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THE FEYNMAN INTEGRAL AND FEYNMAN’S
OPERATIONAL CALCULUS: A HEURISTIC
AND MATHEMATICAL INTRODUCTION

Michel L. LAPIDUS1

Résumé. Nous donnons une courte introduction heuristique au calcul opérationnel
de Feynman pour des opérateurs qui ne commutent pas. Nous discutons également
(tout aussi brièvement) une approche mathématique de ce calcul opérationnel dévelop-
pée en collaboration avec Gerald W. Johnson. Ce faisant, nous évoquons quelques-
uns des liens entre ce sujet et les intégrales de Feynman de la physique quantique.
En particulier, la notion d’intégrale de Feynman analytique et des opérations non-
commutatives convenables sur certaines algèbres de fonctionnelles de Wiener (ap-
pelées "algèbres de démêlement") jouent ici un rôle essentiel. Le lecteur intéressé
pourra trouver une discussion beaucoup plus approfondie de ce sujet dans les
chapitres 14 à 19 du livre "The Feynman Integral and Feynman’s Operational Cal-
culus" [JoLa5] par G. W. Johnson et l’auteur, à paraitre chez Oxford University
Press.

Abstract. We provide a short heuristic introduction to Feynman’s operational
calculus for noncommuting operators, as well as discuss briefly a mathematical ap-
proach to this subject developed by Gerald W. Johnson and the author. We also
evoke some of the connections between this topic and the "Feynman path integrals"
from quantum physics. In particular, analytic (operator-valued) Feynman path in-
tegrals, along with (suitable) noncommutative operations on certain algebras of
Wiener functionals (called "disentangling algebras"), play a prominent role in this
context. The interested reader can find a much more thorough discussion of these
and related developments in Chapters 14 through 19 of the book by G. W. John-
son and the author entitled "The Feynman Integral and Feynman’s Operational
Calculus" [JoLa5], to be published by Oxford University Press.
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Our goal in this paper is two-fold: first, in Section 1, to provide a short heuristic

introduction to Feynman’s operational calculus for noncommuting operators [Fe2].

Then, in Section 2, to give a very brief discussion of a mathematical approach to

this calculus, as developed originally by G. W. Johnson and the author by means
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of analytic (operator-valued) Feynman path integrals and suitable noncommutative

operations on "disentangling algebras" of Wiener functionals ([JoLal-4] and [JoLa5,

esp. Chaps. 14-19]). (See also [Lal-6] for related works and, for more recent

developments, [dFJoLal-2], [JeJo].)

1. Feynman’s Operational Calculus: Heuristic Approach

In his 1951 paper, entitled "An operator calculus having applications in quantum

electrodynamics" [Fe2], Feynman suggested to construct a functional calculus for

noncommuting operators which may in some sense be viewed as a generalized kind

of (or else a substitute for) path integration. More precisely, to this aim, he proposed

to use the following heuristic rules:

(1) (Feynman’s Time-Ordering Convention.) Attach "time indices" to the oper-

ators involved to specify the order of operations in products.

Hence, if A and B are given (possibly noncommuting) operators, then "Feyn-

man’s time-ordering convention" can be stated as follows: 
’

f 
BA, if 81  s2,

(1.1) := AB, if s2  sr,~ undefined, if si 

even though A and B themselves may be time independent.

(2) With these time indices attached, form functions of these operators by treat-

ing them as if they were commuting.

[So that, in (1.1), for example, A(si)B(s2) = = BA, provided that

si  s2.]

(3) (Disentangling Process.) Finally, return to the real world where operators
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do not commute in general: "disentangle" the resulting expressions; that is, restore

the conventional ordering of the operators.

Feynman [Fe2, p. 1 10] says of the disentangling process involved in Step 3: "The

process is not always easy to perform, and in fact is the central problem of this

operator calculus."

