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Abstract

Some of the properties, of the topology of uniform convergence on
the compactoid subsets of a non-Archimedean locally convex space
E, are studied. In case E is metrizable, the compactoid convergence
topology coincides with the finest locally convex topology which agrees
with a~E’, E) on equicontinuous sets.

1

1 Introduction

In [7J some of the properties of the topology of uniform convergence on the
compactoid subsets, of a non-Archimedean locally convex space, are inves-
tigated. In the same paper, the authors defined the ~-product E~F of two
non-Archimedean locally convex spaces E and F. EeF is the space of all
continuous linear operators of E~ to F equipped with the topology of uni-
form convergence on the equicontinuous subsets of E’, where E~ is the dual
space E’ of E endowed with the topology of uniform convergence on the com-
pactoid subsets of E. In this paper, we continue with the investigation of the
compactoid convergence topology T co. Among other things, we show that,
for metrizable E, rco coincides with the topology 03C3, where 03C3 is the finest
locally convex topology on E’ which agrees with Q(E’, E) on equicontinuous

1Key words and phrases: compactoid set, e-product, polar space, nuclear operator.
A.M.S. Subject Cfassi6cation: 46S10
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sets. We also prove that 1~0 has a base at zero all sets ~°t~’~, , where W is
a 03C403C3-neighborhood of zero and W03C3(E’,E) denotes the 03C3(E’, E)-closure of W.
If T : E ~ F is a nuclear (resp. compactoid) operator, then T’ : ~ E’co
is nuclear (resp. compactoid). Also, if T; : =1, 2, are nuclear,
then

T = T1~T2 : E1~E2 ~ F1 ~F2, T u = T2uT’1,
is nuclear. Finally we show that rco is compatible with the dual pair
 E’, E > iff every closed compactoid subset of E is complete.

2 Preliminaries

Throughout this paper, K will stand for a complete non-Archimedean valued
field, whose valuation is non-trivial, and N for the set of natural numbers.
By a seminorm, on a vector space E over K, we will mean a non-Archimedean
seminorm.

Let now E be a locally convex space over K. The collection of all con-
tinuous seminorms on E will be denoted by cs(E). The algebraic dual, the
topological dual, and the completion of E will be denoted by E*, E’ and E
respectively. A seminorm p on E is called polar if

p = sup{|f| :f E E*, |f| ~ p},

where is defined by ~ f , ( x) = . The space E is called polar if its
topology is generated by a collection of polar seminorms. The edged hull
Ae, of an absolutely convex subset A of E, is defined by:
Ae = A if the valuation of K is discrete and Ae = a ~ > 1 ~ if the
valuation is dense (see [10]). For a subset S of E, we denote by co(S) the
absolutely convex hull of S. A subset B of E is called compactoid if, for
each neighborhood V of zero in E, there exists a finite subset S of E such
that

B C co(S) + V

The space E is said to be of countable type if, for each p E cs(E), there
exists a countable subset S of E, such that the subspace [6’] spanned by S
is p-dense in E.

A linear map T : E ~ F is called:

1) compactoid if there exists a neighborhood V of zero in E such that T(V)
is a compactoid subset of F.
2) compactifying if T(B) is compactoid in F for each bounded subset of E.
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3) nuclear if there exist a null sequence in K, a bounded sequence (yn)
in F and an equicontinuous sequence ( fn) in E’ such that

00

Tx = 03A3 03BBnfn(x)yn
f=i

for all x E.
We will denote by the dual space E’ of E equipped with the topology

of uniform convergence on the compactoid subsets of E. The ~-product
EeF, of two locally convex spaces E, F is the space of all continuous linear
maps from to F endowed with the topology of uniform convergence
on the equicontinuous subsets of ~E’. For other notions, concerning non-
Archimedean locally convex spaces and for related results, we will refer to
[10].

