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p-ADIC ANALYTIC INTERPOLATION

Jesus Araujo and Alain Escassut *

Abstract. Let K be a complete ultrametric algebraically closed field. We study the

Kernel of infinite van der Monde Matrices and show close connections with the zeroes of
analytic functions. We study when such a matrix is invertible. Finally we use these results

to obtain interpolation processes for analytic functions. They are more accurate if K is
spherically complete.

1991 Mathematics subject classification : 46510

1. NOTATIONS, DEFINITIONS AND THEOREMS

K denotes an algebraically closed field complete for an ultrametric absolute value.
Given a € K, r > 0, we denote by d(a,r) (resp. d(a,r~)) the disk {z € K : |z —a| < 7}
(resp. {x € K : |z — a| < r}). Given r > 0 we denote by C(0,r) the circle d(0,r)\d(0,r~).
Given ry,72 € R4 such that 0 < r; < ry, we denote by I'(0, 71, r2) the set d(0,r;)\d(0, 7).

oo
Given r > 0, we denote by A(d(0,r~)) the algebra of the power series Zb,.x"
n=0
converging for |z| < r.
Given K-vector spaces E, F, L(E, F) will denote the space of the K-linear mappings

from E into F.
£ will denote the K-vector space of the sequences in K, and &, will denote the subspace

of the bounded sequences. The identically zero sequence will be denoted by (0).
&1 will denote the set of the sequences (a,) such that imsup {/]an| < 1. So &; is seen

n—oo
to be a subspace of £ isomorphic to the space A(d(0,17)), and obviously contains &.
Let M, be the set of the infinite matrices (); ;) with coefficients in K.
i ; will denote the Kronecker symbol. I, will denote the infinite identical matrix
defined as A; ; = 6, ;.

* Research partially supported by the Spanish Direccién General de Investigacién Ci-
entifica y Téchnica (DGICYT, PS90-100)
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In this paper, (a,) will denote an injective sequence in d(0,17) such that a, # 0 for
every n > 0. and we will denote by M(a,) the infinite matrix M = (); ;) defined as
/\."j = (a,-)j, (i,j) € N x IN.

A matrix M = (}; ;) € M will be said to be bounded if there exists A € R, such
that |A; ;| < A whenever (i,7) € N x IN.

M will be said to be line-vanishing if for each i € IN, we have ]lir{.lo Aij =0.

A line-vanishing matrix M is seen to define a K-linear mapping s from & into £.

So the matrix M = M(ay,) clearly defines a K-linear mapping ¢y from &; into £,

o0
because given a sequence (b,) € £, the series Z bn(a;)™ is obviously convergent.

n=0

Lemmas 1 and 2 are immediate :

Lemma 1 : Let M € M, be line vanishing.
The three following statements are equivalent :
Yum 18 continuous
Pum 18 an endomorphism of &
M 13 bounded .

In particular, Lemma 1 applies to matrices of the form M(a,).

Lemma 2 : Let M = M(a,) and let (b,) € €;. Then (b,) belongs to Kerdp if and only

o0
if the analytic function f(t) = Z bat™ admits each point a; for zero.

n=0

Theorem 1 : Let M = M(a,). Then Kergp # {(0)} if and only if nl:rx;o lan] = 1.

Besides Keryppr # {(0)} if and only if H lan| > 0.

n=0

Theorem 2 :  Let b= (b,) € &. There ezists an injective sequence (a,) in d(0,17) such
that b € Ker am(a,) if and only if b satisfies |bj| < sup |by| for all j € IN.
nelN

Definitions and notations : An injective sequence (a,) in d(0,17) will be called a
regular sequence if mf |an —am| > 0 and hm lan] = 1.

Let (an) bea regula.r sequence and let p = 1;61f |a,, — am|. For every r €]0, 1], we will denote
nFEm

by Q((an),r) theset d(0,17)\( | J d(an,77)), and by Q(a,) the set d(0,17)\( U d(@n,p7)).
nEN n€N
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Let a = (a,) and b = (b,) be two sequences in K. We will denote by a * b the

n
convolution product (¢,) defined as ¢, = Z ajbn_j.
j=0

Theorem 3 : Let (a,) be a regular sequence of d(0,17) such that there ezists g €
A(d(0,17)) satisfying

(i) ap i3 a zero of order 1 of g for alln € IN.