We now illustrate these "rules" by a very simple example. We write successively:

"A . B" = (10 A(s1)ds1) (10 B(s2)ds2)
= 

[0,1]  [0, 1]A(s1)B(s2)ds1ds2
= 0s1s2 1 A(s1)B(s2)ds1ds2
+ / / A(s1)B(s2)ds1ds20s2 si  1
= s1s2 BAds1ds2 + s2s1 ABds1ds2

(1.2) = 1 2BA + 1 2AB
. 

= ~ ~’~~ ~ ’ 

where, of course, we have used Feynman’s time-ordering convention (1.I) in the

second to last equality.

In summary,

(l .3) "A . B" = (10 A(s1)ds1) (10 B(s2)ds2) = 1 2(AB + BA),
the anti-commutator of A and B.



92

More sophisticated examples lead to various kinds of "time-ordered perturbation

series" , For instance, we give explicitly (but without further explanation) the first

two terms of such a series resulting from the "disentangling" of the formal expression

"exp{-tA + t0B(s)ds}", for some t > 0 (for more details, see [JoLa5, Chap. 14]

or the introduction to [dF JoLa2]):

exp( -tA + t0 B(s)ds)
0

= / exp(- (t - s)A)B(s) exp(-sA)ds 
,

+ / s2t 
exp(-(t - s2)A)B(s2) exp(-(s2 - s1)A)B(s1)ds1ds2

(1.4)
+’" .

Let us now specialize to A = iHo ( where Ho = -1 20394 denotes the free Hamilton-

ian) and B = -iV (where V = V(s,.) is the multiplication operator by a bounded,

possibly time-dependent potential function V : x Rd ~ R), with i = -1.

Then the full time-ordered exponential series corresponding to ( 1.4) is nothing but

the "classical Dyson series" [Dy] encountered in the perturbative approach to quan-

tum mechanics and quantum electrodynamics. (See, e.g., [GIJa], [Si], [JoLal] and

the references therein.)

A number of "generalized Dyson series" (GDS)--possessing often a much more

complex combinatorial structure-are obtained in the rigorous approach to Feyn-

man’s operational calculus developed in ([JoLa1-5], [Lal-5], [dFJoLa1-2]), and to

be briefly discussed in the next section. (See especially Chapters 15, 17 and 19 in

[JoLa5].)

Many "paradoxical formulas" (as we like to call them) appear in the context of
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Feynman’s operational calculus. For example, the most striking such formula is

given by

(1.5a) exp(A + B) = exp(A) . exp(B)

or rather

(1.5b) exp {10 A(s)ds+ 10 B(s)ds} = exp {10 A(s)ds} { exp( ,

which every student of linear differential equations quickly learns to be wrong.

Naturally, such formulas must be taken with a grain of salt. However, in our joint

work [JoLa3,4], we have proposed "deforming" certain commutative operations (on

the space of Wiener functionals) into noncommutative ones in order to reintepret

rigorously (1.5) and other "paradoxical formulas". (See also [JoLa5, Chap. 18].)

In closing this section, we should stress that Feynman’s original paper on this

subject [Fe2] is not easy to read; probably less so (to most readers, at least) than

his celebrated paper [Fel] on the "Feynman path integral". It is very rich in ideas

but is also in need of further clarifications and mathematical developments. In-

deed, Feynman himself wrote [Fe2, p. 108] about his operational calculus: "The

mathematics is not completely satisfactory. No attempt has been made to maintain

mathematical rigor. The excuse is not that it is expected that rigorous demonstm-

tions can be easily supplied. Quite the contrary, it is believed that to put the present

methods on a rigorous basis may be quite a difficult task, beyond the abilities of the

author".

The above quote may be surprising to the reader familiar with some of Feynman’s

other statements regarding mathematics, as reported in the press or printed in some
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of his own books or articles. However, as the author could verify during a number

of private conversations-including the initial one during which Feynman urged

him to further develop mathematically his operational calculus-he was completely

sincere in this quote. It was a pleasure for me to begin to carry out this program a

few years later, jointly with my friend and (now) long-term collaborator, Gerald W.