We will need the following

Lemma 2.1 ( j7, Lemma 2. 6J ). Let E, F be Hausdorff polar quasi-complete
spaces and let T : E’ t-t F be a linear map. If T is continuous with respect
to the weak topologies a(E’, E) and Q(F, F’), then T E EeF iff T maps
equicontinuofJ8 subsets of E’ into compactoid subsets of F.

3 The topology Tq
Let E be a Hausdorff polar space. We will denote by Ta the finest locally
convex topology on E’ which agrees with Q(E’, E) on equicontinuous sets.
It is easy to see that To is the locally convex topology which has as a base
at zero all absolutely convex subsets W of E’ with the folowing property:
For every equicontinous subset H of E’ there exists a finite subset S of E
such that S° n H C W, where S° is the polar of S in E’. In case E is a
normed space, 7a coincides with the bounded weak star topology bw’ (see
[12] or [13] ).

Since a linear functional f on E’ is 03C3-continuous iff its restriction to ev-
ery equicontinuous subset of E’ is E)-continuous we have the following
Proposition 3.1 If E is a Hausdorff polar space, then (E’, 03C3)’ = E.
Proof. See the proof of Theorem 2 in ~5j.

The following Proposition for normed spaces was proved by Schikhof in
[12, Proposition 3.2].
Proposition 3.2 If E is a metrizable polar space, then (E‘, z~) is of count..
able type.



138

Proof. Let (Vn) be a decreasing sequence of convex neighborhoods of zero
in E which is a base for the neighborhoods of zero. Then

00

.

n=1

Let now q be a Ta-continuous seminorm on E’ and set

Wm = ~x’ E E’ : q~x’) 
Each V0n is a 03C3(E’, E)-compactoid and hence a TQ- compactoid since V0n is
absolutely convex and 03C3 = 03C3(E’, E) on V,°. Thus, for each mEN, there
exists a finite Snm of E’ such that

Yn C co(Snm) + Wm.

Now, the set S = ~m,n Snm is countable and the space [6’j is q-dense in E’.
This completes the proof.

Let now E be a Hausdorff polar space and let j E E ’-~ E" the canonical
map. In the following Theorem, we will consider E as a vector subspace of
E" identifying E with its image under the canonical map. For a subset A of
E" we will denote by A° and A°°, respectively, the polar and the bipolar of
A with respect to the pair  E", E’ >. If we consider on E" the topology
of uniform convergence on the equicontinuous subsets of E‘, then E will be
a topological subspace of E". In this case E" will have as a base at zero all
sets V~ where V is a convex neighborhood of zero in E.

The proof of the next Proposition is an adaptation of the corresponding
proof for normed spaces given by Schikhof in [12, Proposition 3.3]. .

Proposition 3.3 Let E be a Hausdorff polar space and consider on E" the
topology of uniform convergence on the equicontinuous subsets of E’. If F
is the dual space of (E’,Ta) then F n E" coincides with the closure of E in
E". Thus, if F C E" (e.g if 03C3 is coarser than the topology of the strong
dual of E~, then F ~ E, ’

Proof. Let x" E E and consider the set

W={x’EE’: : ~x’,xry~~~~. .

For each convex neighborhood V of zero in E, there exists xy E E such that
x" - Xv E V°°. Indexing the convex neighborhoods of zero in E by inverse
inclusion, we get a net (xv) in E. Let now Vo be a convex neighborhood of
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zero in E and let p, E 0. If V C then E and so

I  ~,’" - xv, x’’ > ~  ~~’ for all x’ E V°.^ 
’

 x,,, x’ >--> x", x’ >

uniformly on Since each of the functions x’ ~ xv, x’ > is ~(E’, E) 
,

- continuous on V00, it follows that the restriction of x" to V00 is 03C3(E’, E)-
continuous. This clearly proves that x" is continuous.
On the other hand, let x" e F n .E" and let V be a convex neighborhood of
zero in E. Let |03BB| > 1 and set

D = {x’ E E’ : ~x’,x">f 1~.
There exists a finite subset S of E such that

The set A = co(S) is a complete metrizable compactoid in (E", v(E", E’)). .
Since V00 is absolutely convex and E’)-closed, it follows that (A + V00)e
is Q(E", E’)-closed by (11, Theorem 1.4]. Since

SO n V° = (A + V)° ,
we get that

03BBD0 C (A + V)00 = A + V00)
00 
= = A + V00)e

and so D° C A + V°° C E + V°°. Since x" E D°, it follows that x" E E,
which completes the proof.