(ii) g(z) # 0 whenever z € d(0,17)\{an, : n € N}.

(3i) lim_ |g(z)| = +oo.

2ehian)

Let M = M(ay). Then ppr is injective but its image does not contain £. Also there
ezists P = () j) € My (not unique) satisfying

(1) P is line-vanishing.

(2) nIsz;o Anjop =0 for all (j,h) € N x IN.

(3) > Anjah =6 for all (j,h) € N x IN.
n=0
(4) MP = PM = L.
(5) P(b) € &, for allb € &,.
(6) MP(b) =b for allb € &,.
(7) Yp is injective.
Let (v,) be a sequence in K such that |vg| > |v,| for every n > 0. For every j € IN, let

(n,j)nen denote the sequence (zm lu am)((/\n,j) * (Vn)). Then the matriz Q = (pi;)
ma”

m=0 ]
also satisfies properties (1) — (7) and is not equal to P for infinitely many sequences (v,).

Remarks. 1. Mainly, the proof of Theorem 3 takes inspiration from that of Lemma 3 in
[7]. However, in this lemma, the considered matrix, roughly, was P. Here the matrix we
consider is a van der Monde matrix M and we look for P.

2. Given M, the matrix P depends on g and therefore is not unique satisfying (1)—(7).
Indeed M, is not a ring because the multiplication of matrices is not always defined and
even when it is defined, is not always associative. As a consequence, if P, P’ satisfy
MP = MP' = PM = P'M = I, we cannot conclude P’ = P.

Actually we can consider ¢pr oy p € L(&p, E) and then this is the identity in . Next
we can consider ¥ pr oy € L&y, E1) and this is the identity in €. But we cannot consider
Ypr o (¢ 0Yp) because Y pr is not defined in £;. In the same way, we cannot consider
(¥pr oY) o Yp because ¢ pr 09y is only defined in &.

We consider the matrix P and look for ”inverses” M such that MP = PM = I.
Suppose that there exists a bounded matrix M’ # M such that PM' = M'P = I,. Now
we can consider @ 0 (p o hpr) € L(&, E). Since Pp o Y is the identity in &, then
émr o (Pp o) is equal to ¥pr. Next we can consider (dpr 0 9pp) oy € L(&o, E). Since
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énm 0 Y p is the identity on &, we have (¢pr 0 ¥p) 0 ¥pr = ¥pr and therefore Ypr = pp
hence M = M'.

3. Let P,Q € M satisfy (1) — (7). Let &' = ¢p(&), let £ = g(€y). Then the
restriction of @ to £’ (resp. £") is just the reciprocal of ¥ p (resp. ¥gq).

Conjecture. Under the hypothesis of Theorem 1, every matrix satisfying properties
(1) = (7) is of the form

Bnj = (—i:;m—)((/\ ni) * (Va))-

Theorem 4 : Let K be spherically complete, and let (a,) be a sequence in d(0,17)

[e o]
satisfying lan — apm| 2 min(|a,|, |anm|) whenever n # m, lim |a,| =1, and H lan] =0.
n—oo
n=0

Then M(ay) admits inverses P such that, for every bounded sequence b := (b,) in K,
the sequence a := (a,) = P(b) defines a function f(z) = Z anz™ € A(d(0,17)) satisfying
n=0
flayp) = by,.

Theorem 5 : Let (a,) be a regular sequence in d(0,17). There ezists a regular sequence

(7Yn) in d(0,17) such that (an) is a subsequence of (yn) satisfying : for every inverse matriz

P of M(vn) and for every bounded sequence b = (b,) of K, the sequence a = P(b) := (a,)
o o)

defines an analytic function f(z) = Z anz™ such that f(vy;) = b; whenever j € IN.

n=0

2. PROVING THEOREMS 1 AND 2.
For each set D in K, we denote by H(D) the set of the analytic elements in D (i. e.,
the completion of the set of the rational functions with no pole in D).

