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ON THE HYPERGROUPS WITH FOUR PROPER
PAIRS AND WITHOUT SCALARS 1

Mario De Salvo, Domenico Freni, Giovanni to Faro

Ann. Math. Blaise Pascal, Vol. 3, N° 2, 1996, pp.67-109

1. INTRODUCTION. -

We remember that a hypergroup H is a non-empty set equipped with a

hyperoperation such that the following two conditions are satisfied:

(1.1) V(x,y,z) E H3, (xy)z=x(yz) (associativity);
(1.2) Vx E H, Hx=xH=H (reproducibility).

Given a hypegroup H, we say that a pair (x,y j ~ H~ is proper, if the hyperproduct
x’y is not a singleton. Moreover an element x E H is said to be a left scalar (respect.
right scalar), if (x,y) (respect. ( y.x)) is not a proper pair. An element is called
scalar if it is at the same time left scalar and right scalar.

In [3], [4], [5], Freni, Gutan C., Gutan M. and Sureau Y. have determined all the
hypergroups which have at the most three proper pairs.

In the present paper the authors succeed in finding all the hypergroups with

exactly four proper pairs and without right scalars. The corresponding left case can be
c.btained for symmetry. (We remember that if the set of scalars is non-empty, then the

set of left scalars is equal to the set of right scalars (see [3]). This case is handled in

other papers from the same authors ).
Obviously we have that 3, 4}. otherwise there would exist at least one

scalar. 

In the rest H denotes a hypergroup without right scalars, P(H) the set of proper

IThis work is produced by support of the Italian M.C R.S.T. (quota 40%). No vision of this paper will be

published elsewhere.
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pairs of H and S the set of left scalars of H. Besides M = H~S indicates the

complement of S in H and U means the set of left scalar identities (the elements a E H

such that 

If ) H j = 2 , we obtain only the total hypergroup of size two.
If |H| ~ {3,4}, then we have to consider two cases :

(I) S =1 ; (II) 

2. SOME PRELIMINARY RESULTS. -

In this section, H will denote a hypergroup (finite or infinite).
Every element a E S defines a map â:H~H such that ~ x ~ H, â(x) = a.x. This map is
clearly surjective, in consequence of reproducibility.

We prove now : .

(2.1) PROPOSITION.- (i) and 

(ii) If a is injective, then a S = S and a. M = M .

Proof.- (i) Let b : S. We have ~ x ~ H, |a.b.x 1 =1 and so a . beS. This proves
that a . S ~ S and consequently a . M.

(ii) Let a injective. Now, such that b ~ x ; [ > 1, whence > 1. It

follows that a . b ‘ M and so a . M ~ M. For (i), we may write a . M = M and thus a . S = S
Q

As an immediate consequence we obtain the 

(2.2) COROLLARY.- S is a subsemigroup of H.

We demonstrate now the

(2.3) PROPOSITION.- V a e H, a e U if and only if a E S and 3 b E S such that a. b = b.
Proof.- If the implication is trivial. Conversely, ~ x ~ H and ~ b ~ S,  y ~ H

such that x = b . y. It follows that x -: H. This completes the

proof.
0
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We go on with the :

(2.4) PROPOSITION.- If S is finite, then V c E S, the map c defines a permutation of H
of finite order.

Proof.- Certainly there exist an integer n > 1 and an element bE S such that

en . b = b and so , for (2.3), cn E U and consequently c is injective.
. 

Q

From (ii) of (2.1) and (2.4), it follows that :

(2.5) COROLLARY.- If S or M is finite, then da E S, a . S = S and a . M = M.

(2.6) COROLLARY.- If S is finite, then Vc E S, 3 n > 1 such that cn E U.

Now; we prove the following :

(2.7) PROPOSITION.- Let a ~ U, b ~ U, c ~ H such that c . a = b, then ceU.This

means that ~ c ~ S, c ~ U~U  c . U ~  .

Proof.- In fact we have 7 x E H, 
D

(2.8) COROLLARY.- If U is finite and U) > ( StU 1 then S = U.
Proof.-For (2.4), taking the map c permutes the element of S, whence for

the hypothesis, one deduces that c. U n U ~ 0, so that; for ~~’.~7), c E U.

o
(2.9) PROPOSITION.- If aeU, beM and b . a = c, then c = b and in particular

Proof.- ~ x ~ H, we have c.x=b.a.x=b.x and thus c = b . Now c’ a = b’ a = c,
whence  x such that (b,x) is proper. Therefore also (c.x) is proper and c E M.

o

Now, we give two useful results whose proofs can be trivially obtained :

(2.10) PROPOSITION.- If x E H and x . x is a singleton, then x . x E fy E H/x. y = y x .

(2.11) PROPOSITION.- Let x E H. If K is a subset of H with at least two elements,
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such that K. x is a singleton and a, b are the only two elements such that a . x and
b . x are singletons, then K = {a, b} and a. x = b . x.

A hypergroup H is thin to right, if V Y E H there exists an unique element x e H
such that the pair (x,y) is proper.
Obviously if H is thin to right, then there are no right scalars and P(H) ; = H j.

We conclude this section with the following :

(2.12) PROPOSITION.- If H is thin to right and bE M, then :
(j) aeS=>a.b==b;
(jj) a ~ U ~ beb.a.

Proof.- (j). For reproducibility, there exists an element ; E H such that b = a x.

Moreover, there exists such that the pair (b, y) is proper and consequently
b ~ y ~ a ~ x . y implies that (x, y) is also proper. But H is thin to right and thus b = x.

This proves the implication.
(j j ). There exist x and y such that bex.a and (b, y ) is proper. Now 
and so (x, y) is also proper, and thus b = x . Whence the thesis.

[]

(2.13) PROPOSITION.- Let H be thin to right and be M such that (b,s) is a proper
pair Vs e S , then :

(i) provided M is finite, there exists at most an element mo E M such that
(b, mo) is a proper pair ;

(ii) 
(iii) ~s ~ S ;
(iv) me b. m, Vm E M. Particularly iF (b,m) is not a proper pair then m = b. m ;

Proof.- Statement (i) is immediate while (ii) follows directly from (jj) of (2.12)
being H thin to right.

(iii~ Let (z = b), then s~ ~ m = b ~ m. Being H thin to right it
results |z . m| = 1, irI and |z . s = 1 , ~S ~ S. Whence S. 