As we will see in the next section, if E is metrizable, then is coarser
than the strong topology on E’ and so in this case = E, a result
proved by Schikhof in [12] for normed spaces.

4 The Topology of Compactoid Convergence
For a locally convex space (E, T), we will denote by T~ the topology of
compactoid convergence, i.e the topology on E’ of uniform convergence on
the compactoid subsets of E. We will denote by E~. By (?, 3.3~, ,
every equicontinuous subset of E’ is Tco-compactoid.

Proposition 4.1 (~10, Lemma 10.6 J~ If E is a Hausdorff polar space, then
Tco = ~(E’, E) on equicontinuous subsets of E’.
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Proposition 4.2 If every compactoid subset of E is metrizable, then T~ ~s
the topology of uniform convergence on the null sequences arc E.

Proof. It follows from [10, Proposition 8.2], since for a metrizable com-
pactoid A, there exists a null sequence such that A C co(X) where

Corollary 4.3 a(E’, E)  T~,  To.

Example If E = co with the usual norm topology, then E’ = loo and
Teo is the topology generated by the seminorms p~, z = E ce where
pz(x) = max03BA |z03BAx03BA| for x = (xn) E l~. This follows from the fact that a
subset A of c0 is compactoid iff

A ~  = {x ~ c0 : |xn| ~ |zn| J ~n}
for some z E CO. 

’

Notation For a locally convex topology 03B3 on E’, we will denote by 03B303C3
the locally convex topology on E’ which has as a base at zero all sets of the
form W03C3(E’,E), where W is a 03B3-neighborhood of zero.
Theorem 4.4 If (E, T) is a Hausdorff polar space, then co = .

Proof. Since Tco  03C3, we have that

Tco = %f .

On the other hand, let W be a convex Tu-neighborhood of zero. If V is a
polar neighborhood of zero in E and > 1, then there exists a finite subset
S of E such that S0 ~ V0 C 03BB-1W. Since S0 ~ V0 = (co(S) + V)o, , it follows
that

03BBW0 ~ (co(S) + = (co(S) + V)e C a (co(S) + V)
(by [10, Corollary 5.8]). Thus

W’° C co(S) + Y,

which shows that W0 is a compactoid subset of E. Thus W°° is a CO-
neighborhood of zero. Since

W00 = (W03C3(E’,E))e ~ 03BBW03C3(E’,E),
and so is a co-neighborhood of zero. This completes the proof.

The following is a Banach-Dieudonne type Theorem for non-Archimedean
spaces (see [3, Theorem 10.1]).
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Theorem 4.5 If (E, T) is metrizable polar space, then co = 03C3.

Proof. Let (Vn) be a decreasing sequence of convex neighborhoods of zero
in E which is a base at zero and let D be a convex 03C3-neighborhood of zero
in E’. Since To is the finest locally convex topology on E’ which agrees
with Q(E’, E) on the sets V,°, n EN, we may assume that there exists (by
(4, Theorem 5.2]) a sequence (Sn)~n=0 of finite subsets of E such that for
Wn we have

00

D = Wp n n Wn + V0n)).
Since each Wn + V0n is 03C3(E’, E)-closed and since 4Yc is also a(E’, E)-closed,
it follows that D = D03C3(E’,E). . Now since co = it follows that 03C3 ~ co.

This clearly completes the proof.

Corollary 4.6 Let E be a Hausdorff polar space and consider on E" the
topology of uniform convergence on the equicontinuous subsets of E’. Then:
a) TQ is polar and coarser than the strong topology on E’.
b) (E’,To)’ = E = E, where is the closure of E in E".

