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REPRESENTATIVE SUBALGEBRA OF A COMPLETE

ULTRAMETRIC HOPF ALGEBRA

Bertin Diarra

ABSTRACT. Let (H ,m,c,1n, U) be a complete ultrametric Hopf algebra over a complete ultrametric
valued field K, € be the unit of H and k the canonical map of K in H. In order words, H is a Banach
algebra with multiplication m : H @H — H, coproduct ¢ : H — H @H a continuous algebra
homomorphism, inversion or antipode p : H — H a continuous linear map and counit ¢ : H — K a
continuous algebra homomorphism. The coassociativity and countinary axioms hold, and

mo(n®ly)oc=kooc=mo(lg@n)oc.

We define the representative subalgebra R(H ) of H, i.e. the subalgebra of H generated by the
coefficient ”functions” associated with the finite dimensional left H-comodules. Under some conditions on
H, 'R(H ) is a direct sum of finite dimensional subcoalgebras and is dense in H. But in general, R(H )
is not dense in H. The algebra R(H ) is a generalization of the algebra of representative functions on a
group. Notice that when the valuation of K and the norm of H are trivial, one obtains the well known
fact that H is equal to its representative subalgebra.

INTRODUCTION.

Let (H,m,c,n,0) be a complete ultrametric Hopf algebra over the complete ultra-
metric valued field K. An ultrametric Banach space E over K is said to be a left Banach
H-comodule if there exists a continuous linear map Ag : E — H®E, called coproduct,
such that
(i) (c®1lp)oAp=(lu®Ag)oAE
(i1) (0’®15)0A5=1E

A closed linear subspace E of E is a (left) Banach subcomodule of E if Ag(M) C
HRM.
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Let (E,Ag) and (F,AFr) be two left Banach comodules. A continuous linear map
u: E — Fis a Banach comodule morphism if Apou=(1g Qu)oAg.

It is associated with any left Banach H-comodule (E, Ag) the closed linear subspace
R(AE) of H spaned by the coefficient "functions” (15 ® z') o A(z), z' € E', z € E,
where E’ if the Banach space dual of E. Furthermore, let R(H) be the linear subspace of
H spaned by all the R(Ag) where (E, Ag) is a finite dimensional left H-comodule. Then
R(H) is a (non necessary closed)sub-Hopf-algebra of H ; R(H) is called the representative
subalgebra of H. In general, R(H) is not dense in H (cf. [1] or [5], [6] ). However, with
additional conditions on H it will be shown that R(H) is dense in H.

If E and F are ultrametric Banach spaces over K, we denote by EQF the com-
plete tensor product, that is the completion of E ® F with respect to the norm ||z|| =

E%nf (max ||z;|| |ly;]|). In the sequel all Banach spaces are ultrametric.
=Lz; Qyj 7

I- LEFT BANACH COMODULES

I-1 Tensor products of left Banach comodules

Let (E,Ag) and (F,AFf) be two left Banach comodules. One has the continuous
linear map A g5 E®F — HREQRHQF — HRHREQF — HRYEQF where
AE@F = (m®lE®].F)O(].H®TE®F®1F)O(AE®AF) and TEap(zQ@a) =a@®z.

Proposition 1 : A : EQF — H®ERKF 1is the coproduct of a left Banach H-

_ EQF
comodule structure on EQF.

Proof: Put,forz € Eandy € F,Ag(z) = Z a;Q®z; € H®E and Ar(y) = Z bi®y: €

i1 1
H@F. Therefore, one has Az (z®y) = ) ) a;be®z; S ye.
iz 31
(i) It follows immediately that (6 ® 1 ;5,) 0 Apg(z®y) = Z Z o(ajb))r; @ ye =
21631
=35 a(a)a(be)z; @ ye = Y 0(a;)2;® ) _o(be)ye = 2 ®y = 155,(z @ y). From
iz i>1 31

what, one deduces (¢ ® 1E§F) °oApsr = lpar
(ii) Also,onehasforz€ E, ye F
@) (c®1p)olgp(z)=) c(a;)®z;=) Y a};®al;®z;=(1u®Ag)oAg(z) =

i>1 21 821

= Zaj ®AE(ZJ') = Zzaj®7k,j®zk,j

ix1 i21k21
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and
(c®1p)oAp(y) =D cb)®ye=3.> Bl @B Oye=(1n®AF)oAp(y) =
o1 11
= Z be ® Ar(ye) = z Z bt ® pmt @ Ymy
1 >1m>1

Let E, = E[(zj,j > 1)U (zkj,k > 1,5 > 1)] be the closed linear subspace of E spaned
by (zj,§ = 1)U (zkj,k > 1,5 > 1), and Fy = E[(ys,€ 2 1) U (yme,m 2 1,£ 2 1)] be the
closed linear subspace of F spaned by (y¢,€ 2 1)U (yme¢,m 2 1,£ > 1). It is clear that the
Banach spaces E; and F}, are of countable type. Furthermore, if z' € E; and y' € F, one
has