,

(iv) We have b. m = b. (s. m) = (b . s) . m. Being b . s _ {b} u S, there exists s0 ~ S such
that and so 

0
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(2.14) COROLLARY.- In the same hypothesis of (2.13), if S = {a} then :
(i) x.a=x, VxeH-{b};

b ~ a ~ {a, b} ;
(iii) provided M is finite, b . x = x, ~x~a with the exception at most of one

element m0 ~ a for which mo E b mo and (b,mo) is a proper pair.
Moreover supposing H = fa, b, c, d) one obtains:

(iv) if x E {c, d~ and x . b ~ =1, then x ~ b = x ;

(v) let b . m = m, m ~ a and (x, y) ~ {c, d}2. If |x . y| =1 and (x, b) is a proper
pair, then x. y = y .

Proof.- (i), (ii) and (iii) are trivial.
(iv) Suppose for contradiction Then from (x ~ b) . a = x . (b . a) we deduce

( x ~ b) ~ a ~ {x} u (x . b) and so j ~2. Being H thin to right, it follows x.b=b
and so {a, b} = {x, b}, which is a contradiction.

( v) From we obtain (x b~ r ~ , otherwise
x. b - {c, d} and so c .y = d . y, which is absurd because H is thin to right. Being
a. y = b. y = y, the statement follows .

a

Given a hypergroup (H, ~ ), it is possible to consider the hypergroup (H.=) equipped
with the hyperoperation . such that x=y=yox. (H,*) will be called the

symmetric hypergroup of (H, o ).
Later on, H will denote always a hypergroup without scalars and with four proper

pairs.
In order to simplify the writing, when a hyperproduct x . y is a singleton {a~; we

can omit the brackets and write x.y==o instead of x . y - ~a}. As regards the

multiplicative table of H, we agree to denote with capital letters the hyperproducts
which correspond to the proper pairs .

3. THE CASE S;B; ~ ~ .

We have to find, up to isomorphisms, all the hypergroups H={a,b.c}, having
exactly four proper pairs and such that j E H there exists at least an element i ~ H for
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which the pair (ij) is proper.
We can suppose that the four proper pairs are of the following type: (a,m), (a,n),

(b,p) and (c,q). We have, up to isomorphisms, only the following eight types, which are
listed in the lexicographic ordering:

~3i~ 
(3,) 
(3s~ P(H)={( a,a),( a,b ),(b,c ),( c,a)};
(3~~ 
(3,) P(H)=={(a,a),(a,b),(b,c),(c,c)};
(3s~ 
(3,) P(H)={(a,b),(a,c),(b,a),(c,b)};
(3,) 

We will study separately the eight possible types. As regards the types (3~), {33~,
(3~), one does not obtain any hypergroup. For everyone of the types (3,), (3~), (3~), one
finds only one hypergroup. The type (31) gives rise to four hypergroups. The richest

type of all is the type ~36), which we will study lastly.
The next table summarizes the results:

type hypergroups type hypergroups
{3~) 4 (3s) 0

~3~) 0 (3s) 12

(33) 0 (3~) 1

(3~) 1 (~8~ 1

In the following, it will be convenient to put:
an=N, bp=P, cq=Q, -

and to denote the remaining five products, in the order, with r, s, t, u, v. Moreover, we

agree to indicate the relation of associativity (xy)z==x(yz), simply by (xyz).
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TYPE (31).

a b ca M N r laQ| >1

b P s t

c u v Q

(acc) rc=aQ and so r=c.

(aac) Mc=ar=ac=c thus M={a,b} and t=c. For symmetry, u=v=c.

(abc) Nc=at=ac=c hence N={a,b} and, for symmetry, P=N.

(bbc) sc=bt=bc=c and so s e {a,b}.
(acc) 0=a0 : if bE Q then 0 ,

if a _ Q then aa=NI r (~ : consequently Q
Therefore, there are the following four solutions:

/

a a,b a,b c
b a,b j s c

c 1 
j 
c 1 " c f t ! 

I 

One verifies that all four are hypergroups.

TYPE (3~~.

" a ) b I c

a a i M j 
, 

N i 
i 

r , I aQ I > 1

) 
I 

P . t / j Qb| > 1

‘~ 
~ 

u _I ~ ~ ! Q ) » 

(acc) rc=aQ then r=c.

(ccb) Qb=cv then Y=C.

(aac) Mc=ar=ac=c then M.={a,b}.
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(cbb) vb=cP, that is cP=cb=v=c and so P={a,b}.
(baa) sa=bM 2 bb=P thus s=a. 

’

(bba) Pa==bs=ba=a whence M=aa ~ Pa=a, absurd.
There are no solutions.

TYPE (3~). 

a b c
a M N r |aQ| >1
b s t P bb==t==b, cc=v=c (lemma 2.10)
c Q . ( u v I

(aca) ra=aQ then r{a,c}.
(bba) s=bs then s ~ {a,b}.
(ccb) ) u=cu then ue{b,c}.
(bac) sc=br. If r=a then sc=ba=s thus s = b whence s=a.

(acb) au=rb=ab=N then u=b.

(cba) s=cs=ca=Q ~ absurd.

If r=c then sc=bc=P and so s=b.

(acb) au=rb=cb=u then u=c.

(cba) Q=cb=c, absurd.
There are no solutions.

TYPE (3J

! a ) b / ci
a. M ! I N / r j |aQ| >1
b; s j t : P, |Qb| >1
c~ u / Q~ i v ; /

(cbb) Qb=ct then t=b.

(acb) rb=aQ then r ~ {a,c}.
(acc) rc=av : if r=a then a=av and so v=c; if r=c then v==av and thus v=c;
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in every case, it is v=c.

(bba) ba=bs, that is s=bs then s  {a,b}.
If s=b then:

(bac) P=br then r=c;

(aac) Mc=ar=ac=r=c then M={a,c};
(baa) sa=bNI, that is b=ba ~ bc ~ P, impossible.

Therefore s=a.

(cba) Qa=cs=ca=u then Q=={b~c} and ba=ca=u , whence u=a.

(aca) ra=au=aa=M then r=a.

(bca) Pa=bu=ba=s=a then P={b,c}.
(aba) Na=aa=M then aEMnN.

(baa) M=bM.

(caa) M=cM.

If b M then cb ~ M and so {b,c} ~ M ; ; if c E M then M and so {b,c} c M; in

any case we have M=H.