Open Probletns .
1 ) Is Ta always a polar topology ? ..

2) Is it always true that 03C3 = co ?

3) Is it always true that (E’ 03C3)’ ~ E" ?
The following Theorem gives a necessary and sufficient condition for the

topology Too to be compatible with the pair  E~, E >.

Theorem 4.7 For a Hausdorff polar space E, the following are equivalent:
(1) Too is compatible with the pair  E’, E >, i.e. (E’, co)’ = E.

(2) Every closed (or equivalently weakly closed) compactoid subset of E is
complete.
(3) Every closed (or equivalently weakly closed) absolutely convex subset of
E is weakly complete.

Proof. First of all we observe that a compactoid subset of E is closed iff it
is weakly closed and that an absolutely convex compactoid is complete iff it
is weakly complete (by [10, Theorem 5. I3~ ) .
( 1 ) ~ (2). Let A be a closed compactoid subset of E. Since co is compatible
with the pair  E’, E >, it is the topology of uniform convergence on some
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special covering (by [12, Proposition 7.4}). Thus, there exists a weakly
bounded, weakly complete edged subset B of E such that B° C A°. Thus

,

Since A°° is an absolutely convex weakly complete subset of E, it is complete
and hence A is complete.
(2) ~ (3).It is trivial.
(3) =~ (1). The proof is included in the proof of ~s, Proposition 4.2j. .

Proposition 4.8 Let E be a Hausdorff polar space and let G be the dual
space of .E~. ?~en
(1) G = UA A03C3(E",E’)
where A ranges over the family of all absolutely convex compactoid subsets
of E,
(2) If we consider on G the topology of uniform convergence on the equicon-
tinuous subsets of E’, then E is a dense topological subspace of G.

Proof. (1) Since the topology of E~ is coarser than the strong topology on
E’, G is a vector subspace of E". For a subset B of G we denote by B° and

respectively, the polar and the bipolar of B with respect to the pair
 G, E’ >. Let now x" E G. There exists an absolutely convex compactoid
subset A of E such that

A°C{x‘EE: : ~x’,x">~~~.
If (a~ > 1, then

x~~ E A~ C .

On the other hand, if x" E 7 for some absolutely convex compactoid
subset A of E, then x" E A°° and so ~  x’, x" > ~  1 for x’ E A4, which
implies that x" E G.
(2) Since the topology of is finer then the topology ~(E’, E) and since
E is Haudorff and polar, it follows that E is a topological subspace of G.
It only remains to show that E is dense in G. So let x" E G. By (1),
x" E for some absolutely convex compactoid subset A of E. Given
a convex neighborhood V of zero in E and ~a~ > 1, there exists a finite
subset S of E such that

A C co(S) + C co(S) + 03BB-1V00.

Now

x" ~ A00 ~ (co(S) + 03BB-1V00) 00 = (co(S) + 
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and so
x" ~ 03BBco(S) + V00.

This clearly completes the proof. _

By [7, 3.1~, every equicontinuous subset of E’ is a compactoid set in E’~.
Also, by Proposition 4.1, the topology of coincides with the topology
a(E’, E) on equicontinuous sets. We have the following

Proposition 4.9 Let (E, T) be a Hausdorff polar space and let ~r be a polar
locally convex topology on E’ for which every equicontinuous subset of E’
is a compactoid set. If 7 is compatible with the pair  E’, E >, then ~y is

coarser than T~,.

Proof. Since (E’, 03B3)’ = E and every equicontinuous subset H of E’ is 03B3-

compactoid, we have that ’1 = 03C3(E’, E) on H and so 03B3 ~ 03C3. Thus

,~ = ,~ (E’r~  

Proposition 4.10 Let E, F be polar Hausdorff spaces and let T : E H F
be a continuous linear map. Then:

a) T is compactifying iff the map

T’ F~ ~--+ Eb

is continuous, where Eb is the strong dual of E.
b) If T is compactifying and each dosed compactoid subset of F is complete,
then T"(E") C F.

