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MOTZKIN FACTORIZATION IN ALGEBRAS

OF ANALYTIC ELEMENTS

Kamal Boussaf

Ann. Math. Blaise Pascal, Vol. 2, N ° 1, 1995, pp.73-91

Abstract. In this work, we show that the Motzkin factorization requires the set of analytic
elements to be a K-algebra. Hence, we propose a new presentation of this problem, using
a very close relationship, between the Mittag-Leffler series and Motzkin product.

1991 Mathematics subject classification: : ,~6510

1.INTRODUCTION.

Let K be an algebraically closed complete ultrametric field whose absolute value is
denoted by ). I. Let D be a subset of K, whose closure is denoted by D. We denote
by R(D) the K-algebra of the rational functions h(x) E K(x) with no pole in D, and
we denote by H(D) the completed topological linear space of R(D) for the topology of
uniform convergence on D. The elements of H(D) are called the Analytic Elements on
D. We denote by Hb(D) the set of the bounded elements of H(D) and by the norm

of uniform convergence defined on Hb(D), and then Hb(D) provided with this norm is
a K-Banach algebra. Actually Hb(D) is equal to H(D) if and only if D is closed and
bounded.

More generally H(D) is provided with a structure of K-subalgebra of KD if and only
if D satisfies the two following conditions :

a) either D or K~D is bounded
b) is included in the interior of D.

We denote by A the set of D subset of K such that H(D) is a K-subalgebra of KD. It is
seen that if D is open and satisfies b) then D is open too.
Let us recall that a space H(D) does not contain characteristic functions different from 0
and 1 if and only if D is infraconnected (3~,~4~. A set D is said to be in f raconnected if for
every a E D, the mapping from D to IR+ x --~ a~ has an image whose closure is an
interval.
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Notation. Let a E K, let D be a set in K. We denote by 6(a, D) the distance from a to
D i.e ED}.

Let a and let a E 1R+. We will denote
by d(a, r) the disk {x E at ~ r}
by d(a, r’) the disk {x E  r}
by C(a, r) the circle {x E a) = r}
and by the set E K}

For every a E C(a, r), d(a, r’ ) is called a class of C(a, r). Let r’ > r. We will denote
by r(a, r, r’) the set {x E  Ix - al  r’}, and by ~(a, r, r’) the set
{x E h’1r  r’}.

We now recall the definition of the holes.

Definitions. Let D be a closed subset of K. Let R be its diameter and let a E D. We

put D = d(a, R) or D = K if R = oo and we now that D is in the form

D B(~i~Id(03B1i,

with ri ) n _ ~ whenever i # j and with rt = b(a=, D) whenever i E I. The
disks d(a;, ri) (i E I) are named the holes of D.

First we have to recall the Mittag-Leffler series for an analytic element on infracon-
nected closed set [9] [10] [13]. When D is not bounded, we denote by Ho(D) the subspace
of the f E H(D) such that

j 
lim 

~ ~ 
|f(x)| = 0

|x| ~ ~ x ~ D

Let D be an infraconnected closed set and let f E H(D). We know that f admits a
00

unique series ~hn named the Mittag-Leffler series of f on D whose sum is equal to f, ,
n=0

where ho E H(ÎJ) and for each n > 1, there exists a hole Tn of D such that hn E Ho(K~Tn).
( The sequences (Tn), (hn) are injective [9],[10],[13]).

Moreover for each n E IN* we have ~hn~D = ~hn~KBTn and lim hn = 0.
The holes Tn are called the f -holes (assuming hn ~ 0) and hn is called the Mittag-

Lefher term of f associated to the hole Tn.
If / E Hb(D) then ~h0~D = ~h0~ and we have sup ~hn~D.

Besides, if D is not bounded and if f E H(D) then ho is a constant.
Now given a f -hole T, the Mittag-Lefler series of f associated to T will.be denoted

by fT. Thus in the Mittag-Leffler series of f above, we have hn = fTn whenever n E IN*.
In the same way we will always denote by 70 the element ho of H(D).
We say that f is semi-invertible in H(D) if it factorizes in the form Pg where P is a

polynomial whose zeros belong to D and g is an element of H(D) invertible in H(D).
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Let us remember the valuation defined on K and the valuation function associated to
an analytic element.

Let log be a real logarithm function of base 9 > 1. We define a valuation v in K* by
v{x) = -log|x|.

Let a E K and let r E R+. We call the circular filter of center a of diameter
r the filter ~’ that admits as generating system the annuli r(a, r’, r") with a E d(a,r),
r’  r  r" [5][8].