Analogously from (bab) and (cab), one obtains N=H.
There is only one solution, which is the following hypergroup:

! a / b / ct

a H I H j J a
b) a b I b~
c & 

TYPE (3J

t aj I b ! c~ /
a j ! M ! I N ! r / jMcj>l
b ] / .

c ~ ~ 
I t t=bb=b (lemma 2.10)

(aac) Mc=ar then r ~ {a,b}.

(acc) rc=aQ then r ~ {b,c}.
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Therefore r=b.

(bac) sc=br=bb=t=b then s=a.

(aca) ra=au, that is a=au whence u=c and b=r=ac=au=a, impossible.
There are no solutions.

TYPE (3,).

a b c

a r M ~ N (aNI >1

b P s f t 
c ~ ) u ~ I 0 ~ v ~ ] v=cc=c (lemma 2.10) 

’

(aac) rc=aN and so r=a.

(cbb) Qb=cs thus s=b.

(bbc) t=bt then t ~ a.

(cca) u=cu then u ~ b.
If t=b :

(bçb) b=bQ and so Q={b,c}; if t=c : (cbc) Qc=c then C3={b.c}; in every case it

results C~={b,c}. 
’

If u=a :

(aca) Na=a then V’={a,c}; if u=c : (cac) c=cN hence N={a,c} ; it follows

that 
’

N={a,c}.
(bca) ta=bu then (t=b o u=a) and (t=c ~~ u=c).

Suppose t=c and then u=c;

(cba) Qa=cP thus ba ~ ca=cP ~ {b,c}, that is P ~ {c} ~ {b.c}, and then P={b,c};
(bac) Pc=bN then c=P ~.: {c}, impossible.

Therefore t=b and u=a. 

(acb) Nb=aQ , thus ab ~ cb=ab u ac hence 11 ~ {b,c}=M u {a.c} and so M ~ {a,b}.

(cab) M=cM then c ~ M and M=H.

(baa) Pa=P then a ~ P.

(bac) then whence P=H.
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One obtains an unique solution, which is a hypergroup.

a ) b Ct
a a H a,c

b H b b
c a b,c c

TYPE (3g).

a b c

a r M 
I 

N

By the cyclic permutation (abc), we obtain:

c a b
c Q u v

a N r M
bj t ) P s

the symmetric of the type (3~). Therefore we have the following unique solution:
Q=N=H , P=M={a,b} , r=a , s=b , t=u=v=c ,

that is the hypergroup below:

t ) a i ] b! 
j c

a) 
I 

a I ! a,b I Hj i
b 

; 
a,b / b / c, 

I

c c c H

TYPE (3g).



78

’ a ; b c
a r M N

b~ P ~ ( s t
c ( Q~ u v

We begin to observe that:
1. r=a.

2. s=a o v=a o u=a.

3. If s=a then t=u=v=a and M=N=P=Q={b,c}, unique solution in this case
which characterizes a hypergroup.

4. If v=b then s=b and t=u.

Proof.-

1. (baa) Pa=br then r=a.

2. (bbc) sc=bt. If s=a then N=bt thus t=a and N=P.

(bcc) tc=bv. If t=a then N=bv then v=a.

(ccb) vb=cu. If v=a then M=cu then u=a and NI=Q.
(cbb) ub=cs. If u=a then M=cs then s=a.

3. Let s=a. Therefore, for ’~. , t=u=v=a ,  and and N=P for what is

preceding.
(bcb) tb=bu then ab=ba that is M=P.

(bba) sa=bP then a=bP whence P=~b;c}.
4. Suppose v=b. Then, in particular, u ~ a.

(ccb) vb=cu then s=cu whence, for u E {b,c}, one finds s=b.
(ccc) vc=cv then bc=cb that is t=u.

Q

In case of s=a, in accordance with the 3. above, we obtain the unique following
hypergroup :

! a ; b~ c;

a; a ; / b,c b,c
b b,c ) 

I 

a / a / i
c; b~c ! 3 a ) a t
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As regards the remaining cases s=b, s=c, one observes that by exchanging band c
we obtain an automorphism for the type 36 and, by using the 2. and 4. above, we can

limit ourselves to study only the following five cases, where s=b. The table summarizes
in advance the results:

v t u semi-hypergroups hypergroups

Cl b b b 5 4

C2 b c c 4 1

C3 c b b 5 4

C4 c b c 2 1

C5 c c b 2 1

The case (c,c,c) is isomorphic to C3. The last two cases C4 and C5 are symmetric
one another.

Case Cl

! ) a ) j I bS c
a; 

: 
a t 

: 
M > t N I !

bi P : b b
)

One obtains the following five solutions. Only the first one is not a hypergroup.
M==N=P=Q=={a,b};
M=P=H and N,Q E {{a,c},H}.

Proof.-

(acc) Nc==M then a -= N . and N=ac ~ Nc=M. Therefore and

Symmetrically, a ~ Q ~ P and {a.b}cP.
(aac) N=aN. If b ~ N then N  ab=M then M=N.

We have M=P; in fact:

(bab) ~b}=P , 1 but and so and symmetrically,
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P ~ i~i.

Finally. if M={a,b} then M=N=P=Q. If M=H then P=H, and b ~ N ~ N=H.
0

Case C2.-

! a be

a, a M N
b’ P b c

c Q c b

We are going to show that M=N e {~b,c},H} , P=Q E {~b,c},H} , and so there are four
solutions, only one of which is a hypergroup.
Proof.-

(abc) If b ~ N then N={a,c} and M={a,b}.
(acb) Nb=N then absurd. Thus b E N.

(aac) N=aN then M=ab ~ aN=N.

(ace) Nc=M therefore c=bc c Nc=M and so c E M ~ N , and b=cc ~ Nc=M

then b E M.

Consequently ~b,c} ~~ 1~f ~ N.
If then N=ac g Nc=M and so M=N.

Thus M=N E {{b,c},H}. Symmetrically, P=Q E {~b,c},H}.
C

Case C3.-

a b c
a; a 

, M ) N I
.

One obtains the following five solutions:

M=N=P=Q={a,b};
M=P=H and N,Q E ~~a,c},H}.

Proof.-
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(acb) Nb=M and so a e N and b ~ M; symmetrically and 

(aab) M=aM. If c E M then a ~ N=ac ~ aM=M thus M=H. That is {{a,b},H}.
Analogously for P.

(bab) Pb=bM. If M={a,b} then Pb=ba ~ bb=P ~ {b}=P ~ M then M=P.