Proof, a) If T is compactifying and B is a bounded subset of E, then
D = T(B) is a compactoid subset of F and C IJO, which proves that
T’ : is continuous. Conversely, let T’ : F’co H Eb be continuous
and let B be a bounded subset of E. There exists a compactoid subset D
of F such that T’(D°) C If>. Now T(B) C_ D°° and so T (B) is compactoid
since D°° is compactoid by [10, Theorem 5.3].
b) By ~1~, we haveb) By [1], we 

E" = ~
B

where B ranges over the family of all bounded subsets of E, Let now B be a
bounded absolutely convex subset of E. Since T" is continuous with respect
to the topologies o~(E", E’) and o~(F", F’), we have

y C = T(B)03C3(F",F’).
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Let A = T (B) be the closure of T (B) in F. Since T is compactifying, the set
A is compactoid in F and hence A is complete by our hypothesis. Since A is
absolutely convex, it is Q(F, F’)-complete and hence it is 03C3(F", F’)-complete.
Thus A is ~(.F", F’)-cloeed and so

T(B) C F.

This clearly completes the proof.

Proposition 4.11 Let T : E H F be a linear operator, where E and F are
Hausdorff polar spaces. Then : (1) If T is continuous, then the adjoint map

T’: 

is continuous.

(2) If T as compactoid, then

T’: 

i8 compactoid

Proof. (1) If A is a compactoid subset of E, then B = T(A) is compactoid
in F and C A°.

(2) Assume that T is compactoid and let p E cs(E) be such that the set
A = T( Vp) is compactoid in F where

Y~ = {x E E : p(x)  1 ~. .

We will finish the proof by showing that is a compactoid subset of
So, let B be a compactoid subset of E. Since E is polar, it has the

approximation property (by [9, Theorem 5.4~), Thus there are gl, ~ . , 9" in
E’ and el,... , en in E such that

03A3g03BA(x)e03BA)  1

for all x E B. Let 03C603BA ~ (E’co)’, 03C603BA(x’) = x’(e03BA).
Claim: For all y’ E A° we have

n

T’y’ - 03A303C603BA(T’y’)g03BA ~ B0.
~=i
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Indeed, let y’ E A° and x E B. Then

x-g03BA(x)e03BA ~ Vp

03BA=1

and so
n

rc=I

Thus,

n n

 T’y’ - E > ==  y’, Tx > - ~(T’y’~(ex)9~(x)
~1 r~1

n n

~=1 rc=1

which clearly proves our claim.
Now, there exists  E K such that e03BA E for 03BA = 1,2,... , n. If

y’ E A°, then
~~x(~’’y’)~ = ~ 

Replacing 03C603BA by and g03BA by g03BA, we may assume that |03C603BA(T’y’)| ~ 1
for E A° and that

n

~c~i

It follows that

which completes the proof.

Proposition 4.12 I f E,F are Hausdorff polar spaces and T : E H F a
nuclear linear operator, then T : F’co ~ E’co is nuclear.

Proof. There exist a bounded sequence in F, an equicontinuous sequence
(fn) in E’ and a null sequence (03BBn) in K such that

n=1
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for all x in E. For y’ E F’ and x E E, we have

00 00

 T’’y’, x > =  y’,T x > =  y’, 03A303BBnfn(x)yn > = 03A3 03BBnfn(x)y’(yn).
n=1

Let |03BB| > 1 and choose n ~ K with

Let ~yn E K, where yn = 0 if An = 0 and ~y" = otherwise. Let

~:~~K, f 

Since A = n E N} is a compactoid subset of F, it allows that the
sequence ( ~ ) is equicontinuous in ( F’~ )’. Also, ( f ~ ) is a bounded sequence
in E~,. Indeed, the set

is a neighborhood of zero in E. If A is a compactoid (and hence bounded)
subset of E, then A C ~uV for some ~ in K, and so f n E Finally,