(ly®1p®z')o(c®1lg)oAp(z) = ZZ<I’,$J‘>01J®03J =

j21s821
= (1H®1H®1}’)0(1H® AE)OAE(:I:) = ZZ < :L",.’L‘k'j > a; @Yk, j
iz1k31
and
(1g®1g®y)o(c®1p)oAr(y) = Y Y <y'ye>B®B =
£21 121
= (1a®1u®y)o(la®AF)oAFY) = DY <¥'Umt>be®pme
21 m>1
B) On one hand , one has, (¢ ® 1E@F)°AE@F(z®y) = ZZc(ajb¢)®zj Qye =
i>1 631
= Y ) eaj)e(be)®@z; ®ye = 22(201,]‘@03,;) (Zﬂt’,e®ﬂf,z)®zj®yt~
2121 211 821 t>1

On the other hand, one has
(1H®AE§F)0AE.§F(z®y) = ZZajb¢®AE§F(xj®y¢) = ZEZ Z a;b®
i>14>1 21821 k>1m>1
Tk,jPm Lt QD Tkt ® Ym 2.
Hence, if 2’ € E; and y' € F, ; first, one has
(1H®1H®='®Y")0(c@1 55 )0l pgr(a®y) = Y, <z',z; > al;@a%;) Y < v ,ye >
i>1 821 t>1¢>1
Bii®Bli=(1H®1u®z')o(c®1p)0Ap(z)-(1n®1u®Y')o(c®1F) 0 Ar(y) =
=(1z®1p®z')o(1g®AE)oAg(z)- (1n® 1y ®Y') o (1n ® AF) o Ar(y).
And, second, one has
(1H®1H®z'®y')o(1H®AE§F)0AE§F(x®y) = Z Z < x',zk’j > a;®k,j Z Z < y',ym,l :
ji>1k>1 €>1 m>1
b¢®pm'[ = (]-H ®1H®I')O(1H®AE)OAE(:C)-(1H®1H®y’)0(1H®Ap)OAF(y).
Therefore , for any z' € E; and any y' € F,, we have
(a) : (lH ®lp®a ®y') [(C® 15@17) ° Ag@p(x ® y) - (1H ® Ag@p) ° As@p(z ® y)] =0
) Since E; [resp. F,) is of countable type, there exist ag > 0, a; > 0 and
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(ej)i>1 C E; [resp. (fe)ex1 C Fy] such that for z € E, [resp. ( € F,] one has

2= Ajejlresp.( =) ubfi] with agSup [A;] < [lz]] € a1 Sup|A;| [resp. ao Sup |ue| <
i>1 01 i21 i1 01

IS < a1 Sup |uel] (cf. 4] ).
e>1

Moreover, one has E;®F, ~ co(IN* x N*, K) and (HRH)®(E.RE,) ~
~ co(IN* x N*, HRH) (cf. [7]) ; any Z in (H®H)®(E.QE,) can be written in the unique
form Z =) A;;®e; ® fr with Ajo € HOH and of Sup || 4|l < || Z|| < af Sup|4;,|.
Let e} € E; [resp. f; € F,] be the continuous linear form defined by < e},e;, >=
;5. [resp. < fgy fo, >= bue,). Setting (C®IE§F)OAE@F(:E®y)—(1H®AE§F)OAE§F($®
y) =2y = ZA?, ®e;® fe€ H@H@E;@Fy, for any j; > 1 and any ¢; > 1, by (a) , one
j)t
has (15 @1 @€}, ® f3)(Z0) = Y A%6;,;60,e = A%y, = 0. It follows that Zg =0, i.e.
it
(c®lpzp)olpgr(z®y) =(1H®Aggp) o Aggp(a ®y). From what , one deduces that
(c®1lpgp)oBpgr = (1n ® Apgp) 0 Apgp

Corollary :  Let M [ resp. N | be a left Banach H-subcomodule of E [ resp. F']. Then
M®N is a left Banach subcomodule of EQF.

I-2 Banach comodule morphisms
I-2-1 Range and kernel

Proposition 2 : Let u: E — F be a Banach comodule morphism.
(i) IfV is a Banach subcomodule of F, then u~!(V) is a Banach subcomodule of E.

(i1)  The closure u(E) of u(E) is a Banach subcomodule of F

Corollary : Let V and W be Banach subcomodule of the left Banach H-comodule E ;
then VNW is a Banach subcomodule of E.

Proofs : Rather easy, or see [3].

Note : One can also see [3] for the spaces of comodule morphisms.