Otherwise, we have Nf =H , Pb=P and so a E P and In every

case; one has M=P. Symmetrically N=Q.
(aac) N=aN. If M=H then N o N=H) whence N ~ H). If

M ~ H then M=N=P=Q={a,b}; in fact:

(bac) Pc=bN then ac u bc=bN , that is whence N=P

and symmetrically M=Q.
0

Case C4,-

t 
i 

a ( b 
, 

c /
a a M N
b P bT
c ~ ; Q c" > c

We will prove that there are two solutions, unless isomorphisms:
M=N=P=={a,b} and Q=H (isomorphic to M=N=Q={a,c} and P=H);
M==N=P==Q=H which is a hypergroup.

Proof.-

(bca) and so b ~ P and a ~ Q.
(cba) Q=cP. and so c ~ Q and a ~ P.

Therefore {a,b} ; P and Q.
If P={a,b} then M=N=P and Q=H.
In fact:

(bab) Pb=bN that is M ~ {b}=bM ~ P then M=P.

(bac) Pc=bN that is then N=P.

(cac) b ~ N=ac ~ Qc=Q thus Q=H.
Analogously, if Q={a.c} then and P=H.

Q
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’ a I b) c

a! a a,b a,
b~ a,b bb
c H c c

; a b c

a a H H

b H b b
c H c c

In all, there exist 19 hypergroups, such that H j =3, Sr(H)=S1(H)=.

4. THE CASE S=~ ; $ pj=4. .

Suppose H = {a,b,c,d}.
Up to isomorphism, it suffices to study the following five cases (in lexicographical

ordering) :
(41) P(H)={~a~a)~(b~b)~(c~c)~(d~d)~~
(42) .

(43) P(H)={(a,a),(b,c),(c,d),(d,b)};
~4~) 
(4s) 

In this section, for convenience, we shall put am = bn = N , cp = P and dq = Q.

CASE (41).

In this case the table is of the following type:
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a I b c I d i
a M )

I
JP
Q (

Let x,y be two distinct elements of H such that y E xx, then

(xxy ) x(xy)! I > 1 and then xy = x.
(yxx) j (yx)x j I > 1 and then yx = x.

Without loss of generality, we can suppose b M and thus ab = ba = a.
(aab) we obtain M . b = M and so N c M.

(bba) ,ve obtain N - a = {a} and so 
We can suppose c E N and thus cb = be = b.

(bbc) we obtain N. c = N and so 

(ccb) we obtain P b = {b} and so b ~ P and then P = {c,d} and cd = dc = c.

(ccd) we obtain P d=PandsoQcP.
(ddc) we obtain Q c = {c} and so c ~ Q that implies Q = {d}, absurd.
Then there don’t exist hypergroups .

CASE (4~).

In this case the table is of the following symmetric type:

t a I b j c d J
b N

d /
If we suppose that then (aab) and (bba) give respectively ab=a

and ba=b. Taking in account the symmetry of H we obtain a contradiction. Then.
without loss of generality, 7 we can suppose C EM.
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(aad) j a(ad) [ > 1 and so ad = a and by symmetry of H da = a.

(adc) ~: a(dc) ~ I = 1 and so a~Q. By symmetry of H, we have a~P.

Now we can prove that :

1. dd = d .

2. c ~ P ~ Q .
3. bd=db=b .

4. bc = cb = b and P=Q={c,d}.
5. cc = c and ac = ca = a

6. and 

Proof.-

1. (add) gives dd =c a.
If dd = b, (ddb) gives db = c and so from (ddc) we obtain bc| I > 1 which is
absurd.

If dd = c, (ddc) gives |dQI = 1 and so Q = {b,d} and db = dd = c. This is

impossible because (ddb) gives |cb| > 1. So dd = d .

2. (bdd) gives bd # c and by (1.2) c E P. By symmetry of H, we have c = Q.
3. (cdd) and (cda) give P = Pd and ca = Pa.

The proof of 2. gives bd ~ {a,b,d}.
If bd = a , by (1.2) b E P and so a E P. This is impossible.
If bd = d , by ( 1 .2) b E P. P = Pd gives d ‘ P and so 

ca = Pa , we obtain ba = ca = da = a.

(bbd) implies (d} = Nd and so N = {b,d} . By (1.2) be = c then , by (bbc) we

have {c} u Q = {c}. This is absurd, therefore bd = b and by symmetry of H

db=b. 
’

4. (bdc) bQ = be that implies b  Q and so 4 = {c,d} and bc = bd = b. By

symmetry of H we have P = {c,d} and cb = b . 
’

5. (dcc) Qc=ccuQandso d(cc) ! > 1 gives cc = c

(adc) aQ = ac and so ad = ac = a. By symmetry of H we have ca = a

6. (aad) Md=M and so, being c ~ M, P = {c,d} ~ M.

(baa) bM = (ba)a. Being b = bVf we obtain ba f ta,b} .
[]

Now we observe that by (1.2), c ~ N and so, taking in account that the

permutation (ab)(c)(d) is an isomorphism, we can suppose ba=a.
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(bba) gives a=Na and so a ~ M. By (1.2), we have ab=a and {b,c,d}.
We obtain the following four hypergroups :

I a b 
. c I d i

a M a a a
b a 

I 
N 

B b I with M E H-{a} ; H and N E H-{a,b} ; H-{a}
c; a~ I b~ c~ c,d
di a I 

I 

b ! i 
I 

c,d d

CASE ~43~.

The table is of the following type:

i , a i I bi 
. 

cj ! d (
a M

V’e observe that the permutations (a)(b,c,d) and (a)(b,d,c) give tables of the same
kind of case (~3~ and so; we can suppose that d E h~ .

(aab) M . b = a(ab). Since; |M . b; > l, we have ab = a .

(aba) ba=a.

In the same manner, (caa) and (aca) give ca = ac = a .

Now, (dac) , (dab) and (bad) give da ~ {b,d} and ad ~ c and so. by (1.2), M ~ {b,c,d}.
Finally (daa) and (aad) give da = ad = a.

It is easy to see that H’ = {b,c:d} is a sub-hypergroup of H and this is absurd because

in [3] one has showed that there are no hypergroups on H’ of this kind.
Then there don’t exist hypergroups.

CASE (4~?.
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We have a table of the following symmetric type:

i a t b ~ c ) d !
a 
M

b N

c P
d Q

We observe that the permutations (a)(b)(c,d); (a,b)(c,d); (a,b)(c)(d); (a,c)(b,d) and
(a;d)~b.c~ give tables of the same kind.