Now let D be a set such that 7 is secant with D. The intersection of .~’ with D

is called circular filter of center a, of diameter r, on D [5],[8].
Then we know that for every f E H(D), has a limit D03C6a,r(f) along FD and the

mapping D03C6a,r is a multiplicative semi-norm in H(D) [5],[6]. Thus we have

D03C6a,r(f) = lim |f(x)|
|x - a| ~ r|x - a| ~ r, x ~ DB 

Besides, given a polynomial or more generally an element f on H(D U d(a, r)} we have
= = As a consequence, if r E |K| so does 

Now, let  E IR be such that the circular filter F of center a, of diameter r = is

secant with D. We put va(f, ) = -log(D03C6a,r(f)).
In particular when a = 0 we just put v( f , ~C) = 
When D n d(a, r-) ~ ~ or when D n (k’ ~ d(a, r)) ~ ~ we see that

va(f, -log(r)) = lim - v(f(x))|x - a| ~ r
|x - a| ~ r, x ~ D

. 

~ 
Now, let D be an infraconnected set and let T = d(a, r’ ) be a hole of D. The circular

filter .~’ of center a, of diameter r is certainly secant with D. In particular, if D has

diameter R > r then we have .

D03C6a,r(f) = lim |f(x)|

|x - a| ~ r

|x - a| > r, x ~ D~ 

2. MOTZKIN FACTOR AND PROPERTY.

Henceforth, we suppose that D is infraconnected and closed.
Lemma 2.1 : : Let T = d(a, r-}, with a E K , and r > 0, let E = K ~ T and let bET.
Let g E H(E) be invertible in H(E). Then there exist a E K, q E TL, and h E H(E)
invertible in H(E), satisfying - 1~E  1, lim h(x) =1 and g{x) = a{x - b)q h(x).

Besides a, q, h, are respectively unique, satis f ying those relations. Further, both a, q do

not depend on b in T,  belongs to Ho(E).
9
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Proof : Without loss of generality we may obviously assume a = 0. It is easy to show

that g is of the form g+g, with y and  Hb(E). Let q = and let A be its

coefficient of degree q. Now we put = 201420142014-r-. . By definition it is seen that both
A, q do not depend on b in T. Hence we may also assume b = 0. Clearly, as H(E) is a
K-algebra, h is invertible in H(E) and satisfies lim = 1. In particular we notice

|x|~+~

that h is bounded in E. Now we check that Ills  1. Let s = -, let A = d(0,s)
and let F(u) = h(1 u) whenever u u ~ 0. Then F belongs to B {0}).
But since h is bounded in E, jF is bounded in d(0,s) B {0} and therefore jF belongs to

[4j. Besides, the condition lim = 1 shows that F(0) = 1, hence F
|x|~+~

has no zero in ~(0,s). We know that F is invertible in and then it satisfies

 !F(0)j [4]. Hence  1 and therefore we have  1.

Now, h, q, A are easily seen to be unique. Indeed, let y(;r) = with ~ invertible

in H(E), satisfying lim /(.r) = 1. Then 1 = Thus, we see that q = t, A = 03B1
|x|~+~ 03B1l(x)

and therefore h = 1.

Finally, we check that g’ g belongs to H0(E). Indeed g’ g = q x - b + h’ h. Obviously, q x - b

belongs to Ho(E). Since lim = 1, it is seen that is of the form 1 + ~ -~|x|~~ n=1

with lim = 0, and therefore h’ is an element of H(E) such that lim = 0. As
n~~ sn |x|~~

a consequence h’ h belongs to H0(E). Hence so does g’ g and this ends the proof of Lemma

2.1.

We can now give the following definitions.

Definitions. Let E = j~ B with a and r > 0. Let f H(E) be invertible
in H(E) and let A(.r 2014 be the factorization given in Lemma 2.1. The integer q will
be named the index of f in the hole d(a,r") and will be denoted by The

element f will be called a pure factor associated to d(a,r") if A = 1.

Let f belong to H(D). Let T be a hole of D and let h be a pure factor associated

to T. Then f will be said to admit h as a Motzkin factor in the hole T if 2014 belongs to
H(D U T) and has no zero inside T.

Lemma 2.2 : : Let T = d(a,r"), let E = K B T with a K, and let f be a pure factor
associated to r such that ~f - 1~E  1. Then m(f, T) = 0.
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Proof : Indeed, let q = m(f, T) and let f = (x - a)qh. If q ~ 0, this contradicts the
unicity of q and h shown in Lemma 2.1.

Denoting by gT the group of the invertible elements of H(K B T), by Lemma 2.1 we
have Corollary 2.3.

Corollary 2.3 : : Let T = d(a,r’). The set of the pure factors associated to T is a sub-
multiplicative group of the group of . Further, every element of GT is of the form ah
with h a pure factor associated to T and .1 E K*.

Lemme 2.4 : : Let D satis fy d(a, r’) C D and d(a, r-) ~ D. Let f E H(D) have no
zero inside T. There exists an infraconnected closed bounded set D’ satisfying d(a,r’) C
D’ C D, d(a, r-) ~ D’, such that f is invertible in H(D’).
Proof : Since f has no zero in T, then ~ f (x)~ is constant A ~ 0 [4]. Hence, we have

= A. Let B ~]0, A[. We just have to construct a set D’ satisfying d(a, r") c
D’ C D, d(a, r-) ~ D’ together with a number B such that ~ f (x)) > B whenever xED’.