Remark 1 : If M is a Banach subcomodule of the left Banach H-comodule E, it is
induced on the quotient Banach space E/M a structure of Banach left H-comodule such
that the canonical map E — E/M s a comodule morphism.
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Then, if u : E — F is a Banach comodule morphism and if u is strict, the Banach
comodule E [keru and u(E) are isomorphic. Also, one can define the cokernel of u as being

F/u(E).
I-2-2 Comodule morphisms of E into H associated with A ; R(A)

Put A = Ag the coproduct of the left Banach H-comodule E. Obviously, H is a left
Banach H-comodule with respect to its coproduct c.

Proposition 3 : For any z' € E', the linear map Ay = (1g®z')oA:E - Hisa
Banach comodule morphism.

Proof: Itiseasytoseethatco(lgp®z')=c®z' = (1g®1y®z')o(c®1Eg). Therefore
coAy = co(1H®x')0A = (1H®ly®x')0(c®15)0A = (1H®1H®I')0(1H®A)OA =
=(lg®[(1H®z')oA])oA=(1g @A) o A.

Corollary 1 :
(1)  kerAyp is a closed subcomodule of E.

(ii) Az (E) is a left Banach subcomodule( = closed left coideal) of H .

Corollary 2 : If E is a space of countable type, one has kerA, # E for any
'€ E,z' #0
Proof : Indeed, if z' € E',z' # 0 and 0 < a < 1, there exists a a-orthogonal

base (e;);>1 C E such that < z’,e; >= 1 and < z',¢; >= 0,j > 2. Moreover for

any j > 1, A(ej) = Za[j ® e¢ and ej = Za’(aq)eg ; therefore o(a¢j) = 6¢; and
1 o1

Az(e) = (1g ®z') o Aey) = ayy # 0 since o(ay;) = 1.

Corollary 3 : Assume that H is a pseudo-reflezive Banach space ; i.e. H — H" is

1sometric.
Let E be a simple Banach left H-comodule, i.e. E contains no proper closed subcomo-

dule. Then E is a Banach space of countable type and A, is injective for each z' €
E', ' #0.

Proof : If H is pseudo-reflexive, it is shown in (3] that any simple Banach left H-
comodule is a space of coutable type. Applying Corollary 2, one sees that A, is injective
forz’€e E',2'#0 O

Let 8 : EQ E' — K be the continuous linear form defined upon f(z®z') =< ',z >.
Put po = 1g®B)o(A®1p)or : E'RE — H, where 7(z' ® z) = ¢ @ 2. Then
pa is linear and continuous with ||pa]l < ||All. Moreover for z' € E', € E, one has
pa(z' @ z) = (1 ® ') o A(z).
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Put R(A) = pa(E'®E) the closure of po(E'®E) in H. Obviously, R(A) is the closed
linear subspace of H spaned by the elements (15 ® z')o A(z), ' € E', z € E, called the
coefficients of the comodule (E, A).

Proposition 4:  R(A) = pa(E'®E) is a left Banach subcomodule (= closed left coideal)
of H.

Proof : Since c: H — H®H is linear and is a homeomorphism of H onto ¢(H) , one
has ¢(R(A)) = ¢(pa(E'®FE)), a closed linear subspace of H.
It remains to show that if a = pa(2'®z) = (1g®z')oA(z) = A (z), ' € E', z € E;
then c(a) € HRR(A). Writing A(z) = Zaj ® zj; one has c(a) = co Ay (z) = (1 ®
i1
Azl) o A(:t) = Z a; ® Azr(z]') = Z a; ® pA(I' ® zj) € H@R(A) 0
i1 i21

Proposition 5 : If the left Banach cbmodules E and E; with coproduct respectively A
and A are isomorphic, then R(A) = R(4,).

Proof : Let u : E — E; be a comodule isomorphism, in other words, u is linear,
continuous and bijective with A ou = (15 ® u) o A. Moreover, the reciprocal map u !
of u satisfies (1y ® u™') 0 A; = Aou~! and the transpose of u,'u : E} — E' is linear,

continuous and bijective with (‘u)™! = tu~!,

Set a = pa, (1) € pa,(E1®E1) and 21 = ) _y®y;j, y} € Ey,y; € By, limm Iy fly;ll =
iz

There exist, for j > 1 unique 2} € E' and z; € E such that y; ="u"(z})=cjou"? and

j
45 = u(a;); moreoves lim 2} ;] = 0. Therefore a = pa, (1) = 3 pa, (4} @ 35) =
i1
= Z(1H®y})oA1(yj) = Z(ly@x;ou'l)oAI ou(z;) = Z(1H®z;~)o(ly®u‘l)oA10
> iz is1
u(z;) = Z(IH ®z))o Azj) = ZpA(x; ® ;) =pa (Z z; ® zj). Hence, a = pa(2) €
i i>1 i1
pa(E'®E) where z = Z:c_', ® z;; that is pa,(E'®E)) C pa(E'®E). Likewise,one has
>
pa(E'®E) C pa,(E{QE,).
Therefore pa(E'®E) = pa,(E{®E1) and R(A) = R(A;). O