Given f(t) = Z bat™ € A(d(0,17)), one defines the valuation function v(f, 1) in the
n=0

interval |0, +oo[ as v(f,u) = ixelli[;(v(b,,) + nuy).
Lemma 3 and 4 gather the main properties of the function v(f, u) ({1],[4]).

Lemma 3 Let f(t) = Z bnt™ € A(d(0,17)). For every p > 0, f satisfies
n=0

ofow) =, dim  v(f(2). For every z € d(0,17) , f satisfies v(f(z)) 2. v(f,v(2)).

For every r €]0,1[, f satisfies —log || f|| 4, = v(f, —logr).
Besides f is bounded in d(0,17) if and only if the sequence (b,) belongs to E. If f is
bounded in d(0,17), then ||f|l 40,1~y = 821% 6] and —log || fllae1-) = ll‘i_xg)v(f,p).
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Lemma 4 : Let f(t) € A(d(0,17)) end let ry,72 € (0,1) satisfy ry < ro. If f admats
q zeros in d(0,r,) (taking multiplicities into account) and t distinct zeros ay,...,ay, of
maultiplicity order (; (1 < j < t) respectively in I'(0,7y,72), then f satisfies

v(f,~logra) — v(f,—logri) = — Y _ (j(v(a;) + logrs) — g(log r2 — log ).

i=1

[ <]
Proof of Theorem 1. Let b = (b,) € £\{(0)} and let f(¢) = Z bat™ € A(d(0,17)).
n=0
First we suppose Kergy # {(0)} and therefore we can assume b € Kergys. Then, by
Lemma 2, f satisfies f(a;) = 0 for every j € N. But for every r €]0,1[, we know that f
belongs to H(d(0,r)) and has finitely many zeros in d(0,7). Hence we have lim |a,| = 1.

Reciprocally, let the sequence (a,) satisfy lim |a,| = 1. By Proposition 5 in [4], we
n—o0

oo
know that there exists a not identically zero analytic function f(t) = Z bat™ € A(d(0,17))

n=0
o0
which admits each a; as a zero. Hence we have E bna;' = 0, and of course the sequence
n=0

(bn) belongs to £;, hence to Keré .
Now we suppose that Keryps # (0) and we assume that the sequence (b,) belongs to
Kerypr. In particular Kerd s # (0) and therefore lim |a,| = 1. Without loss of generality
n—oo

we may clearly assume |ap| < |an41]| for all n € IN. Besides, by definition we have |a;| > 0.

By Lemma 3 we know that rfxelltl‘v v(b,) = “11%1+ o(f,p) = Izl—lollI,IiED v(f(z)) = —log || fll4e0,1-)-

Now for each p > 0, let g(u) be the unique integer such that v(a,) > u for every n < g(u)
and v(a,) < u for every n > g(u). By Lemma 4, we check
q(p)

o(f, 1) = v(f,0(a1)) € Y u = v(az) + 2(p — v(ar)).

i=2

[o ]
Since v(f,u) is bounded when u approaches 0, by (1) it is seen that Zv(a,-) must be

Jj=1

bounded and therefore we have H lan| > 0.

n=1

oo
Reciprocally we suppose H |an] > 0. We can easily check that lim |a,| = 1, and
n=1
then we can assume |ap| < |ap41] for all n € IN without loss of generality. For each
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Jj
J € N we put Pj(z) = H (1 -z/am). By Theorem 1 in (2], we can check that there exists

m=1

f € A(d(0,17)) (f not identically zero) satisfying
(3) f(am) =0 for all m € IN, and
(4) v(f, 1) 2 v(Py(uy, ) — 1 for all p > 0.
Now we notice that if 41 > p2 > 0 then we have v(Py(,,), 1) = v(Py(,,), 1) and then

[ o] o0
we see that lirfll+ (Py(py, ) = E v(a;). But by (2) we have E v(aj) < +oo and therefore
[ Ciand . N
1=1 Jj=1

[~}
by (4), v(f, p) is bounded in |0, +oo[. Let f(t) = Z bnt". By Lemma 3 the sequence (b,)
n=0

is bounded and by (3) it clearly belongs to Ker.s. This finishes the proof of Theorem 1.