Johnson. Of course, many intricate problems remain to be tackled and eventually

to be solved in this area.

2. Feynman’s Operational Calculus, the Feynman Integral, and

Disentangling Algebras

We will briefly discuss in this section some of out joint work with Gerald W.

Johnson on Feynman’s operational calculus for noncommuting operators [JoLal-5],

as well as related work of the author [Lal-6] and further extensions (also joint with

B. DeFacio) to more abstract settings [dFJoLal-2]. We define a (commutative)

Banach algebra At (indexed by time t) of Wiener functionals F such that the

associated analytic operator-valued Feynman integral (e.g., [CaSt], [JoSk],

(JoLal]) can be "disentangled" via time-ordered perturbation expansions, called

generalized Dyson series (GDS, in short). These series (which can be visualized by

means of certain generalized Feynman diagrams) have a rich combinatorial structure

due to the presence of Lebesgue-Stieltjes measures with nonzero discrete part, in

the definition of the functional F. (See [JoLal] or [JoLa5, Chaps. 15 and 16].) The

use of such measures enables us to blend continuous and discrete structures as well

as to unify known phenomena and discover new ones.

More specifically, for A > 0, the operator Kt (F) is given by a bona fide Wiener
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integral. It is then defined by analytic continuation to the open right-half plane

Re A > 0, followed by strong continuity for Re a > 0, A > 0 ( i. e., by passage to the

limit along the imaginary axis). Of course, in view of the well-known no go theorem

of Cameron [Ca] establishing the nonexistence of "Feynman’s measure", Kt03BB(F)

is no longer given by a Wiener-type functional integral for nonreal values of the

parameter A. Nevertheless, for all A E C with Re a > 0, a ~ 0, the (bounded linear)

operator Ki (F) is still given (or "disentangled" ) by the aforementioned GDS. (We

note that probabilistically, 03BB-1/2 can be thought of as a "diffusion constant", for

a>0.)

In the terminology of ([JoLal-5], [Lal-5]), the quantum-mechanical (or Feynman)

case corresponds to A = -i (or A purely imaginary), whereas the probabilistic (or

diffusion) case corresponds to A = 1 (or A > 0). 

[For measure-theoretic reasons, the commutative Banach algebras At consist of

(suitable) equivalence classes of Wiener functionals, where the equivalence relation

[JoSk] is associated to the scale-change corresponding to different positive values of

the parameter A. Further, the natural operations within each algebra At correspond

to the usual addition and multiplication of Borel measurable functions on Wiener

space.] ]

We also introduce (in [JoLa3, 4]) noncommutative operations on the space of

Wiener functionals (namely, a noncommutative multiplication * and addition 4-)

and on the aforementioned "disentangling algebras" At (t > 0) such that if F E ,AE1

and G E ,Atz, then F * G E (as well as F+G E At1+t2) and (for Re 03BB >
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0, 

(2.1) * G) = K~1 (F)K~ (G).

Further, under the same assumptions, we have for example,

(2.2a) exp(F+G) = exp(F) * exp(G) 
’

and hence, by (2.1 ) .

(2.2b) = 

As was alluded to in Section 1, we may use formula (2.2) to give a rigorous inter-

pretation of Feynman’s "paradoxical formula" (1.5). (See also [JoLa5, Chap. I8~.)

Note that in (2.2a) [which is formally identical to (1.5a)] we are now working at the

level of the functionals (rather than of the operators) and have replaced the usual

(commutative) operations by new noncommutative ones. Intuitively, one may think

of the relationship between the operator and the functional F as analogous

to that between a pseudodifferential operator and its symbol. (Naturally, one can

use similarly Equation (2.1) along with the properties of the noncommutative mul-

tiplication and addition to justify (and reinterpret) other "paradoxical formulas"

in [Fe2], as well as new ones.