First, we assume D n (K B d(a, r)) ~ 0. There does exist s diam(D)[ such that
for every u ~]r, s[. Then by Proposition [5] there exist ui, ..., ut ~]r, s[ such

that |f(x)| =D holds in all x E C(a, n) n D for every u ~]r, s[B{u1, ..., ut}. So we
just take D’ = (D n d(a, s)) 

Now we suppose that the condition D n (K B d(a, r)) ~ ~ is not satisfied. Since

d(a, r-) ~ D and D03C6a,r don’t depend on a in d(a, r), then there exists bED fl C(a, r)
such that

-D ‘ A.

Hence there exists s ~]0, r[ such for every u ~]s, r[. Then by Proposition
[5] there exists ui, ..., ut ~]s, r[ such that |f(x)| =D holds in all x E C(b, u) n D for
every u ~]s, r[B{u1, ..., ut}. Thus we now take

D’ _ (D ~ d(b, r-)) ~ U d(a, r‘) .

and then we check that D’ is the set we are looking for.

Theorem 2.5 : : Let T be a hole of D and let f have a Motzkin factor h in T . Then h
is unique. Further, if T is not a f-hole, h is the polynomial of the zeros of f inside T.
Besides, if E is another infraconnected set included in D admitting T as a hole, and if
g denotes the restriction of f to E, then g admits a Motzkin factor in the hole T as an
element of H(E), and this Motzkin factor is equal to h.

Proof : Let f have another Motzkin factor 1 in T, let F = f h and let G = f l. Since G

has no zeros inside T, by lemma 2.4 there exists a closed bounded infraconnected set D’
satisfying T C D’ C (D U T), T ~ D’, such that G is invertible in H(D’). Hence in H(D’)
we have
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’"~
Since T ~ D’ it is seen that D’ n (K B T) is an infraconnected closed bounded set

included in D that admits T as a hole. If we see - as an element of H(D’ n (K B T)), ’
then by (1) and by uniqueness of Mittag-Leffler term we have (-) = 0. So 2014 belongs to
H(K) and therefore is a polynomial P. Since -; belongs to H(D’) and has no zeros inside
T, it is seen that m(h,T) = m(l,T), so we have lim l(x) h(x) = 1. Hence P = 1 and this

proves that h is unique.
Now we assume that T is not a f-hole. Hence f belongs to H(D U T). Let Q be the

polynomial of the zeros of f inside T. Then f Q belongs to H(D U T) and has no zeros
inside T [4j. Since its Motzkin factor h is unique, we have h = Q. The last statement

about ~ is obvious, because -, clearly belongs to H(E U T) and has no zero inside T. This
ends the proof of Theorem 2.5.

Definitions. We will call the f-supersequence o/ D the sequence of the holes (Tn)n~I such
that either Tn is a f-hole or f belongs to H(D U T) and has at least one zero inside Tn. If

f admits a Motzkin factor h in a hole T, it will be denoted by The index of h in T
is called the Motz1cin index of f in T and denoted by m(/,T). For every hole, which does
not belong to the f-supersequence, we put /~ = 1.

Lemma 2.6 is immediate.

Lemma 2.6 : : Let D A, let T be a hole of D, and let H(D) admit each one
a Motz1cin factor in the hole T. Then /~ admits a Motzkin factor in T, and we have

= ~~ m(fg,T) = m(f,T) + m(~, T). .
Besides, if f is invertible m H(D), then f-1 admits a Motzkin factor in r which is ,

and satisfies m(f-1,T) = -m(f,T).

3.MOTZKIN FACTORIZATION.

Lemma 3.1 : : Let the f-supersequence (Tn)n~IN be such that for every n IN, fTn exists

and such that lim fTn - 1 = 0. Then there exists N 6 IN such that = 0

t 00

whenever n > N. Besides, if D ~ A, the product (03A0 fTn)( JY fTn) does not depend
on t whenever t ~ N.
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Proof : Indeed, there exists N E IN such that we have  I whenever n > N,
and therefore , by Lemma 2.2, m(fTn, Tn) = 0. Now in Hb(D), we have

00 t 00

( n = ( ~ ( ~ f T~ ). But then, if D belongs to A, we have
n=N+1 n=N+1 n=t+I

t oo N t oo N o0

(03A0fTn)( n (fl T’ fl ’j’ fl T _ (fl T fl .

n=l n=t+l n=l n=N+l n=t+1 n=l n=N+l

Definitions. Let (Tn)nEI be the f -supersequence of D with I a subset of N which is
either finite or equal to IN.
If I is finite, f will be said to have a finite Motzkin factorization if it factorizes in H(D) in

the form ~ f ° ~ with f ° an element of H(D) whose zeros belong to D and for each
nEI

n E IN, f Tn a Motzkin factor of f in Tn.
If I is infinite and equal to IN, f will be said to have an in finite Motzkin factorization if it
admits a sequence of Motzkin factors f Tn satisfying lim f T’~ -1= 0 such that f factorizes

n~~

t 00

in H(D) in the form { f ° f Tn ) ~ fl f ~’n ), with f ° an element of H(D) whose zeros
n=l n=t+l

belong to D.
In both cases, f ° will be called the principal factor of f.