Suppose that xy ; > 1 implies xy = {x,y}. In this case :~I = ~’ _ {a.b} and P=Q = ~c,d}.
(aab) , (ccd) = c(cd) and (ddc) give zz=z, z ~ H.

(abc) gives ac ~.: bc = a~bc~ and so bc = b.

This is absurd, because (1.2) is not satisfied, then there are X.y such that xy! > 1 and

xy = ~ :.y. Without loss of generality we can suppose c E ab = M.

(abd) and (dab) give bd = b , J da = a., P ç; M, Q ç; M .
Now we can prove the following :

1. dd = d .

2. ceN.

3. db = b , J ad=a, J P = Q = {c~d} , cb = be == b , ca=ac=a, cc=c.
4. If aa=a then M = N = H and bb=b .

5 . If aa = b then bb = a and M = N = {c,d}.
Proof.-

1. (dda) and (bdd) give dd ~ {c,d}.
If dd = c, then ca = a and be = b. From ( bbdj it follows bb ?= c, and so, by
(1,2), c ~ N. (bad) and (dba) give ad = a and db = b . Now, (cdd) gives
Pd = cc and it is absurd because ! P ~ d ; i > 1 . Then dd = d .

2. Let c ~ N. From (bbd) we have bb ~: c and so, by (1.2), bc = c.

(bdc) gives c = b. Q. which is absurd, because ! b . Q > 1 .
3. We have and so we can use the symmetry of H which gives db = band

ad = a.

From (cda) i and (bdc) we obtain |P . a| = 1 and |b . Q| =1 and so b ~ P and
a ~ Q. By symmetry of H, we have P = Q = {c,d}.
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Now, from (cdb) and (cda) we obtain cb = band ca = a. By symmetry of H,
we have also bc = b and ac = a . Finally, from (dcc) we obtain

d(cc) = cc u ~c,d} and so, j > 1, whence cc = c .

4. From (aab) we obtain M=aM and so a ~ M. By (1.2) and by symmetry of H,
we obtain M = N = H. Since (ab)b = H, we obtain bb = b .

5. From (aab)we obtain bb = aI and so bb = a and M = {c,d}.
By symmetry of H, it follows N = ~c,d}.

o

Thus we obtain the following two hypergroups :

CASE (45),

a ! i b c ’ d !

a M

b N
c P

d Q

We observe that the permutations (a,b,c,d): (a,c)(b,d); (a,d,c,b) give tables of the same

kind of (-~5).
Let (x,y) ~ P(H) such that xy = {x.y}. From (xxy) ve obtain (xx)y = and so,

> v which gives x..x=x. By ( I.’~), there exist Xo and yo such that , > 1

and x0y0 = {x0,y0}. Without loss of generality we can suppose M = ab ~ {a,b}.
Now Bve prove thai :

1, c  M .
2. 
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Proof.-

1. Suppose c ~ M. From (abd) we obtain bd = b. Analogously from (bab) we obtain
ba = a and N ~ M.

From (bdc) and (dba) , we have dc = c and db = d.

Now (aba) gives j a; ( =1 whence d ~ M and so, d ~ N.

By (1.2), it follows bb = d. It is absurd because (bba) gives Q = {a} .
2. Suppose d E NI. From (aba) we obtain ba = b, Q ~w 1tI ( and c ~ Q) . Analogously

from (cab) we obtain ca = a and by (1.2), aa=c.
This is impossible because (baa) gives N = {b}.

D

In consequence of 1. and 2. , we can say that there don’t exist hypergroups.

5. THE CASE S ~ 8; ~ H ~ =3 .

then 
We begin to study the case H ~ =3. Since P(H) =4, necessarily the set of left

scalars is a singleton.
We put H={a,b,c}, S={a}.
For (2.2), (2.3), a is left scalar identity.

Up to isomorphisms; we have the following 7 cases selected so that there are at

least two proper pairs (c,x) and (c,y) and listed in lexicographical ordering :

(51) P(H) = {(b,a),(b,b),(c,a),(c,c)};
(5~) P(H) = 

(53) P(H) = {(b,a),(b,c),(c,a),(c,b)};
(54) P(H) = {(b,a),(b,c),(c,b),(c,c)};
(5s) P(H) = {(b,a),(c,a),(c,b),(c,c)};
~5s) P(H) = ~(b~b’)~(c~a)~(c~b)~(cac)~~
~~1~ P(H) = 

In consequence of (2.9) and (2.6), (2.11) we have respectively the following
statements:
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(5.1) .- If t H| =3, a is left scalar identity and b ~ S1(H), then: |ba| =1 ~ ba=b.

(5.2) .- If |H ( -=3, Sl(H)={a}, Sr(H)=, and x is an element such that 3s E H: |xs| = I,
then we have:

(i) J xa J > 2 ~ xa={a,x}.
(ii) |xa[ >2, |xy|=1 ~ xy=y

(iii) ~ xa ~ =1 ~ xa= x.

CASE (51).-

For (5.2), we have the following starting table:

a b c
a a b c
b a,b; M c
c a,c b N

From (cbc) we obtain N={c}, absurd. So in this case, there don’t exist hypergroups

CASE (5a}.-

Always for (5.2), we can write:

We have the following equalities:
1 . Q = H ,
2 , N = ~a,b~ ,
3. P = H .

Proof.-
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1. (1.2) implies that Q. If ~=~a,b}, then (ccc) gives ~c}=~c} ~ P, a
manifest contradiction. Therefore Q=H.

2 . This fact is a consequence of ~~.11~; since (bbc) gives ; =1.

3 . Eor (1.2), ceP. (bcb) gives P=bP. Since ~a,b} iT P r 0, it follows that P=H.

D

Therefore this case leads to one hypergroup:

CASE (53).-

By using (5.2), we obtain immediately the following table:

: a b > c’ 

a , a .. b , i c i
b a, b ; b I M
c a,c N c

For (1.2), we have M=N=H, and thus we obtain one hypergroup:
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CASE ~5!).

(5.:;~ allows us to start from the following table:

- -F-.. ) a, j 
, 

b i ~ ci 
; 

j
a i 

, 

b I I c i I

b a,b b M
c c N P

We have:

1. M=H,
2. N=H , J
3. P E ~{a,c~,H~.

Proof.-

I. Obviously c ‘ M. Moreover (bbc) gives M=bM and so: a ~ M ~ b ~ M.

Analogously, starting from (bca) we obtain that b ~ M~a ~ M. Since

M ~ {a,b} ~ , the assertion follows.
2. For (1.2), {a,c} ~ N.Moreover (cbb) gives Nb=N,whence,since a ‘ N, the thesis.

