is Robinsonian nonstandard analysis [16], while our setting is axiomat-
ic nonstandard analysis IST [14]. The main difference is that in the latter approach
the infinitesimals are included within the set of real numbers R, while in the former

approach they are included in a nonstandard extension of R.

The reader is referred to [7] or [13] for an introduction to the axiomatic nonstan-
dard analysis IST, to (1], (2] or [15] for an account of discrete stochastic processes
from a nonstandard point of view, to [8] or [9] for the classical option pricing theory,
and to [3] for formal proofs of our results.
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