Assume that E is a free Banach space i.e. E ~ co(I,K) = {(};)jer C K / lim Aj =0}.
j

In other words, there exist (e;)jer C E, ao,0 € R} such that any z € E can be written
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in the form z = Z/\je,-, Aj € K and agsup|}j| < ||lz]] < a;ysup |A;|.For any continuous
e jel jel
. 1 1
linear form z' € E' , one has —sup| < 2’,¢; > | < ||z'|| £ —sup| < z',e; > |. Let
oy jel Qg jerI
¢/ be the element of E' defined by < €j,e¢ >= ;.. Put Ey = E[(€})jer), the closed
linear subspace of E' spaned by (e});jer. Hence each z' € E} can be written in the unique
form z' = Zuje}, pj € K,lim|pj| = 0. Moreover, if v € E\®E C E'®E, one has
; j
Jj€I
. a a

v=Y pep®ej, pej € K, limpej =0 and = sup |ue,5| < ||vll € = sup |-

it ,0 ay je Qo ;e

On the other hand, one has H®E = co(I,H) = {(¢j)jer C H/lima; = 0}. For any

]
z € HRE one has z = Zaj ® ej,a; € H with lim||laj|| = 0 and agsup ||aj|| < ||z|| <
; i €l
JEI J
o sup ||a;||. Hence, if (E, A) is a left Banach H-comodule, for z € E, one has A(z) =
JjeI

= z Aj(z)Qe;. In particular A(er) = EAj(e¢)®ej = Zaq@ej and (c®1g)oA(er) =

JEI J€l Jj€I
= Zc(aq)@e,‘ =(1g®A)oAler) = (1H®A)(Z atk®ek) = Zazk@)zakj Rej =
jE€I kel kel jEI
= Z Z aek ® agj ® ;. Thus one obtains
kel jerI
(1) cla) =) ox®aij; i€l
kel

Also, one has
(2) o(aj)=6e; 45T

(3) Za”‘ ﬂ(akj)=6‘j'e= Zn(a,k)®akj i £, €l
kel kel

Proposition 6 : Ro(A) = pa(E\BE) is a closed subcoalgebra of H. In other words
C(Ro(A)) C Ro(A)@Ro(A)

Proof : Since (e} ® e¢)(j,nerxrs is a total family of E'®E and pa is linear and
continuous, the family (pa(e}; ® ee))(jerxr is total in pa(ELRE = Ry(A) = the closed
linear subspace of H spaned by the (1 ® z') 0 A(z), z' € E, z € E.

To see that c(Ro(A)) C Ro(A)B®Ro(A), it suffices to show that for £,j € I one has
c(pale;®er)) € Ro(A)®Ro(A). However, by definition, pa(e)®@er) = (1n @ ¢€}) o Aler) =

= agj € Ro(A). Then, one deduces from (1) that c(pa(e) @ er)) = c(ae;) = Zagj ®ax;j €
kel

105
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Ro(A)RRy(A).

Note: Ifv=) puye;®et€ E\RE , one has pa(v) = Y " wejas; and a € Ro(A) iff
(] [¥]
there ezist v, € E'QE such that a = lilil pa(vy).
n—-+00

Remark 2 : Let (E,A) and (Ey,A;) be two isomorphic left Banach comodules that
are free Banach spaces. If u: E — E; is a comodule isomorphism , (ej)jer a base of E

and (£j);er the base of Ey defined by €; = u(e;); then, with the above notations , one has
Ro(A) = Ro(Ay).

Remark 3 : IfdimE = n < +oo, one has R(A) = Ro(A) = pa(E' ® E) and
dimR(A) < n?

II - REPRESENTATIVE SUBALGEBRA

II-1 Conjugate comodule of a finite dimensional comodule

Let (E,A) be a ( Banach) left H -comodule of finite dimension and (e;)1<j<n 2 K-

base of E. As above, for any z € E, one has A(z) = z Aj(z)®ej and 4(z) = (1g®¢))o
j=1

A(z) = pa(e;®z); 4; = (1u®e})oA € L(E, H). In particular A(e) = Za‘f ®e; where
ag; = Aj(ee) = pa(e; ® er); and we have the relations (1) , (2) and (3) , with I = [1,n].
The relation (3) means here, that the matrix 4 = (aej)i<t,j<n € Mat,(H) is invertible
with inverse A™! = (n(asj)1<e,j<n-

Fix the base (e;)1<j<n of E and define the linear map AV : E' — H @ E' by setting

AV (ef) = ZT](G[J') ® ey, 1 < j < n. Hence for ' = ije} € E', one has AY(z') =
=1 j=1
n n

DD uin(ag)®e; =) AY(z') @«
1

=1 j= =1

Lemmal: (E' AV) is aleft H-comodule.