Corollary 3.2 : : Let D be bounded and let f have an infinite Motzkin factorization with

a f-supersequence (Tn)n~IN. Then we have f = f0(03A0 fTn).

n==i

Corollary 3.3 : : Let f have an infinite Motzkin factorization with a f-supersequence
00

(Tn)n~IN such that Tn) = 0 for all n > 0. Then we have f = f ° (03A0 fTn).
n=l

Remark : Let f E H(D) be unbounded and have Motzkin factorization of the form
N ao 00

~ f ° f ~’n ) ( fl f Tn ) . One cannot claim that the product ( f ° ~ converges in

n=l n=N+l ~=1

H(D), even if D is closed and belongs to A. Indeed, let r ~]0, 1{, let (an)n~IN be a sequence
in d(0,1) such that |an - am| = 1 whenever n ~ m, and ai = 0. For every n E ]N*, we put

Tn = d(an, r") and E = K B (~ Tn). Clearly, the holes of E are the Tn. Let be

n=l
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a sequence in d(o, r-) such that lim an = o. For every n > 2, we put gn = 1 + ~n .
The sequence (9n)n>2 is seen to satisfy ~~gn -1 ~~E _  i ~ n ~  , 1 and therefore we have

- .. - 

r
00

lim Hence the product h = 03A0 gn obviously converges in H(E).
Since E clearly belongs to A, we see that x2h belongs to H(E) and is invertible in

H(E). Besides, f clearly has Motzkin factorization with = gn for every n > 2,
f Tl = x2, and f o = 1. However, we will check that the sequence (fn)n~IN* defined by

n

f n = x2 03A0gj does not converge in H( E}. Indeed we have
j=2

n

f n(x) = x2( 1).
j=2

For every x E K d 0 1), we have |x203A0 x - |x2|, and x - 1| = |03BBn+1 x| hence
j=2

= |x~03BBn+1|. Thus f n+1 -- f n is not bounded in H(E}, and therefore
the sequence (fn)n~IN* does not converge in H(E). According to Theorem 4 in [11] the

00

product " 03A0 fn" should converge to x2h in H(E}. Here we see that this is not true in the
n=1

general case. Actually the proof given in [11] only shows the simple convergence of the
sequence (In)’

By Lemma 2.6, Lemma 3.4 is immediate.

Lemma 3.4 : : Let D let f, g E have Motzkin factorization. Then so does

f g. Besides, we have (fg)O = fOgo. Further, if f is invertible, f ’1 also has Motzkin

factorization, and it satisfies = 

Corollary 3.5 : : Let D E A, let f have an in finite Motzkin factorization of the form
t oo

(f0 03A0fTn) ( jT fTn). . Let N E IN be such that m(fTn, Tn} = 0 for all n > N. . Then we
n=1 n=t+1

have
N o0

n T" .
n=1 n=N+1

Proposition 3.6 : : Let f E H(D) satisfy II1D  1 and have Motzkin factorization
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00

the form f0(03A0fTn) with (Tn)n~IN* the f-supersequence of D. . Then for each n > 1 we
n=l

have m(fTn, Tn) = 0.
Proof: For every n E IN*, we put qn = m(fTn,Tn). By Lemma 3.1, we may assume
the (Tn)n~IN* ranged so that qn ~ 0 for n  N while qn = 0 whenever n > N. When
n  N, f Tn is of the form (x - an)qn (I + with wn E Tn), ~) wn  1

and a n E Tn. When n > N, f Tn is just in the form (1 + (In) with wn E Ho ( K ~ Tn) and
 I. Besides, as f has no zero in D, obviously f ° has no zero in D and therefore

has no zero in D hence f ° is of the form A(l + 03C90(x)) with wo E H(D), ~03C90~D  1.