Lemma 5 : Let f(t) = Z bat™ € A(d(0,17)) and let r € (0,1). Then f admits at least
n=0

one zero in C(0,7) if and only if there exzist k,1 € IN (k < I) such that |b|r* = |by| r'.

oo
Proof of Theorem 2. Asa consequence of Lemma 5, a function f(¢) = Z bat™ € A(d(0,17))
n=0

admits infinitely many zeros in d(0,17) if and only if |b;| < sup |bn| for every j € IN. Then
n€lN

the conclusion comes from Lemma 2.

3. PROVING THEOREM 3.
As an application of Corollary (of Theorem 5) in (8], we have this lemma.

Lemma 6 : Let f € A(d(0,17)) have a reqular sequence of zeros (b,) and satisfy
lim |f(z)| = +o0o0. Then 1/f belongs to H(Q(b,)).

z|—1"

z€Q(bn)

Proof of Theorem 3. We may obviously assume |a,| < |an+1] and therefore a, # 0

whenever n > 0. Since g is not bounded in d(0,17), by Lemma 3 we have lirf)l+ v(g, p) = —o0,
p—
(=2}
and by Lemma 4 the sequence of the zeros (a,) satisfies H |an| = 0, hence ¥ is injective.
n=1

Now we look for P. Since g admits each a; as a simple zero, it factorizes in A(d(0,17))

in the form %;(z)(1 — z/c;) and we have ¥;(a;) # 0. We put g;(z) = j—’(f—)) Then g;
i\

belongs to A(d(0,17)) and may be written as Z An,jz". We denote by P the matrix

n=0
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Ao Aor .- Aon
Ao Al ... A
Mo At eee Ajm

and we will show this satisfies Properties (1) — (7).
For convenience, we put D = Q(a,). Since llim |g(z)| = +o0, by Lemma 6, we know
|z|—1"

z€D
that 1/g belongs to H(D). For each n € IN, we put u, = z"/g. Then in H(D), u, has a

Mittag-Leffler series ([3], [5]) of the form z ] ﬂ; Ta; . Now we put 8; = ¥j(c;) and we
=0 V/%3

have g(z) = jgj(z)(l—:t/aj). We will compute the 3; ,,. Let vj , = (1—z/a;)up. Then we

have v; n(a;) = 91—(3];)7 But since g;(a;) = 1 whenever j € IN, we see that 3; , = a/6;,
a® | ‘In+1
hence z"g(z) Z 6,0 a:/aJ) We notice that T ;/a,- . = 2 and then we
=0

have lim |0;| = 400, because the sequence of the terms z"/g(z) must tend to 0. Now
j—o0

n a"g(.’t) . g(x)
we have z" = —Ll -~ while gj(r) = ————~—. Since g;(z) = /\n ™, we
obtain _

8 <" Za,(Z/\h,x)

J=0

In particular, (8) holds in every disk d(0,r) with r €]0,1[. But then we know that

h ”wJ"d 0,
193llary = 592 Wil r* < g8, Now, we have lIg;llao,y < ellary as soom as
J

|a;| > r because then ||1/(1 — :c/a,~)||d(o’r) =1 and therefore the sequence (||¢;ll 4 ,))jeN

is bounded. Then the family (|As j|7*); nen tends to zero when j tends to +oo, uni-
formly with respect to h. In particular, P is line-vanishing. For each h € IN, we put
$h = supjemw |An,j|. We will show