We also discuss closely related work of the author [La2-5] on the "Feynman-

Kac formula with a Lebesgue-Stieltjes measure" in which we determine both in the

diffusion and in the quantum-mechanical case, the integral equation, the distribu-

tional differential equation and the corresponding product integral representation,

associated with the (generalized) Feynman-Kac functional
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where r~ is an arbitrary Lebesgue-Stieltjes measure on the time interval ~0, t). .

If we write ~ =  + 03BD, where p is continuous ( i. e., "diffuse" or "nonatomic" ) and

v is discrete (possibly an infinite linear combination of Dirac measures then

we can analyze precisely the effect of  and v on the solution of the differential (or

integral) equation. In particular, the (unique, bounded) solution is shown to have

(multiplicative) time-discontinuities at each instant Tp in the support of the discrete

part v of r~. Physically, these can be interpreted in the quantum-mechanical case as

"instantaneous interactions", "shocks" or "scatterings" occurring at precisely those

times (see [La3]). (The integral equation is derived in [La2,3] or [La4], when v is

finitely supported or in the general case, respectively, while the associated distribu-

tional equation and a product integral representation of the solution are obtained

in [La5]. We stress that the time-ordered perturbation series (GDS) obtained in

[JoLal] were crucial in the derivation of these results, especially in the quantum-

mechanical case where a standard functional integral representation is no longer

available.) We also refer to [JoLa5, Chap. 17] for further discussion of this topic,

as well as of its relationship with various aspects of Feynman’s operational calculus.

An attempt to capture the essence of the algebraic and analytical structures

underlying the construction (carried out in [JoLal,4]) of +, *), the family

of "disentangling algebras" equipped with its noncommutative operations + and *,

is made in [La6], where a possible set of axioms for (parts of) Feynman’s operational

calculus is proposed. The counterpart of the mapping F ~ is then viewed as

a "quantization map" defined via a kind of "generalized (Feynman) path integral".

The difficulty is, of course, to construct such a map in each concrete situation (as
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was done in [JoLal-4] in a setting corresponding to ordinary quantum mechanics).

We also briefly mention more recent work [dFJoLal,2] (joint with G. W. Johnson

and B. DeFacio) in which we determine, in particular, the evolution equation (in

integrated form) associated with the exponential of sums of noncommuting opera-

tors. The setting of [dFJoLa2] is more general (in some respects) than, for example,

in ([JoLal-4], [Lal-5]) because we now deal with (suitable) abstract operators in

Hilbert spaces and thus no underlying path integral is then assumed (or even avail-

able). (An abstract measure-theoretic result [BaJoYo]-due to Albert Badrikian,

G. W. Johnson and Yoo, and extending that of Johnson in [Jo]-is used in the

setting of [dFJoLa] in order to simplify our hypotheses.) In addition, the work

in [dFJoLa2] seems to provide a suitable theoretical framework to understand the

efficient use of perturbation series associated with "nonlocal potentials" in phe-

nomelogical nuclear physics (as studied, e.g., in [ChSa], [McC], [Ta]).

Aspects of the approach in [dFJoLa] are extended (in different directions) in the

works in preparation ([Re], [JeJo]). It is hoped that future research (probably joint

with B. Jefferies and G. W. Johnson) will enable us to combine the basic features

of ([JoLa], [dFJoLaL [JeJo]) in order to construct the above noncommutative oper-

ations 4- and * in this more general framework, and thereby provide a fairly general

’class of examples for which Feynman’s operational calculus can be carried out in

this manner.

Other works dealing with various aspects of Feynman’s operational calculus-

but using rather different approaches from those described here-include ([Ma],

[Ne], [Ar], [Gi], [GiZa]).
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The content of this paper is the subject of Chapters 14 through 19 of a book in

preparation by G. W. Johnson and M. L. Lapidus, entitled "The Feynman Integral

and Feynman’s Operational Calculus" , to be published by Oxford University Press

in the Oxford Mathematical Monographs Series ~JoLa5~. The interested reader can

also find in other parts of [JoLa5] a more thorough discussion of several approaches

to the Feynman path integral, using either probabilistic or operator-theoretic tech-

niques.
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