Proof : One verifies that 0o = o; indeed , if a € H , then c(a) = Z a! ® a?. Hence,
t>1
one has mo(n®1y)oc(a) = Zn(a})af =o0(a)eanda = (1gQ®0c)oc(a) = Za}a(af). It

t>1 t>1
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follows that n(a) = 3 n(a})o(a?) and ¢ 0 1(a) = 3" a(n(al))o(a?) = o3 n(a})a?) =

t>1 t>1 t>1
o(o(a)e) = o(a).
Since o(a¢;) = 6¢j, one has (0 ® 1) 0 AV(e}) = Za on(aej)e;y = Z o(aej)e; =
=1 £=1

=e}, 1< j < n. It follows, by linearity, that (0 ® 1gr) 0 AY =1g.

Let us remember that con =70 (n®mn) o c where 7(a ® b) = b® a. Hence , we have

conaej) = Z n(akj) ®n(aex). Therefore (c®1p)oAY(e}) = (c®151)(2 n(ag)@e',) =
k=1 =1

=35 nlan) ©n(acs) @ ¢ = Zn(ak1)® AV(ed) = (1 ® AY)( Y nlar) @ i) =

=1 k=1 k=1
=(1g®AY)o AY(e}), and (¢ ® 1E1)o AV =(1g®AY)o AV.

Corollary :  R(AY) = n(R(A)).

Proof: Identifing E” with E, one has R(AY) = pav(EQUE'). Set z = Z Aejee®

1<¢,j<n
e; € E® E'; hence pav(z) = Z Aejpav(er ® €;). However pav(er® €j) = (1n ®
1<¢,j<n
e2) 0 AV(e}) = n(ar;) = n(pale} ® er)); therefore pav(z) = > Ain(pale; @ er)) =
1<t,j<n
n(pa(z1)) where z; = Z Aeje; ® er € E' @ E. 1t follows that R(AY) C n(R(A)). The
1<¢,5<n
same formulae show that if a = pa(2z;) € R(A), where z; = Z /\Qe Re e E'QF,
1<¢,5<n
one has n(a) = pav (z) where z = Z Mjee®e; € EQ E', hence n(R(A)) C R(AY).
1<¢,j<n

II- 2 Direct sum of Banach comodules

Let (E,)1<s<m be a finite family of left Banach H-comodules with A, the coproduct of

E,. The direct sum E = @ E, equiped with any norm equivalent to the norm “Z Ts

s=1

= 1r<nax llzs|| is a Banach space. Put A = @A,, ie. A(i ) = @A,(z,). It is
s=1

s=1

readily seen that (E,A) is a left Banach comodule. Moreover , if p, : E — E is the
projection of E onto E, , then 1y ® p, is a projection of H ®E onto HRE, and one has
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HQE = @ H®E,. On the other hand p, is a comodule morphism i.e. (15 ®@p,)oA =

s=1

A o py; furthermore (15 @ p,) 0 A(z;) =0 for s #t and z, € E,.

Also, we have E' = @E’:; the projections associated with this direct sum are the
=1

tpay 1<s<m.
m
Proposition 7 : With the above notations, one has pa(E'QE) = ZpA,(Ef,@E,)
s=1

and R(A) is the closure onR(A,) in H.
s=1

Proof: Ifz,€E, z,€ E,and s #t, then (1H®xf,)oA(xt) = (1H®x’,)oAt(m,) =

Setz-—Zx ®z; € E'RE = @@E@Eg,onehasz—zzz:t”@)z“ It follows

i1 =1 t=1 j21 =1 t=1
that pa(z) =YY paleh;@ze) =Y. Z 2(1,, ® 7, ;)0 Azs;) =
121 s=1 t=1 j>l =1 t=1
S S b8 Yotz = 3 o (2 075) = Z pa, (X 4;92.;) =
]>1 s=1 t=1 j21s=1 i1

= ZpA,(z,). If z, € E\®E, C E'®E, 1 < s < m, one has pa(z,) = pa, (2,). Therefore,

=1

on one hand, pa(E'®E) C ZpA,(E_',@E,), and on the other hand, pa,(E.®E,) C
s=1
m

pa(E'®E). Hence, one has ps(EQE) = EpA‘(E@E,). One verifies readily that R(A)

=1

is equal to the closure of Z R(A,)in H.

s=1

Corollary : If dimE, < +00, 1 < s < m, then one has R(A) = ZR(A,) where

E=éE,, A=éA,.

s=1 s=1

8=1

Remark 3 : If the comodules (E;,A), 1 < s < m, are pairewise isomorphic, then for
m

m
the comodule (E,A) where E = @E,, A= @A,, one has R(A) = R(A,),1 < s <m.

s=1 s=1
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II1 -3 The representative subalgebra of H

Let S(H) be the set of all elements of the form a = (1g®z')o A(z) of H where (E,A)
is a finite dimensional left H-comodule and z' € E', z € E. Let us put dimE = dimA

Lemma 2 :  S(H) is a multiplicative, unitary submonoid of H.