3. Since (bcc) implies H=bP, one has that From (cca) we obtain Pa=P and

so 

D

In conclusion, we have two hypergroups:

i aa bi c
a a ; b c i
b ; a,b; b iH; /
c , c 

_ 

, 

H f I P / with P E a c H .

CASE (55).

For ~~.’~l, we can start from the following table:



92

- 

i 1 , a~ 
, 

, 

b 
,

a i a ; i b , c

b ~ c

c i M N P i i

For 

(bca) and so a E M~b E M.

(caa) M=Ma and so b E M~a E M. Therefore M=H.

~b,c}; (cax) gives ex = H and then N=P=H.

We obtain one hypergroup:

a b c
a a b c
b a,b b c
c H H H

CASE (56~.

For (5.1), ba=b and so we have the following table:

; 
a ; b ) I cI

a ; a j b j y c
b b M r j 1 I
c ’ ~ ~ / P 10

(bca) ra=bX and therefore r ~ {b.c}.
If r=b, then b=Nb and so N=={a,c}. Moreover (bccj implies that b=bQ, and thus

Q={a,c}. For (1.2), But, if M={a,c}, then from (bbb) we obtain

~b} ~ P={b}, which is impossible. Thus M=H. For ~1.?1, b ~ P. (cbc) implies that
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Pc=P and finally. being a  P«c E P, P=H. So in case of r=b, one obtains the following
hypergroup:

j ) a ) b ) « c ) j
a i a J b j c j
b 

’ 

« b j , H 
! 

b , 
jb b H b

c j 
, 
a,c 

. 

H 
, a,c

If r=c, one finds: (a,b) c Q. From (cbc) we obtain Pc=Q and Q=H. Moreover
since |Mc|=1, |bc|=1, ) cc j > 1 , one deduces, for (2. 1 1 ), M= (a,b) . Finally we have,
for (1.’i’), C E P ~ N; moreover the relations (bcb) and (bca) imply P=bP, N=bN.

Necessarily it must be P=N=H. Therefore we have another hypergroup:

In all, in this case there exist two hypergroups.

CASE (57).

For (5.i), ba=b. Thus we have this initial table:

(bba) gives ra=r. hence r = c. If ;.=a, then (bbc) implies c=bM, absurd. S.> ,ve have

r=b.

For ( 1.2), and (a.; j; g P. Moreover b ~ M P, because otherwise (bbc) and
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(cab) lead to contradictions. Therefore M=P=H.
At once, (1.2) implies C E N. Moreover (ccb) implies Qb=H and so ceQ. Finally (cac)
implies Nc=Q and so if be N then Q=H.

Consequently, we obtain five hypergroups:

j a b c ) 
a~ a‘ b i c i a’ a j I b ) i c

b b b H b H
c a,c H Q c N H H

with Q E {{a,c},{b,c},H} and N E {{b,c},H}.

In all, there exist 12 hypergroups such that, H ; =:3, 5 .~ ~.

6. THE CASE S ~ ; |H|=4.-

Put H={a,b,c,d}. Consider that there are three possibilities:

(i) J S ~ =3; S=~a,b,c~;
(ii) IS 1;2; S=~a,b~;
~iii~ 

Let us begin with the case (i).
We have only the following possibility:

(60) 

For (2.6). (2.8), we can consider two subcases: .

(i1) a,b,c are left scalar identities;
(i~) a is the unique left scalar identity.

In the first case. we have a table of the following type:
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’ a / b ) c ) d

a , a b c d

c a b c d
d M N P Q

(daa) Ma=M gives aENI and by ( 12), M=H.

Analogously (dbb), (dcc) and (ddd) give N=P=Q=H.
Therefore in the case (it), one obtains one hypergroup:

a b c d
ai 

I 

a 
, 

b i 
. 

c I 
I 
d /

c a a j ) b b 
! 

c c d /c! 
: 

a b 
I 

c ! d

d’ 
, H ) H H H )

In the case (i2), for (j) of (2.12) and (2.,3), we have the following initial table:

. a , b  c ) d I

.- a, 
, 

a ) . 
, 

b j 
1 

c j j : d j I
, b, 

, 

r ) 
« 

- s I 
, 

t ) . d ; - 
j

.-...- , u j v I’ w - j d 
j

cj u j ; j w j d i

d) , Xi ] N ) . P ) _ Q / with Vx e (b,c), Vy e (a,b,c), xy # y.

If r=c, then s = a and t = b. This is impossible because (bba) gives a = b.
Therefore it follows r = b, s = c and t = a. %.%"e can suppose u = c (because otherwise, by
exchanging b and c, %ve should obtain ba=c, that is the preceding absurdity) and so
v = a and w = b.

By ( 1.2), .(a,b,c) g Q and from (ddd) we obtain Qd = dQ. So Q=H.
(bda) Xi = bM and so a E NI>c E E Ni. By. ( 1.2 ) it follows M=H,

In an analogous i,,ay.. M.e can find N=P=H.

Finally we obtain again one hypergroup:
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i ) as 
; 

b ! c j 
/ d , 

,

. aj a j b . c j d t

c ) a : d J
c c a j / b d
d H JH H IT

In conclusion, in the case |S|=3, one obtains two hypergroups.

Now consider the case : (ii) j S j =2; S={a,b}.
For (2.6), we can suppose that a is a left scalar identity. ’

Up to isomorphisms, we have the following 6 cases selected so that there are at
least two proper pairs (d.x) and (d,y) and listed in lexicographical ordering.

(6,) P(H) = {(c~(~b)~c)~d)};
(6,) P(H) = {(c~c)~a),(d,d)};
(6,) P(H) = {(c.b),(~d),(d,a)~(d~)};
(6,)P(H)={(c~(c~(d~(d.b)};
(6,) P(H) = {(c~(d.a),(d,b~d.d)};
(6,) P(H) = {(c,d~d~)~(d~b~(d,c)}.

CASE (6,1).-

Always for (2.2) and (2.12), we obtain the following table:

a b c d____,_____’ / d /at a . b ! c i d

b; r t s J c ; d /
c ] M t ! u ! i v "

d’ d ! i N ! I P ’ 
’ 

Q i with {r,s}={a,b}.

If r=a, s=b_. (jj) of (2.12) entails t=c. Furthermore, from (cab) it follows that
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Mb=c. Absurd, since |M| i ~ 2.