9) hmsupsh/ <1

h—+4oc0

Indeed this is equivalent to show that for every r €]0, 1|, we have

(10) lim spr® =0.
h—o0
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Let r €]0,1[ and let € > 0. Since the family (JAs ;|7*); hen tends to zero uniformly with

respect to h when j tends to +oo, there clearly exists N such that |[As j|7* < € whenever

j > N, whenever h € IN, hence for every h € IN, we have s,r* < lx?%leAh,j]rh. But for
<ig

each fixed i € IN, we know that lim |\ ;|v* =0, hence lim ( max |An ;™) = 0. This
h—oo h—oo 1<j<N

finishes showing (10). Therefore (9) is proven and so is (2).
Now, we can apply the limits inversion theorem and, then, by (8), we have

M

[e <]
(11) z"= (Z a;-‘z\;.,j):c",
i=o

>
]

0
whenever z € d(0,r). Actually this is true for all r €]0, 1[ and therefore (11) holds for all

oo [o <]
z € d(0,17). Hence we have Za;‘/\h,j = 0 whenever n # h and Z ajAnj =1 So0(3)is
j=0 j=0
satisfied.
Thus we have proven that PM = I . Now we check that M P = I,. For every h # j,

oo
we have gj(an) = g(an) = 0, hence Za},‘)\h,j = 0. Besides, it is seen that g;j(aj) = 1,
h=0

hence Z ajl,; = 1. So we conclude that M P = I, and this finishing proving (4).
n=0

Now, we will check that P(b) € &; for all b € &. Let b := (b,) € &, let a :=

oo 2
(an) = P(b) and let f(t) = ant". For each j € N we put f;(t)= ) bmgm(t). Then
n=0 m=0

f; belongs to A(d(0,17)) for all j € IN. Let r €]0, 1{. Like the family |\, ;|r", the family

|An,jbj|r™ tends to zero uniformly with respect to n when j tends to +oco. That way, in

H(d(0,r)) we have Lim ||f — fjll 4o, =0 and therefore f belongs to H(d(0,r)). This is
j—oo '

true for all r €]0, 1] and therefore f belongs to A(d(0,17)). Hence P(b) € £,. This shows
(5).

Let us show (6). Let b := (by,...,by,...) be a bounded sequence. Let a = Pb, and
let a = (ag,...,an,...). We will show

(12) limsup|aa|'/™ < 1.

n—o0

Without loss of generality, we may assume |bj| < 1, whenever j € IN. Then we have

lan] < sup |An j| = sp, therefore limsup laa|/™ < limsup s,2/® < 1. Now, by (12), it is
JEN n—o00 n—00
oo
seen that for all j € IN, the series z anaj is convergent and therefore we may consider

n=0
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oo
Ma = M(Pb). By definition, for each i € IN, we have q; = Z Aijbj. Let Ma = (zh)ren-
For each h € IN we have z;, = Z apta, = E a},"(z Am,jbj). Let r = |a|. As we saw,
m=0 m=0 =0
the family |Am j0;| 7™ tends to 0 when m tends to +o00, uniformly with respect to j. Hence
by the Limits Inversion Theorem, we have

Z a?(z Am,;bj) = Z bj( Z Amof).
m=0 =0 )=0 m=0

Hence by (3), we see that z; = b; and this finishes proving (6). Then by (6) ¢ p is clearly
injetive.

[
Finally we will prove the last statement of the theorem. Let ¢(z) = Z vnz™. The

n=0
function ¢ belongs to A(d(0,17)) and is invertible in A(d(0,17)) thanks to the inequality
|vo| > |va| whenever n > 0. Hence the function G(z) = g(z)¢(z) is easily seen to satisfy i),
i1), iii), iv) like g. Then G factorizes in A(d(0,17)) and can be written as ¢;(z)(1 — z/a;)

. $i(z) _ g9i(z)d(z) -
with ¢;(z) = ¥;(z)¢(z). Hence we put Gj(z) = = . Now it is clearly
)= )= 35 = Hay)
xR
seen that the power series of G; is Z fn,jz". By definition, the matrix Q satisfies the
n=0
same properties as P. But when ¢ is not a constant function, for each fixed j € IN, we do
not have p, j = A, j for all n € IN. Hence Q is different from P. As a consequence we see
that ¢ is not surjective, it would be an automorphism of & and therefore ¥ p would also
be an automorphism of £ and it would be unique. This ends the proof of Theorem 3.