N oo

Let h(x) = A 03B1n)qn. We see that f factorizes in the form h I (1 + wn). Since
n=1 n=0

~03C9n~D  1 for every n E 1N and since lim 03C9n = 0 it is seen that h satisfies

 1 as f does.
Let us suppose q1 ~ 0. We may obviously assume ai = 0. Let Ti = d(0, r"). Thus,

in Tl, h admits 0 as a zero of order ql if qi > 0 (resp. a pole of order -ql if qi  0) and
has neither any zero nor any pole different from 0. Anyway, when x E Ti, we have

N

(2) Ih(x)1 = B|xq1| with B = |A|03A0 |03B1n|qn.
n=2

First we suppose r ft Then there exists r’ > r such that h has neither any zero

nor any pole in 0394(0, r, r’), hence h has neither any zero nor any pole in d(0, r’) 1 {0}.
Therefore is of the form in all of d( 0, r’) 1 {0}. In particular, this is true in
0394(0,r,r’) n D and shows that D03C60,r(h) = Brq1 while = Br’Q1. . Hence we see

that is not constant in ~(o, r, r’) n D and therefore this contradicts relation (1).
Now we suppose that r belongs to |K| and then by a classical linear change of variable,

we may restrict ourselves to the case where r = 1. Hence we have Tl = d(o,1-). By (2)
we have D03C60,1(h) = B. But by definition B belongs to |K| and therefore we may clearly

assume B = 1 without loss of generality. Hence h is of the form P(x) Q(x). with
(3) = 1 and P prime to Q.
Let us suppose qi > 0. By definition of h, P has no zero different from 0 in Ti while

Q has no zero in Ti. Hence Q satisfies
(4) whenever x E Ti and then by (3) we have = 1, while

obviously P(0) = 0. Hence by (3) it is seen that ~~P - = 1 and therefore by (4)
we have = 1’ But we know that for every g E R(D U d(0,1)) we have

> > == ~g~D

hence we see that > 1 and this contradicts (1).
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We now suppose qi  0. By definition h is obviously invertible in R(D). Hence we

put F = 1 h and we see that F satisfies ~F -1~D 1 and admits 0 as a unique zero in T1
while it has no pole in Ti. Hence the same process lets us get to the same contradiction
and finishes showing that qn = 0 for every n > 1.

Lemma 3.7 : : Let f E H(D) be invertible in H(D) and have Motzkin factorization,
and let a E D. Then f satisfies ~~  1 i f and only if for every hole T of the

f .supersequence of D we have m(f, T) = 0.

Proof : Without loss of generality, we may obviously assume f(a) = 1. By Lemma 3.6,
we already know that if f satisfies  1, then for every hole of the f -supersequence,
we have m( f, T) = 0. Now we suppose that for every hole T of the f -supersequence we
have m( f T) = 0 and will prove that  1. Indeed, by Lemma 1, for each hole
of the f -supersequence, we have  1. Besides since f is invertible, f ° must
also be invertible, hence it is of the form (1 + ~(x)), with  1. Then it is seen that

4.EXISTENCE OF MOTZKIN FACTOR AND MOTZKIN FACTORIZATION.

We will show all the semi-invertible elements to have Motzkin factorization, step after
step, and first we consider rational functions.

Proposition 4.1 : : Let f E R(D). . Then f admits Motzkin factorization.
Proof : Since the number of zero and pole of f is finite, let Tl, ..., Tq be the f -supersequence
of D. For each n =1, ..., q we denote by f Tn the rational function whose numerator ( resp.
denominator ) is the polynomial of the zeros (resp. of the poles ) of f inside Tn. Finally
we denote by f0 the rational function whose numerator ( resp. denominator ) is the poly-
nomial whose zeros are the zeros (resp. the poles) of f in D~(KB), (resp. in KB). It
is seen that f ° is the principal factor of f, and that for each n = 1, ...q, is the Motzkin
factor of f associated to the hole Tn.

Proposition 4.2 : : Let 03C6 E H(D) satisfy ~03C6 - 1~D  1. Then 03C6 admits Motzkin

factorization 03C60 (03A0 03C6Tn) with (Tn) nEIN. the f-supersequence. For all n E IN* we have
n=i

= 
. Besides 03C60 satisfies ~03C60 - 1~D ’= 

Proof : First we suppose § E R(D). Then by Proposition 4.1, ~ admits Motzkin factor-
ization. Now by Lemma 3.7, for each n > 0 we have = 0, and therefore, is

of the form 1 + 03C9n with ~03C9n~D  1 whenever n > 0 while 03C60 = 1 + n;o with  1.
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Hence we see that 
___________

03C6Tn = (03C9n 03A0 (1 + 03C9j)) Tn.

j#n

Clearly, 03A0 (I + wj) is of the form 1 + 03C8n with  1, hence  ~03C9n~D
~~n
j~IN

and we obtain (1) ~03C9n03C8n~D  ~03C9n~D. ° But is clearly equal to (03C6Tn)Tn
and then we have

(2) ~(03C9n)Tn ~D - ~03C9n~D > ~03C9n03C8n~D ~ ~(03C9n03C8n)Tn ~D.

Besides, , (Wn = + (03C9n03C8n)Tn hence by (1) and (2) we have

~(03C9n(1+03C8n))Tn ~D - ~03C9n~D and finally

~03C6Tn ~D - + 03C8n))Tn~D = ~03C9n~D = ~03C6Tn - 1~D.
00

In the same way we put 03A0(1 +wn) = 1 with (3)  1. It is seen that 03C8 belongs
n; i

00

to Ho(K B ( U Tn)). Hence the Mittag-Leffler Theorem [1] applied to 03C8 shows that (4)
n=l .