On the other hand, if r=b. s=a, from (cbb) one can deduce t=d and so (cab) gives
Mb = d, another absurdity, since |M| I ~ 2.

Therefore, in this case there aren’t hypergroups.

CASE (6~).

For (2.12), we have ca=bc=c and bd=d. Put ba=x, bb=y and cb=M. By (1.2)
{x,y}={a,b}.
Ifx=a. then (cba) gives Ma=c. This is impossible since !M’ >2.
If x=b, then y=a and (cbb) gives c = Mb, which is again absurd.
Thus in this case, there don’t exist hypergroups.

CASE (63).-

For (jj) of (2.12), ca=c. By putting the same positions of the preceding case and

reasoning in the same manner. one concludes that there are not hypergroups.

CASE (6J-

By using (2.2) and (2.12), we can start from the following table:

’ a b I c ! d
a, a . ; b c t d 

b; r s . c ; d J
c; c !X

d: P I Q u . v / with {r,s}={a,b}.

(dac) Pc = u and so c ~ P. From {a,b} r P =  we obtain u = c .
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(dad) P d = v gives v =d .

(cdd) and (ccc) give Nd = N and Nlc = cVI . By (1.2) and {a,b,d} ç VI and

so N=H= M.

(cbd) td=H and so t=c.

Now we prove that :

P = C~ _ ~a,b,d}.
Proof.-

If r = a and s = b, by (1.2) it follows that and 

(daa) gives P = Pa whence P = {a,b,d}. Being c ~ P, (dba) gives Q and (dab) gives
Q = {a,b,d}.

o

This leads to one hypergroup.

S I a i 
! 

b ) 
: 

c ! 
, 

d 
,

a;a ;b } c d /
I 
,

~ i
d HBc HBc ’c d

If r = b and s = a, by (1.2) d c P Q. From (dbb) we obtain Qb = P and since c ~ P

then c ~ Q. Finally (bda) and (dab) give P = Q = {a,b,d}.
We have so another hypergroup.

CASE (6.5).

We can start from this table.
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(dac) v=Nc and so c ~ N and v = c .

(dcd) u = du and so u = c .

(deb) t = dt and so t = c .

(cdd) and (cdb) give cQnP.
By (1.2), Q and ~~ P .

Now we prove that :

N = P = Q = {a,b,d}.
Proofs

If r=a and s=b, and acP.

(daa) gives N=Na whence N = {a,b,d}.
(dbb) gives Pb = P whence P = {a,b,d}.
(dad) gives d e Q and so Q = {a,b,d}.
If r = b and s = a ,

(bda) gives N=bN whence , being N = {a,b,d}.
Analogously (bdb) gives P = bP whence P = {a,b,d}.
Finally (dad) gives {d} u Q = Q and so Q = {a,b,d}.

0

This leads to the following four hypergroups.

d HBc H,c ; c HBc with 1~f E {H,H~{c}} and {r,s} _ {a,b}.
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CASE (6.6).

This is the initial configuration of the table:

~ a b I c ~ d I
a 

; a ; 
i 

b / c d 
/ 
/

b r s c d
c c t u M

with {r,s}={a,b}.

(dad) Nd=vandsov=d and c~N.

By (1.2), {a,b,c} ~ M and by (cdd) we obtain d ~ M and so M = H .

(cbd) td = H and so t = c .

( ccd ) ud = H and so u = c .

By (1.2), ~a,b,d} ~ Q and by (dac) we obtain c ;~ Q and so Q = H .

(dbd) Pd = d and so c~P.

If r = a and s = b, by ( 1.’?). ~b,d} ‘ N and {a,d} ‘ P.

(dab) Nb = P whence , being b ~ N, we obtain b ~ P and so P = {a,b,d~.
(dba.) Pa = N and so {a} = V’. whence N = {a,b,d}.
The following one is the resulting hypergroup.

! ) a ~ b d 
i

a, 

! 

a 
i 

b ’t c 
I 

d ; 

 ib a b c d

i

If r = b and s = a, bv ~ 1.’~~, d ~ ~i ~~. P.
(dba) and (dbb) give Pa = P and Pb = X. whence . be in g d  P, we obtain N = P .

(bda) gives bV = =s and so , being a ~ obtain N =P = {a,b,d~.
BVe have so another hypergroup:
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I a ) I b ! c j df
/ !

I 

b / ) a j ) c ) 
i 
d j / 

/c c c c H

Ultimately, the case S ~ =2, has given rise to eight hypergroups.

At last, we study the case (iii) S ~ =1 ; S = ~a?. By (2.6), a is a left scalar

identity.
There are, unless isomorphisms, the following seven cases selected so that every

type contains the proper pair (b,a) and listed in lexicographical ordering:

(67) P(H)={(b,a), (b,b), (c,c), (d,d)};
(s$) P(H)={(b,a), (b,b), (c,d), (d,c)};
(s9) P(H)={(b,a), (b,c), (c,b), (d,d)};
(610) P(H)={(b,a), (b,d), (c,b), (d,c)};
(6n) P(H)={(b,a), (c,b), (c,c), (d~d)~~
(612) P(H)={(b,a), (c,b), (d,c), (d,d)};
(613) P(H)={(b,a), (c,d), (d,b), (d,c)}.

(6.1) REMARK.- If K==(K, o ) is a hypergroup of size n, then it is possible to construct
two hypergroups on the underlying set H=K ~ (x}, with x ~ K, by defining the following
hyperoperation -:

~~(a"b) _ h-’. a*b=a ~ b:
a ~ K. aX=Xa={x}:
xx ~ {K,H}.

In the rest. these hypergroups will be called x-enlargements of (K, o ).

Now we are ready t) prove the following result:

(6.2) PROPOSITION.- In the cases (67), (69), (611), by putting x=d, one obtains all



102

and alone the hypergroups, which are x-enlargements of the hypergroups K of size 3,
with =3, ~ = S~(K) =1, j S(K)) =~, whose tables are known (see (3j).

Proof.- In every case, it suffices to show that the following condition is valid:

(*) ~03B1 ~ HB{d}, 03B1d=d03B1=d.
In fact, if (*) is satisfied, then {a,b,c}2, (xyd) gives xd=d, whence 

and {a,b,c} results a hypergroup K with P(K); =3, ; S(h~ 1=~.
We begin with the case (6~). For (2.14), we have only to show that cd=dc=d.

(bdc) gives moreover, taking in account that bc=c (see (2.14)), (bed) gives
cd ~ {c;d}. By (cdc) one deduces that cd = dc.