4. PROVING THEOREMS 4 AND 5
Notation. For each integer ¢ € IN*, we will denote by G(g) the group of the g-roots of 1.

Lemma 7 : Let (a,) be a sequence in d(0,17) such that lim |a,| = 1. For each s € N,
n—0o0

there ezists a prime integer ¢ > p and ( € G(q) such that ‘(ha, - ajl = max(|a,|, |aj|) for
every j €N, for everyh=1,...,¢-1.

Proof. Let r = |a,|. Since limp_.o|an| = 1, the circle C(0,r) contains finitely many
terms of the sequence (a,). Without loss of generality we may assume |a,| < r whenever
n < I, |ay] > r whenever n > t and |ap| = r, whenever n = [,...,t (with obviously
1 < s <t). Waatever ¢ € IN, { € G(q) are, it is seen that we have l("a, - a,-‘ = |a,| for
all j <! and 'C"a, - a,'l = |aj| for all j > t. In the residue class field k of K, for every
J=1...,t. let v; be the class of a;/a,. There does exist a prime integer ¢ > p such that
the polynomial p(z) = z? — 1 admits none of the y; (I £ j < t) as a zero. Hence, for
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every g-root v of 1 in k, we have v* # v; whenever j =1,...,t, whenever h =1,...,¢—1.
Now let ¢ be a g-th root of 1 in K. Then by classical properties of the polynomials, we
—_— aj
a,

j =1,...,t. This completes the proof of Lemma 7.

have

= 1, hence ]("a, —a,-| = |a,| = r whenever h = 1,...,¢ — 1, whenever

Lemma 8 : Let (a,) be a regular sequence and let p = igf |an — am|- There ezists a
nFEmM

sequence (by) in d(0,17) satisfying :
(1) lm |b,] =1.
n—oo
(2) |bp = bm| > p whenever n # m.
(3) (an) i3 a subsequence of (by),
(4) There ezists a sequence (g,) of prime integers different from p satisfying nllx*r;o gn = +09,

such that for every m € IN, ( € G(gn), (bn is another term of the sequence (b,),
(5) There ezists f € A(d(0,17)) admitting each b, as a simple zero and having no
other zero in d(0,17), satisfying
lim |f(z)] = +o0.

z|—1"

Ieﬂ(bn)

Proof. First we will construct a sequence (b)) satisfying (1), (2), (3), (4). Let (g;) be a
strictly increasing sequence of prime integers strictly bigger than p and, for each j € IN,
let s; = 31_;gi, let {; € G(g;)\{1} and let b:;,+h = C;'aj (0 £ h < gj—1). We will show

that a good choice of the sequence (g;) enables us to obtain
(6)  1bn — il = max(|bl,], b7l

for every couple (n,m) satisfying n # m and (n,m) # (si, s;) whenever (,5) € IN x IN.
In other words |b/, — b/,,| = max(|b’,|,|b},|) must be true all time except when n = m and
when (b,,b!,) is equal to some couple (a,;,a,;). For each t € IN, let F; = {s0,51,...,5¢}
and let E, be {0,1,...,s:—1}\F;. Assume that go,q;,...,g:~1 have been chosen to satisfy
the following properties (a;) and ()

(ar) bl — a;| = max(|bl,|, |as;|) for all j € N, for all n € E..

(B) |bl, = b,| = max(|bl],|bl,|) for all (n,m) € E; x E, such that n # m. We
will choose g such that both (a¢+1), (Be+1) are satisfied. Indeed, by Lemma 7 we can
take a prime integer u such that, given (; € G(u), we have |(,"at - ajl = max(|a¢, |a;])
forall j € N, forall h = 1,...,u — 1, |(}a; — b},| = max(|a,|,[b},]) for all n < s, for all
h=1,...,u—1. Thus we can take g; = u and we see that both (a¢41), (Bi+1) are satisfied.
Hence we can construct the sequence (g;) by induction and, therefore, the sequence (b))

satisfying (6) is now constructed. Then it is easily checked that the sequence (b)) so
obtained satisfies (1), (2), (3), (4).
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Now let {ro,...,Tn,...} = {laj| : j € N} and let D = Q(b,). The infinite product
oo

g(z) = H(l — (z/a;)%) converges in A(d(0,17)) and has no zero in d(0,r) N D because,
Jj=0

by construction of the sequence (b},), each zero of g is one of the points b, for some m € IN.