Proof: Seta=(lp®z')oA(z)andb=(1g®y')oA(y) € S(H) where (E,A) and
(E,A,) are left H-comodules of finite dimension and z' € E', z € E, y' € El,y € E;.

p 9 4 q
One has A(z) = Za,-@:cj, As(y) = Zb[®yl and AE®E1(1'®'!/) = Z Zajb¢®xj®y¢.
i=t t=1 j=1t=1
P 9
Hence , ab = (1g® ') o A(z) - (1lu @ y') o A(y) = ZZdjbt <z'izj > <y b >=
j=1t=1

Qg® 'Ry’ )oApgr,(tQy) € S(H).

Since c(e) = e® e, E = K.e is a left subcomodule of H of dimension 1, one has
e=(lyQo)oc(e) e S(H). O

Let R(H) be the linear subspace of H spaned by S(H). Then R(H) is an unitary

P q
subalgebra of H. Indeed, if a = Y \ja; and b = Y by are two elements of R(H),

j=1 =1
P 4
since a;b, € S(H), one has ab = \;peaiby € R(H). One says that R(H) is the
j jHea; Y
j=1t=1

representative subalgebra of H.

Note : Put, for the left H-comodule (E,A) of finite dimension , S(A) = {a =
(14 ®z')o A(z) € H; z' € E, z € E}. As in Proposition 5, S(A) depends only of the
isomorphism class A of (E,A). Furthermore, one has S(H) = U S(A). O
dimA<+o0

Also, it is clear that the K-linear vector space R(A) = pa(E' ® E) is spaned by

S(A). Hence one has R(H) = U R(A). Moreover, if (E1, A1) and (E3, Az) are two
dimA<+oc

comodules, then R(A; @ A;) = R(A;)+ R(A;) contains R(A;) and R(A;) i.e. the family
(R(A))a ordered by inclusion is directed upward.

Theorem 1 : The representative subalgebra R(H) of H is such that «(R(H)) C R(H)®
R(H). Moreover (R(H), m,c,n,0) is a Hopf algebra.

Proof : It follows from Proposition 6 and Remark 3 that if A is a coproduct of
finite dimension, then ¢(R(A)) C R(A) ® R(A) : that is R(A) is a coalgebra. Since
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R(H) = U R(A) is the union of coalgebras, it is a coalgebra. On the other hand,
dimA<+oo

one deduces from the Corollary of Lemma 1 that 7n(R(H)) C R(H). The Theorem 1 is
proved.

II-4 Simple comodules of finite dimension

Let (ej)1<j<n be a base of the finite dimensional left H-comodule (E,A). Let us

remember that A; = (15®e})oA is a comodule morphism.One sees that ﬂ kerA; = (0)
1<j<n
and (Aj)igj<n is free in L(E,H). Since Aj(e;) = aj;, one deduces from (2) or from
Corollary 2 of Proposition 3 that e; ¢ kerA; and kerA; # E.
Put H; = A;(E); then H; is a left subcomodule of H of dimension < n. Furthermore,

n n

with previous notations, one has R(A) = po(E' Q E) = Z H; and H; = Z K - ayj, also
=1 =1

R(A) is a subcoalgebra of dimension < n%. One can have dimR(A) < n? ; for example, if

q q
E;=PEand A, =@ A, ¢>2, 0nehas R(A,) = R(A) and dimR(A,) = dimR(A) <
t=1 t=1

n? < (qn)? = (dim(E,))2.

Definition : A left Banach H-comodule E is called simple or topologically irreducible
if E 13 not the null space and does not contain any closed subcomodule different from (0)
and E.

Let Hom.com(E, E;) be the Banach space of the left Banach comodule morphisms of
(E,A) into (Ey,A;) and End.com(E) = Hom.com(E, E), this later is a Banach algebra.

Remark 4 : Schur’s Lemma.
Let (E,A) and (Ey, ;) be two simple, finite dimensional left H-comodules.

(i)  If E and E; are not isomorphic, one has Hom.com(E, E;) = (0)

(ii) In the alternative case, any non null comodule morphism of E into E; is an isomor-
phism. In particular, End.com(E) is a (skew) field of finite dimension < (dimE)%. If K
i3 algebraically closed, then End.com(E) = K.1g.