(cac) and (cbc) give ca=cb=c.

Without loss of generality we can set cd=dc=d, (since otherwise, by putting cd=dc=c,
one obtains hypergroups which are isomorphic to those ones in which cd=dc=d).

D

Ultimately, this case gives rise to the following four hypergroups:

with M ~ {H,HB{d}}.

Now we come to the case (6~). For ( ~.I~;~, we can limit ourselves to determine the

products cd, dc. ( 1. ~) implies a E cb and so (cbd) gives cd=d. Finally (dcd) gives dc= d.

Therefore, this case leads to the ensuing two hypergroups :
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~ a : b t c ’ d ! I

a a b j J c t d i

b! a,b ; b / d !
c; c HBd ] c ~d ~ /

, 

with M e {H,HB{d}}.

To sum up, consider the case (611). For (2.14), ad=bd=cd=da=db=d. So h

remains to be proved that dc=d. Since dd=d(cd)=(dc)d and (d,d)cP(H), it descends

that dc=d.

Therefore more two hypergroups complete the cases of the preposition :

i a ! b i c ’; d .
a~ 

; 
a ’ b ! i j c ! 

> 

d ! 
j

b; a,b, b ! c i d /
cj c d ’ /
d d ’ / d ! d ’ M J with {H,HB{d}}.

Q

Now we can go on with the remaining four cases:

CASE (6g).

We have the following initial configuration:

’ a - b  c i d ;
a; a ; b ~ c : « d ~

b; a,b M c , d
c; c 

’ 

c ; r N j
d! d d / Ps"

(bbd) and ( bbc) give {c,d} ~ M= and so M={a,b}.
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(bcc) gives r  (a.b} and so (for (12)) {a,b}.;N.
We prove that :

1. Ifr=c then N=P=H and s = d.

2. Ifr=d then N=P=={a,b} and s=c.

Proof.-

1. By (1.2), 
(ccd) ceN and so N=H.

( dcc) ceP and so P = H.

(ddc) sc = Hand so s = d.

Then the following hypergroup remains determined.

a! a b c d /
bj a,b a,b ’j cdT f

2. (dcc) s=Pc and so; being a ~ P, we obtain s = c.

(ccd) {c~d} " N = 4 and = {a.b} .
(ccc) P==N and so P=={a,b}.

a

Then the following hypergroup remains determined:

Then the case (6~) has given rise to two hypergroups. D
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CASE (6~).

For (2.14), we can write the following table:

d~ d ) d j P t with d M and {a,c} C N.

(cbc) and by(1.2).s=d.
(bcd) M = {d}, which is impossible

Therefore in the case (610) there don’t exist hypergroups.

CASE (6~).

For (2.14). we can start from the table below:

- a ! b ’ i c d
a 

, 

a 
j 
i b! i 

: 

cj 
; 

d d j - 
j

b a,b / b ; / c d

c c d ) id d / 
"

d d d N P

By (1.2), {a,b.c}gP. 
( cbc) d  M and so M={a,b,c}. ,

(cdc) being a ~ N, we obtain c  N and so N = H.

(dcd) P = H.

Ultimately we have one hypergroup. whose table is represented below;
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, a : b c d )
a a i b c ’ I d /
b a,b b) C{d j
c c HBd c d /
d: 

: d d j H ~ / H j ,

CASE (6~).

By turning to account again (2.14), the following one can be taken as initial table:

’ 

a . b ’ c ’ 5 d ;
a~ a ! 

j 
b ~ ci l 

, 

d 
,

b a,b bt / ci J d /
c~ c j / c ! r ;M
d dNPd" )

We have:

(cca) , (ccb ) and (bcc) give r==c and so by (1.2). we obtain M=H . 

and{a,d},=X.
(bdb ) N = bN and so, being a N. we obtain b ~ X.

(dbd) c ~ N and so 

(dbc) and so P = H.

We have again one hypergroup :

; a : I b c d !

a a : I b c ! i d ’
b I b . c d
c c ; c j c iH

d d HBc H d

In conctusion, in the case |S |=1, one obtains 12 hypergroups.
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That is a recapitulatory list of the results obtained :

CASE HYPERGROUPS I ~ H ) ]
1 0 2

(31) 4 0 3

(32) 0 0 3

(33) 0 0 3

(3,) 1 0 3

(35) 0 0 3

(36) 12 0 3

(37) 1 0 3

(38) 1 0 3

(41) 0 0 4

(~z) 4 0 4

(4~) 0 0 4

(4~) 2 0 4

(45) 0 0 4

(5~) 0 1 3

(52) 1 1 3

(53) 1 1 3

(5~~ 2 1 3

(5s) 1 1 3

(56) 2 1 3

(5T) 5 1 3

(60) 2 3 4

(61) 0 2 4

(6a) 0 2 4

(63) 0 2 4

2 2 4(65) 2 2 4(6~ 4 2 4

(66) 2 2 4

(67) 4 1 4

(68) 2 1 4
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(69) 2 1 4

(610) 0 1 4

(611) 2 1 4

(612) 1 1 4

~si3~ 1 1 4

CONCLUSIONS.-

Let 1 (respect. r) be the family of hypergroups with left (right) scalars and

without right (left) scalars.

Obviously ~(H,H’) ~ Yt x r, H cannot be isomorphic to H’.
Therefore we can resume all the results, by means of the following table where St is

the set of left scalars of H and Sr is the set of right scalars.

. ~H~~.? ~ / iH:=3 

St=S,==~1196T
5~ ~ ~; S,==~1222"
S, ~ ~1222T

total 
~ 

1 ; 43 
, 
, 

50 
,

REMARK.-

We observe that only in one of the eight cases of section.3 (the case 36) the number

of hypergroups is not equal to the number of semi-hypergroups. In fact in the

remaining seven cases, the hypothesis of reproducibility (i.e. the (1.‘’)) has not been
used. The complexity of the cases studied in the subsequent sections and the final aim

of the authors (to find the hypergroups which have exactly four proper pairs) in

accordance with the papers [3], [4], [5], have prevented them from verifying if in some

cases the hypergroups could be found without the.use of (1.2). So, to find all semi-

hypergroups with at most four proper pairs remains an open question.
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7. SUBJECT INDEX. -

In this paper the authors study the hypergroups. such that there are exactly four

pairs of elements, which define proper hyperproducts. and such that there are no

scalars.

They solve the combinatorial problem of finding, up to isomorphism, all the tables
of the aforesaid hy pergroups.
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