~10 = o.
Next, we have § = (1-03C90)(1+03C8) = hence 03C60 = 1+(03C90)0+03C80+(03C9003C8)0.
By defintion wo E H(D) hence wo = and then by (4) we have

10 -1 + wo -~- (wo~)o.

But by (3) it is seen that  ~03C90~D hence finally we obtain ~03C60 - 1~D =
= ~~ ~° -1 ~~ D . Thus we have proven the inequalities satisfied by the and by ~°

when § belongs to R(D).
Now we consider the general case when § E H(D). Let (fm)m~IN be a sequence

in R(D) such that lim ~03C6 - fm~D = 0. Let ~ ~]0,1[ and let N E IN be such that

whenever m ~ N. Let T be a hole of the 03C6-supersequence. We will show

that the sequence converges in H(D) and that this convergence is uniform
with respect to the ~-supersequence. We fix m ~ N. It is seen that  I and

then by Lemmas 2.I and 3.6 we have  1 and in particular =1.

Besides, we remember that in H(K B T), the norm ~~ . ~,D is multiplicative and actually
equal to D03C6T. Now let s > N. We have

~(fm)T - (fs)T~D = ~(fm) (fs)T - 1~D ~ max(~(fm)T (fs)T - (fm)T~D, ~(fm)T - 1~D).
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Therefore we obtain

(5) ~(fm)T - (fs)T~D ~ max(~(fm)T - 1~D), ~(fs)T "’ 1~D).

But, as we just proved about elements of R(D), we have

1I(!m)TIID and ~(fs)T - 1~D = ~(fs)T~D.

Hence by (5) and by the Mittag-Leffler Theorem ~1~, we obtain
(6) ~(fm)T - (fs)T~D ~ ~.
Relation (6) does not depend on the hole T and shows that, for each fixed n E N*, the
sequence is a Cauchy sequence which converges in H(K ~ Tn), to an element
whose index is equal to 0, and this convergence is uniform with respect to n. For each
n E N*, we put = lim Then it is seen that 

’

m ~ ~

00 00

03A0 03C6n # lim 03A0(fm)Tn.

As a consequence, the sequence (fm)O is also convergent in H(D), and actually in Hb(D ).
Let 03C60 be its limit. Then we have this factorization : § = II 03C6n. It is seen that this is

n=o

the Motzkin factorization for ~. Obviously, for each fixed n > 0, the equality satisfied by
the (fm)Tn holds for and shows that

In the same way, the equality satisfied by the (fm)O show that

~(03C6)0 - 1~D D .

This ends the proof of Proposition 4.2.

Theorem 4.3 : : Let a E D. Let 03C6 E Hb(D) be such that |03C6(a)| ~ 0. The following
statements i), ii) , iii) are equivalent

i) ~03C6 -- 03C6(a)~D  |03C6(a)|. 
_ _ _

ii) For every hole T we have ~03C6T~D  and  |03C6(a)|.
iii) 03C6 is invertible, has Motzkin factorization and for every hole T , 03C6T satisfies

 1 and 03C60 satisfies ~03C60 - 03C60(a)~p  
.

Besides, if statements i), ii) , iii) are satisfied then we have
(u) m(~, T) = 0 for every hole T.
(v) for every hole T.
(w) ~03C60 - 03C60(a)~D = ~03C60 - 03C60(a)~D.
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Proof : Without loss of generality we may obviously assume

(1) (~(a)~ =1 and ~~(a) --1~  1.

Let (Tm)m~I be the I-sequence of D. We notice that when i) is satisfied, § is obviously
invertible.

First we suppose i) satisfied and will show that so is ii). By the Mittag-Leffler Theorem
we have 

______

(2) 11 - ~ ~03C6 - 03C6(a)~D.

But it is seen that (~ 2014 = Hence by (2) we see that

(3) 03C6(a)~D  1, wheneverm E J.

In the same way we have (03C6 - 03C6(a))0 = 03C60-03C6(a) and then by the Mittag-Leffler Theorem[1]
we have 

_

(4) ~~~a "  1.

00 
_ _ 

00

Besides, by (3) we see that ~03A303C6Tm ~D  1 hence 03C60 ~D = ~ 03A303C6Tm ~D  1 and
m=l m=l 

"~

therefore ,~(a) - ~o(a)~  1, hence by (4) we see that (5) ~~~o -  1. Finally by
(3) and (5), statement ii) is clearly proven.

Now we will show that each one of the statements ii) and iii) separately implies i).
We suppose ii) satisfied. Hence we have

(6) 
mEl

If D is bounded, by statement ii) and by (6) we obtain i). Now let D be not bounded.
00 _

Then 10 is a constant A. Hence § is in the form A + ~ ~T~ with i!D  1 whenever° 

m=i 

"~ ’~

00

m > 1 hence (7) ~~ ~ ~Tm  1. Now we have
m=l 

’~

00 oo

~ - ~(a) = ~ ~ - ~(a) = ~ (~ - ~(~))’ .
m=0 m=1

00

By (7) we see that ~ L (03C6Tm - 03C6Tm (a))~D  1 hence finally i) ~03C6-03C6(a)~D  1.

m=1 

’~~ 
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We now suppose iii) satisfied. Hence we have (8)  1 for all m E I.