00

n=1

in E’co. In fact, let p E be such that |fn| ~ p for all n. Let >

sup{|03BBny’(yn)| : n ~ N}. Set

n

sn = 03A303B303BA03C603BA(y’)f03BA.
~.:.1

If V = {y E E : P( y ) _ 1}, then 8,. E Moreover s,~ ( x) -;  T’y’, x >
for all x E E. Thus j9n --~ T’ y’ in since the topology of E~ coincides
with on V0 by proposition 4.1. Thus

n=1

in E. Since (~yn) is a null sequence, the result follows.
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5 On the f-product

Proposition 5.1 ( j10, 5.1~~ If E, F are Hausdorff polar spaces, then FEE
is a Hausdorff polar space.

As it is shown in [7], the e-product of two polar complete spaces is
complete. The following proposition shows that the same is true for quasi-
complete spaces.

Proposition 5.2 Let E, F be Hausdorf polar spaces. If E and F are qua-
sicomplete, then EEF is quasicomplete.

Proof. Let be a bounded Cauchy net in EfF. For each f E E’, the net
( (ua ( f )) is bounded and Cauchy in F and thus the limit lim u03B1(f) exists.
Define

uo : F , uo(f) = lim 
Since the map ~u ~ u’ is a topological isomorphism between EeF and FeE
(by [7, Theorem 3.3~), the net is bounded in FfE. Define

E == 

Claim 1: : uc is continuous with respect to the weak topologies a~{E’, E) and
F’ ) . Indeed, let 5’ be a finite subset of F’ and T = v0(S). For f E E’

and g E F’, we have

lim  > = lim  f, >

and so .

’ao(f)a9 >= f~’~(9) > ~ .
It follows from this that u0(T0) ~ S°.
Claim 2: For each equicontinuous subset H of E’, is a compactoid
subset of F. In fact, let W be a convex neighborhood of zero in F. The set

D = {u E EEF : u(H) C W }

is a zero neighborhood in EfF. Thus, there exists ao such that ua - up E D
for a, ~ ao. Since W is closed in F, it follows that ua( f ) - E W for
all f E H and all a ~- ao. Since uao (H) is a compactoid subset of F, there’ 

’

exsits a finite subset S of F such that

C + W.
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Thus

uo(H) C co(S) + W.
Now by claims 1, 2 and Lemma 2.1, we have that uo E EeF. Finally it is
easy to see that ua --+ uo in EeF.

For a Hausdorff polar space F, we denote by F the dual space of F’~
equipped with the topology of uniform convergence on the equicontinuous
subsets of F’. It is easy to see that if u E FeE, then the adjoint u’ belongs
to E~. We will consider F as a topological subspace of F.

Proposition 5.3 Let E, F be Hausdorff polar spaces. Then, the map u ~+
u’, from F~E to E~, is linear, continuous and one-to-one.

Proof. For a convex neighborhood V of F, we will let V°° denote the bipolar
of V with respect to the dual pair  F, F >. . Sets of the form Y°° form a
base at zero in F. Let now W and V be convex neighborhoods of zero in E
and F respectively and let

D = {v E EeF : C V00}.
If u E FeE is such that u(VO) C W, then u’ E D. This proves that the map
u H u’ is continuous. The rest of the proof is trivial.

Proposition 5.4 Let E, F be Hausdorff polar spaces and let D be a com-
pactoid subset of FEE. Then:
(~) For every equicontinuous subset H of F’, the set

D(H) = U u(H)
u~D

is a compactoid subset of E.
(2) If every dosed compactoid subset of F’ is complete, then D is an equicon-
tinuoas subset of E). .
(3) If zn both E and F the closed compactoid subsets are complete, then the
dosure D of D in F~E is complete.