Proposition 8 : Let (E,A) be a simple Banach left H-comodule of finite dimension
n. Let (ej)1<j<n be a base of E and Aj = (1g®e;)0A, 1<j<n.
Then H; = Aj(E) is a simple left H-comodule of H of finite dimension n. Further-

more, there exists J C [1,n] such that R(A) = @Hj ( a direct sum of comodules).
j€J

Proof: It is the same as in semi-simple module theory. Indeed, since ker4; # E and E
is a simple comodule of finite dimension n, the map A; : E — H; = A;(E) is a comodule
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isomorphism. Hence H; is a simple comodule of dimension n with base (a¢j)i<ecn. If
1 < j,g < n, one has H; N Hy = (0), or H; = H,. Changing the order if necessary, we
my assume that (H,...,Hp) is the family of the distinct comodules H; ; m < n . Hence

R(A)=) Hj H;# Hyfor j#4q.
Jj=1

Since H; N H, = (0) , one has the direct sum of comodules Hy @ Hz. Let jo be
the least integer > 3 such that (H; & H2) N Hj, = (0). Hence, one has the direct sum
H, ® H, ® Hj, and for j < jo, one has (H; @ Hy) N Hj # (0), therefore H; C H, ® Ho.
Hence , by induction, one obtains J = {1,2, jo,...jx = m} C [1,m] and the direct sum of
comodules EBHj such that for £ ¢ J, H, C @Hj. It follows that R(A) = @ H;.

jE€J j€J jEJ

Corollary :  Let (E,A) and (E1,Ay) be two simple left H-comodules of finite dimension
that are not isomorphic; then R(A & Ay) = R(A) @ R(A,) ,a direct sum of comodules.

Proof : With previous notations, put R(A) = @Hi and R(A,) = @H} Let

JEJ Lel
p; [resp. p}] be the projection of R(A) [resp. R(A1)] onto Hj [resp. Hy] . Suppose that
R(A) N R(A;) # (0); this finite dimensional comodule must contain at least one simple
comodule V. There exists j € J [resp. £ € L] such that pj(V) # (0) [resp. pj(V) #
(0)] ; therefore p;(V) = Hj [resp. p}(V) = H}]. Since V is simple, pj;jv [resp. p}lv] is
an isomorphism of V onto H; [resp. H}] . It follows that H; and H, ; are isomorphic.
Hence E and E; are isomorphisc ; a contradiction. Therefore R(A) N R(A,) = (0) and
R(A® A1) = R(A)® R(Ay).

Remark 5 : Notations and hypothesis as above. If Kis algebraically closed, then the
H;,1 < j < n, are pairewise distinct.

Proof: Indeed,if H; = H,for j # ¢, thenu = Aj0A ! is an automorphism of the finite
dimensional simple comodule H;. By Schur’s lemma , one has u = A - 1g;,A € k, A #0.
Hence A; = MA, and aj; = Aj(e;) = M(ej) = Aajq. Therefore o(a;;) =1 = Ao(ajq) =
Aj, =0 ; a contradiction. O

Let H' be the Banach space dual of H ; if we set for a’,b' € H',a'*b' = (a'®b")oc, then
H' becomes a complete normed algebra with unit o. If (E,A) is a left Banach comodule,
setting for ' € H' , and z € E,a' -z = (a' ® 1) o A(z), one induces on E a complete
normed right H'-module structure. Moreover, if H is a pseudo-reflexive Banach space, then
any closed right H'-submodule of E is a Banach left H-subcomodule of E and reciprocally

(cf. [3])-
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Let (E', AV) be the conjugate of the finite dimensional left H-comodule (E,A). One
has for any @’ € H',z' € E' and z € E,< @' - z',2 >=< 2','(a’) - £ >. Therefore, if M
is a H'-submodule of E, then M1 = {z' € E'/ < z',z >=0, £ € M} is a H'-submodule
of E'. Reciprocally, if n is bijective and if M' is H'-subcomodule of E', then M'* is a
H'-submodule of E.

Proposition9:  Let H be a complete ultrametric Hopf algebra that is a pseudo-reflezive
Banach space such that 1 is bijective.

Then, a finite dimensional left H-comodule (E, A) is simple if and only if (E', AV) is
simple .

Proof : Indeed, suppose that (E,A) is simple ; if M’ is a left H-subcomodule of
(E',AY) then M'* is a left H-subcomodule of E ; therefore M'* = (0) or M'* and
M' = E' or M' = (0). By the same way, one shows the reciprocal.