If D is bounded we have ~03C60 - 03C60(a)~D  1 hence by (8) we directly have i). If D is not

bounded then ~° is a constant v such that ~(o) = v ~ hence by (8) and (1) we
m~I

see that |03BD - 1)  1 hence by (8) we obtain i) again.
Finally, i) is implied as well by ii) as by iii). Obviously by (1), i) implies 1

and therefore we may apply Proposition 4.2. Now we suppose that either ii) or iii) is

satisfied. Hence so is i) and so are u) and v) by Proposition 4.2.
Finally, we will show w) and at the same time we will finish proving the equivalence

between ii) and iii). Let 03C8 = (03C60(a))-103C6. We may apply Proposition 4.2 to 03C8 and we have

(9) ~03C80 - 1~D = ~03C80 - 1~D.

But we have

(10) 1~D ~ ~03C80 - 03C80(a)~D = ~03C60 - 03C60(a)~D
and 

_ _ _ _ _

~11) «~o - ~o(a)~~n = ~~~o - ~o(a)~~D = ~~~o - 
Hence by (9), ( 10), ( 11 ) we obtain

(12) ~~~° - ~~~o ‘ 

Now let r = ~°(a) and let X = r’~~. By (1) and (7) we see that )F - 1)  1 hence we

may apply Proposition 4.2 to x and we have

(13) 1~D = ~03C60 - 03C60(a)~D

while ~~0 - 1~D and while

~~0 - 1~D = ~~0 - ~0(a)~ = ~03C60 -

Hence by (13) we see that ~~~° - and therefore by (12) we obtain
w). This finishes proving the equivalence between ii) and iii) and ends the proof of Theorem
4.3.

Remark : When Theorem 4.5 is proven, the Statement iii) is equivalent to :

iii’) ~ is invertible and for every hole T ~~’ satis fies  1 and ~° satis fies
II~° - ~°(a)~~D  .

If D is not bounded, as is bounded, both ~° , ~o are constant and therefore, the
statements  |03C6(a)| and ~03C60 - 03C60(a)~D  |03C6(a)| are automatically satisfied.
Statement ii) is then equivalent to : 

’

ii’) For every hole T we have  ~~(a)~ [
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and statement iii) is equivalent to:
iii") 03C6 is invertible and for every hole T , 03C6T satisfies  1.

Lemma 4.4: Let D be unbounded and D E A, let a E K 1 D and f E H(D) be semi-
invertible and satisfy lim f(x) = 0. Then there exists q E 11V* and g E H(D) such that

f = g (x-a)q and 0.

Proof: We suppose that a = 0. Since D E A and D is unbounded, we have K B D is
bounded [4]. So, since f is semi-invertible, there exists r > 0 such that the set B = {x E

> r} is included in D, and such that f(x) ~ 0 whenever x E K ~ d(o, r).
Let F(u) = whenever 0 and u E d(o, r ). F is clearly an element of

{o}). But as f is bounded we see that F belongs to and F(0) = lim f(x)
|x|~~

Hence there exists q E IN* and G E T)) such that F = uqG and G(o) ~ 0[4].
In H(B) we have f = ~ G( i ), so the lemma is proved if we put g = xq f .

Theorem 4.5: Let D E A. Then f has Motzkin factorization if and only if it is semi-
invertible . .

Proof: Without loss of generality we may assume the f -supersequence to be infinite.

We denote it by (Tn)n~IN*. Let f have Motzkin factorization (fO 03A0fTn ( 03A0fTn) . By
n=1 n=t+l

t oo

definition, f ° is semi-invertible in H(D) hence in H(D). Besides, fl is
n=I n=t+1

clearly invertible in H(D). So f is semi-invertible.
Now, we suppose f to be semi-invertible and will show it to have Motzkin factorization.

By Lemma 3.4 we may clearly suppose that f is invertible without loss of generality.
First, we suppose that there exists NI in Rj such that (1) M  whenever x E D.