Proof. (1) Let H be an equicontinuous subset of F‘. For each u E FeE the
set u(H) is compactoid. Let now W be a convex neighborhood of zero in
E. The set

U = ~u E FEE: : u(H) C W }
is a neighborhood of zero in FEE and thus

D C co(S) + U
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for some finite set S. If T = co(S), then T (H) is a compactoid subset E
and hence

T (H) C_ co{B) + W

for some finite subset B of E. Now

D{H) C_ co(B) + W.

(2) If every closed compactoid subset of F is complete, then F = F (by
Theorem 4.7) and so the set .D’ _ {u’ : u E D~ is a compactoid subset
of EeF by the preceding Proposition. Given a polar neighborhood W in
E, the set W° is an equicontinuous subset of E’ and so A = D’(WO) is a
compactoid subset of F by the first part of the proof. Moreover, for u E D,
we have

u(Ao) C W°° = W
which completes the proof of (2).
(3) The set D is a compactoid subset of FEE. Let (ua) be a Cauchy net
in D. For each x’ E F’, the set D(x’) is compactoid in E and (u03B1(x’)) is a
Cauchy net. By our hypothesis, the limit lim u03B1(x’) exists in E. Define

u : : E, u(x’) = lim u03B1(x’).

Claim : u E FEE. Indeed, u is linear. Also, given a polar neighborhood
W of zero in E, the set B = D’(W0) is compactoid in F and D(.$°) C W.
If x’ E B°, there exists ao such that u(x’) - E W, for a ~- ao,
and so u(x’) E + W C W, which proves that u E FeE. If H is an

equicontinuous subset of F’, then there exists !30 such that C W

for 03B1 03B2 03B20, and so (ua -u)(H) C W for 03B1 03B20. This proves that u03B1 ~ u
in FeE and the result follows.

Theorem 5.5 Let F1, F2 be Hausdorff polar spaces and let Ti : Ea H
a =1, 2, be continuous linear operators. Then: 1) The map

T = T1 ~T2 : E1 ~E2 ~ F1~F2, T u = T2uT’1.

is continuous.

2) If both Ti and T2 are nuclear, then T is nuclear.

Proof. First of all we notice that, since

T’1 : (F’1)co ~ (E’1)co
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is continuous, we have that Tu ~ F1~F2 for u ~ E1 ~E2. To show that T is
continuous, let Wi be a convex neighborhood in F~ , z =1, 2, and let

U = {w E F1~F2 : C W2}.

Let v = =1, 2, and set

D = {u E E1~E2 : u(V10) ~ V2}.

Then D is a neighborhood of zero in E1~E2 and T(D) C_ U. This proves
that T is continuous.

2) Assume that both Ti and T2 are nuclear. There are null sequences

M, in K, bounded sequences and in F~, F2, respectively,
and equicontinuous sequences ( f1), (gz) in E~ and E2 such that

T1x = , T2z = 03A3 jgj(z)wj.

As it is shown in the proof of proposition 4.12, we have 
’

,

i

where the series converges in (E})co. Thus, for u E Ei E jE~ and y’ E Pi, we
have .

 Tu, y > =  > = 

i i

=03A303BBiy’(yi) (03A3 jgj(u(fi))wj ).
Let vij ~ F1~F2, vij(y’) = The double sequence (vs? ) is bounded
in F1 ~F2. Indeed, let W and V be convex neighborhoods of zero in F2 and
Fl respectively. Set

D = {v E F1~F2 : C W}. .

Let  E K be such that yi E V and wj E W for all i, j . Now, for y’ ~ V0,
we have

= ~ 2W
which proves that Vij E ~2D. Also, let

hij : E1~E2 ~ K, = 
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The double sequence (hij) is equicontinuous in (E1~E2)’. Indeed, let Y1, Wl
be convex neighborhoods of zero in E1,E2, respectively, such that fi E V01
and g; E W° for all i,j. If

Di = {u E E1~E2 : u(V01) ~ WI},
then l~~ E D°.

Let now any bijection. Set

7n = 9n(u) = .