II1-5 When H admits a left integral
II-5-1 Again some general facts

Lemma 3 : Let (E,A) be a finite dimensional left H-comodule and let A, be the
restriction of ¢ to R(A) = pa(E' @ E); then R(A.) = R(A).

Proof :  Let (ej)1<j<n be a base of E. One has A(e) = Zagj ®ej, 1<{<nand
i=t

(aej)1<e,j<n spans R(A). Since op(a) € R(A)', one has , according to (1) , a¢; =

= (1g®a)oc(aej) = pa.(0®ar;) € R(A:) and R(A) C R(A¢). Reciprocally, if a’ € R(A)'

and @ = Z Agjaej € R(A), one has (1 ® a’) o A a) = Z Z Aej < a'yax; >
1<¢,j<n 1<¢,j<n k=1
agk € R(A) and R(A.) C R(A).

Lemma 4 : Any finite dimensional left H-subcomodule E of H is contained in the
representative subalgebra R(H) of H .

n

Proof : If (¢j)1<j<n is a base of E C H, one has c(e;) = Za,,- ® e;. Let cg be the
=1

restriction of ¢ to E, then R(cg) is spaned by (aj¢)1<j e<n. Since ej = (1g ® ) 0 c(e;) =

= En:a(ez)a,-g € R(cE), one has E C R(cg) C R(H).

=1
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Note : If K and H are discrete, one deduces from the above result and from Theorem

1- (i) - of [3] that R(H) = H.

II1-5-2 TUnder the hypothesis : H admits a left integral

Let Q be the family of the isomorphic classes of the simple, finite dimensional left
H-comodules ; Q is not empty : its contains the class of the left subcomodule K.e of H.
If w € Q is the class of (E,A) , we set R(w) = R(A) that is independant of (E,A). It
is readily seen that R,(H) = E R(w) is a subcoalgebra of R(H). Moreover R,(H) =

w€eN

@ R(w), a direct sum of coalgebras. Indeed for any finite subset (wy,...,wm) of 2, one
wEN

n m
has Z R(w;) = @ R(w;) : see Corollary of Propositions 8 and its proof. Furthermore, if
t=1 t=1
n is bijective, then R (H) is a sub-Hopf-algebra of R(H). 0O
By definition, a left integral for the complete Hopf algebra H is an element v of H'
such that g *v =< p,e > v for all u € H'. The complete Hopf algebra H is called supple
if H is a pseudo-reflexive Banach space and 707 = 1y. For H, a supple complete Hopf
algebra that admits a left integral v such that < v,e >= 1, we know that any simple left
Banach H-comodule is finite dimensional ( Theorem 3 - [3]) .

Theorem 2 : Let H a supple complete Hopf algebra that admits a left integral v such
that < v,e >=1. Then

(i) R(H)= EB R(w) where  is the family of the isomorphic classes of simple Banach
weN
left H-comodules.

(ii) The Hopf algebra R(H) is dense in H, that is H = R(H) = @R(w).
wEN

Proof :
(i)  One deduces from [2] - Theorem 3 that any finite dimensional H-comodule (E,A)

is semi-simple ie. (E,A) = @@(Vt_,,A,,,) with V;, € w, and w, € Q. Hence

T t

R(A) = Y Y R(Awr) = > R(wr) = P R(wr) C Ry(H). It follows that R(H) =
R.(H) = @ R(w).

wEN
(ii) The Hopf algebra H is naturally a Banach left H-comodule with coproduct c. Let
a € H, a # 0; since H is pseudo-reflexive, the Banach left subcomodule E(a) = H' - a of
H contains a and is a non null Banach space of countable type (cf. [3] ).
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With the hypothesis, we know that E(a) contains simple left H-subcomodules (finite
dimensional) (cf. [3]).

Let (V;)rer be the family of all simple subcomodules of E(a). Put W = Z Vr, there

T€T
exists S C T such that W = @ Vr; one has ¢((W) C H@W. Since c is a homeomorphism
TES

of H onto c¢(H), setting E, = W, one has o(Ey) C HRE,, i.e. E, is a Banach left
subcomodule of E(a). In fact Ey = E(a). Otherwise, one has a direct sum of Banach
comodules E(a) = Ey @ E; with E; # (0) (cf. [2]). However E; must contain at least
one simple comodule V and by definition of W, one has V C W. Hence Eq N E; # (0); a

contradiction.
Let w, be the isomorphic class of the simple comodule V,,r € T. By Lemma 4,

Vr C R(w,),7 € T. Hence, we have W = Z Ve C z R(w;) C @R(w) =R(H). It
T€T reT wEN

follows that a € E(a) = Eo = W C R(H). We have proved that H = R(H) = (DR(w).
weN

Note : The above results are abstract version of some results of representation theory of
groups. In particular Theorem 2 is Peter-Weyl Theorem (cf. [3]).
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