Let h E R(D) satisfy (2) h~D  M 2, and let h 03A0 hTn be the Motzkin factorization" 
n=1

of h. For every n =1, ..., N, let qn = m(h,Tn), let an E Tn, let hn = and let
N N

ho = h°. . Let u(x) = 03A0(x-an)qn and let l(x) = h° 03A0 hn. By (1), (2) it is seen that h has
n=1 n=1

no zero in D and so is h° in D. Let a E D. Then h° satisfies  and

of course for every n > 0, hn satisfy ~hn-1~D  1. Hence, we have (3)  |l(a)|.
Let b = In particular, we have |l(x)| = b whenever xED. . Besides, we notice that

we have (4) M |l(a)| ~ |u(x)|. Let F = f u. Then F belongs to Hb(D) . By (3) and (4) we

check that  b and therefore by (3) again, we have
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Then we can apply Theorem 4.3 to F and then F has Motzkin factorization
00

F~ TI with m(F, Tn) = 0 whenever n > 0. As a consequence f also has Motzkin
n=i

factorization
N oo

11 with and for each ~=l,...,7V,/~=(.r-~)~F~,
n=1 n=N+1

and finally for each n > N, = FTn.
Now we suppose that D} = 0. Since D is closed, and since f is invert-

ible, we see that D is unbounded and that lim = 0. Hence by Lemma 4.4 there
|x|~~

exists q such that has a non zero limit when |x| tends to +~, (x D). Let

G = 2014, then it is easily seen that there exists m > 0 such that |G(x)| ~ m for all x ~ D.
Indeed, on the first hand there exists r such that |G(x)| ~ 1 for all x ~ D B c!(0,r) and on
the second hand f is bounded in D n d(0,r), hence there does exist m 0,1[ such that
|G(x)| ~ m whenever x ~ D B d(0,r). Thus G admits Motzkin factorization and then by
Lemma 3.4 so does /. This ends the proof of the Theorem.

Remark: If a closed set B does not belong to A, there are counter-examples of invertible
elements F which don’t admit Motzkin factor and by the way dont admit Motzkin
factorization. Indeed, don’t let jS belong to A. Since by hypothesis B is closed we know

that B B B is not bounded. By [4] there exists a quasi-minorated element / Hb(B)
satisfying (1) lim /(J?) = 0 and such that :r/ does not belong to H(B). Since / Hb(B)

|x|~~

we can take it such that  1. Without loss of generality, we may assume that 0

belongs to a hole of B. Let T = d(a, r") be another hole of B, and let F = x(1+f) (x-a). Then
it is seen that JF belongs to Hb(B) and is invertible in Hb(B) because both x (x-a), 1 + f

are invertible in Hb(B). Hence F admits Motzkin factorization. In particular, we see

that = 201420142014- . . However we check that (:r 2014 a)F does not belong to -H~~B) because
(x-a)

(a- 2014 a)F = x(1 + f) and by hypothesis, xf does not belong to H(B).

In the same way, let (?==2014. Since F is invertible in Hb(B), so is G. But then we

see that 201420142014G does belong to Hb(B) and has no zero in B, but obviously its inverse

does not belong to H(B). Therefore 201420142014G is not semi-invertible in H(B). Thus, there
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exist invertible elements h, g in H(B) such that hg is not semi-invertible, although it does

belong to H(B). This contradicts Theorem 1 in [11] which apparently states that f fT
extends to an element of H(D U T).

Theorem 4.6 : Let D belong to A and let T = d(a, r") be a hole of D. Then f admits
a Motzkin factor in the hole T if and only ~ 0.

Proof : Let F be the circular filter of center a, of diameter r, and let M 

There do exist ai, ..., aq E d{a, r) and s, t satisfying s  r  t, such that > M
9 q

whenever x ~ D~(~ r(a?, s, t)). Let A = D ~(~ 0393(aj, s, t)). Then T is clearly a hole

of A. Besides, the restriction g of f to the infraconnected set A = Dn(n is

j=i

invertible in H(A), and therefore, by Theorem 4.5, it admits a Motzkin factor gT in the

hole T. But then, , f T belongs to H(D) and to H(A U T). So the Mittag-Leffler term is
9

zero and f gT belongs to H(D U T). . Besides, as gT is the Motzkin factor of g in T, g has
9 

l ~ s 9 9 
9 
T

no zero inside T.

Now, if f admits a Motzkin factor in the hole T, then )(a: - fT(x)| =1

for all x ~ K B T. = rm(f,T). As f fT has no zero inside T then |f fT(x)| is a
constant B ~ 0 whenever x belongs to T. Hence we have D03C6a,r(f) = > > o. This

ends the proof.

Corollary 4.7 : : Let D E A, f E H(D) and D’ be a closed infraconnected subset of D
such that D and D’ have a same hole T. Then f has Motzkin factor in T if and only if the
restiction g of f to D’ has a Motzkin factor in T. .

Moreover, if this equivalence is true, we have f T = gT. .

Theorem 4.8 : Let D E A and let g be the multiplicative group of the invertible elements
in H(D). Let T be the set of the holes of D. Let ~° be the subgroup of the elements

invertible in H(D). Let 1{ = G° 03A0GT. The product H is a direct product and is dense
TE~’

in ~.
Proof : The product is direct because for each element, Motzkin factorization is unique.
Thus x is the set of the invertible elements whose Motzkin factorization is finite. Since

every element of g has Motzkin factorization, it obviously belongs to the closure of ~l.
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