We will show that 
00

Tu = 03A3 03B3ngn(u)03C6n,
n=1

where the series converges in F1fF2. To this end, we may assume that
|03BBi|, | j| ~ 1 for all i, j. Let V, W, V1, W1, D and p be as above. For y’ E Y°,
we have [  ~~~ for all i. By Proposition 5.4, the set A ~ u(Y°) is
compactoid and hence bounded in E~ . . Since gj E W~ and f z E there
exists 7 E K such that  ~~y) for all a, j. It is now clear that there
exists no such that if either i > no or j ~ n0, then

E W

for all 11 E Since W is closed, we get that E W, for
i > no, and so, for y’ E VO, we have

no

 Tu, y’ + v ~, v E W.
t==i

For an analogous reason, we get that
no no

 Tu, y’ >= 03A3 03A3 03BBiy’(yi) jgj(u(fi))wj + v1
t==i j=i

with v~ E W. Let now mo be such that > no or o~(r~) > no if n > rnc.
It is easy to see that for n ~ mo we have

n no no

E E E E W
03BA=1 i=1 j=1

and so
n

 Tu, y’ > - 03A3 03B303BAg03BA(u)03C603BA(y’) E W
03BA=1
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for all y’ E V°, i.e.
!~

Tu - ~ E D
03BA=1

for n > mo. This clearly completes the proof.

References

[1] N. De Grande-De Kimpe, The bidual of a non-Archimedean locally
convex space, Proc. Kon. Ned. Akad. Wet., A 92 (2) (1989) 203-312.

[2] N. De Grande-De Kimpe and J. Martinez-Maurica, Compact like oper-
ators between non-Archimedean normed spaces, Proc. Kon. Ned. Akad.

Wet., A 85 (1982), 423-429.

[3] J. Horvath, Topological Vector Spaces and Distributions, Addison-
Wesley, Reading, Massachusets. Palo Alto-London. Don mills. Ontario,
1966.

[4] A.K. Katsaras, Spaces of non-Archimedean valued functions, Bolletino
U.M.I (6) 5-B (1986), 603-621.

[5] A.K. Katsaras, The non-Archimedean Grothendieck’s completeness
Theorem, Bull. Inst. of Math. Acad. Sinica, vol. 19, no 1 (1991), 351-
354.

[6] A.K. Katsaras and A. Beloyiannis, Non-Archimedean weighted spaces
of continuous functions, Rendiconti di Matematica, Ser. VII. vol. 16,
Roma(1996) (to appear).

[7] A.K. Katsaras and A. Beloyiannis, On non-Archimedean weighted
spaces of continuous functions, Proc. Fourth Conf. on p-adic Analy-
sis (Nijmegen, The Netherlands), Marcel Dekker (to appear).

[8] A.K. Katsaras, C. Petalas and T. Vidalis, Non-Archimedean sequential
spaces and the finest locally convex topology with the same compactoid
sets, Acta Math. Univ. Comenianae, vol. LXIII, 1 (1994), 55-75.

[9] C.Pérez-Garcia, "The Hahn-Banach extension Theorem in p-adic Anal-
ysis ", in: p-adic Functional Analysis, Marcel Dekker, New York. Bassel.
Hong Kong (1992), 127-140. 

[10] W.H. Schikhof, Locally convex spaces over nonspherically complete val-
ued fields I, II Bull. Soc. Math. Belg. Sr. B 38( (1986). 187-224.



153

[11] W.H. Schikhof, The continuous linear image of a p-adic compactoid
Proc. Kon. Ned. Akad. Wet. A 92 (1989), 119-123.

[12] W.H. Schikhof, "The p-adic Krein-0160mulian Theorem ", in: p-adic Func-
tional Analysis, Marcel Dekker, New York. Basel. Hong Kong (1992),
177-189.

[13] W.H. Schikhof, A perfect duality between p-adic Banach spaces and
compactoids, Indag. Math. N.S., 6(3) (1995), 325-339.