oo
Hence it is seen that we have |g(z)| > 1 for every z € d(0,17) \ (U C(0,r,)). For each
n=0

n € N, let £, = DN C(0,rp), let T, = 1en§ l9(z)], let op € (ra,Tn+1) N K], let ¢, €

rn-l-l )un

C(0,04), and let u, > min(p,n) be a prime integer such that 7,( >
n

> n + 1. Since

lim u, = 400, it is seen that the infinite product h(z) = H(l —~(z/cp)*") converges in
n=0
A(d(0,17)). Let D' = Q((cn),p) and let D" = D' N D. Let h(z) = Z Anz™ and, for each
n=0
r € (0,1), let M(r) = sup,en |An|r™. Each pole of h is simple and is of the form (c, with
¢ € G(un). Hence it is seen that h satisfies |h(z)|] > M |z|/p for all z € D'. Hence if

[e o]
zeD"\( U ¥.), then we have

n=0

lg(z)h(z)] = M(ra)7a 2 (

rr,, )¥»~t7, > n and finally we have
n-1

(7) lgllll lg(z)h(z)| = +o0.
zeD"

Now let (b!) be the sequence of the zeros of g. Clearly (b}) satisfies (1) and (4) and also
satisfies |b!! — b’,| = max(|b%|,|b},|) whenever n,m € IN and |b]} — b},| = max(|b},], |b7,])
whenever n # m. Now we put by, = b/, and by,41 = bl1. The sequence (b,) clearly satisfies
(1), (2), (3), (4) and also satisfies (5) because the zeros of h are the b, while those of g are
the b!,. Thus the zeros of f are just the b,, and then, by (7), we have ]lilml |f(z)] = +oo.

z€Q(bn)
This ends the proof of Lemma 8.

Proof of Theorem 4. Without loss of generality we may obviously assume |ap| < |apn41|
whenever n € IN. Let p = |ao|. Hence by hypothesis each disk d(ag, p~) contains no point
oy for each n # q. Let D = Q((an),p™)-

For each n € NN, let T, be the hole d(ay,p~) of D. Since |a,| = 0, it is shortly
checked that the sequence (T, 1) is a T-sequence of D ([8]). Then, since K is spherically
complete, by [4], Theorem 4, there exists g € A(d(0,17)) admitting each a, as a simple

o0
zero and having no zero else in d(0,17). Therefore, as H |an] =0, is is seen that g

n=0
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satisfies I llim lg9(z)| = +00. Now we can apply Theorem 3, which shows that the matrix
z|—1"

z€D

o0
M = M(a,) admits inverses P. Then the sequence (a,) satisfies Z ana] = b; for every
n=0

J € IN and this clearly ends the proof of Theorem 4.

Proof of Theorem 5. By Lemma 8, there exists a regular sequence (7,) of d(0,17)
such that (a,) is a subsequence of (yn) together with an analytic function g € A(d(0,17))
admitting each ym as a simple zero and having no other zero in d(0,17), satisfying
|=1|i—1.111— lg(z)| = +oo withp = ﬂx;xfn [¥n = ¥m|. Then, by Theorem 3, the matrix M = M(v,)
z€0(vn)

admits line-vanishing inverses M' satisfying M(M'(b)) = b for all bounded sequence

o0
b = (b,). Let a := (ap) = M'(b). Thus we have M(a) = b and therefore Zan'y;‘ =b;
n=0

whenever j € IN. This ends the proof of Theorem 5.

Acknowledgement : We are very grateful to Labib Haddad whose remarks contributed
to suggest Theorems 1 and 2.
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