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SEMINORMED SPACES

Pedro Telleria *

Abstract. Several functional characterizations of the equivalence of non-archimedean
seminorms on groups are given in this paper. This study allows us to define a "non-
archimedean seminorm” on the group of continuous homomorphims between non-archime-
dean seminormed groups, extending the usual and well-known norm defined on the space
of continuous linear maps between non-archimedean normed vector spaces.

1991 Mathematics subject classification : 22A05

0. INTRODUCTION.

In 1936 G.BIRKHOFF (1] and JJKAKUTANI (3] proved that a topological group
(G,-,7) has a countable basis of neighbourhoods at the identity 1 if and only if 7 is
defined by a left (right)-invariant semimetric on G, or equivalentely, by a seminorm on G
(amap | .|| : G — [0,4 o0) is called a seminorm if :

i) gl =0,
i) [lz=!|| = llz|| Vz € G,
iii) ||z - yll < |||l + llyll Vz,y € G).

Later, AAMARKOV (5] applied the result of G.BIRKHOFF and J.KAKUTANTI to
conclude that the topology of a topological group is defined by a family of seminorms.

The non-archimedean counterpart of the Birkhoff-Kakutani result was given in [6]
by G.RANGAN, who proved that a topological group (G,-,7) has a countable basis of
neighbourhoods at the identity of G consisting of subgroups of G if and only if 7 is de-
fined by a non-archimedean left(right)-invariant semimetric d on G (i.e., satisfying the
strong triangle inequality d(z,y) < max{d(z,z),d(z,y)} Vz,y,z € G), or equivalentely, T
is defined by a non-archimedean seminorm (i.e., satisfying the strong triangle inequality
lz - yll < max{|lz|],|lyll} Vz,y € G).

* Research partially supported by the Spanish Direccion General de Inves-
tigacion Cientifica y Tecnica (DGYCT, PS90-0100)
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Similarly to AAMARKOV in [5], we can also apply the result of G.RANGAN to derive
that the topology of a non-archimedean topological group is defined by a family of non-
archimedean seminorms (G is called non-archimedean if its topology has a basis B of
neighbourhoods at the identity such that V.V C V for all V € B).

The aim of this paper is to give some functional characterizations of the topological
equivalence of non-archimedean seminorms on groups (Section 2). As an application,
we define a "non-archimedean seminorm” on the group of continuous homomorphisms,
extending the well-known definition of norm on the space of continuous linear maps between
normed vector spaces (Section 3). Also, several examples of non-archimedean seminormed
groups are given in Sections 1 and 4 (this last one devoted to describe the non-archimedean
seminorms on the additive group of integers numbers).

1. PRELIMINARIES AND EXAMPLES.

Throughout this paper G,G’ will be multiplicative groups and 1g,1g will be its
corresponding identity elements.

1.1 Definition. (See e.g. (2] and [7]). A non-archimedean seminorm on G is a map
Il Il : G — [0,+400) with the properties

i) lell=0.

i) |lz7Y =|lz|| forallz €G.

iii) |lz-yll £ max{|iz|,, lyll} forall z,y € G.

If in addition, ||z]| =0 <= =z = lg , then we say that || || is a non-archimedean

norm on G.
The pair (G, || ||) is called a non-archimedean (semi)normed group.

Similarly to [8], 1.1.5, we have that if z,y € G and ||z|| # |ly|l, then ||z - y| =
max{||z]}, ly|l}.

A non-archimedean seminorm || || on G is called trivial if | || = 0 or inf{||z|| : z €

G,|lz]| > 0} > 0.

For each r > 0, U, (resp. B,) will denote the open ball {z € G : ||z|| < r} (resp. the
closed ball {z € G : ||z|| < r}). And we will call By := {z € G : ||z|| = 0}.
A non-archimedean seminorm induces two non-archimedean semimetrics d;, d; on G
by
di(z,y) =|lz7'y|| (left invariant),
do(z,y) = lley™!|| (right invarient), (z,y € G),
and thereby two zerodimensional topologies on G, which will be denoted by 7; and
respectively (observe that the map z — z~! is an isometry from (G, d;) onto (G, d,)).
Relative to these topologies, the map G x G — G : (z,y) — zy is continuous at
(1g,1g) and the map G — G : z — z~! is continuous at 1. Moreover B := {V, :n €
N*} (where V;, = Uy or V;, = By, N* = N —{0}) is a countable basis of neighbourhood
of 1 for both topologies and satisfies the following properties :
1) Foralln € N* V, is a subgroup.
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2) For all n,m € N* there exists p € N* such that V, C V, N V,,.

Conservely, if B := {V, : n € N*} is a countable collection of subsets of a group G
verifying the above properties 1) and 2), we can derive, like in the proof of Theorem 1 of
(6], the existence of a non-archimedean seminorm || || on G such that B is a neighbourhood
basis at 1g for the topologies 1 and 7, associated with || ||.

One can easily see that 7, = 72 if and only if (G, 7;) (j = 1 or 2) is a topological group,
i.e., multiplication and inversion are continuous maps. This, for example, happens when
G is an abelian group. But in general we can have 7, # 7, and also 1, = 7, while d; # da,
as it is showed in the following examples.

1.2 Examples.
1- Let G := {f : [0,2] — [0,2] : f is a biyection } endowed with the composition
operation o , and let || || : G — [0, +) given by

Ifll = {gup{x €0,2]: f(z) #z} if f#1a

otherwise

(where I denotes the identity map from [0,2] onto [0,2]). Then, (G,| ||) is a non-
archimedean normed group for which r; # 7.

Indeed, one can easily see that || || is 2 non-archimedean norm on G. To prove that
T # T2, let f,9, € G (n € N*) given by

f(I):=2".’L',

2-z fr<2-1
2-(2-21) otherwise

on(a) = {

(where z € [0,2]).

Then, ||gn o f|| = 1/n — 0 (n — 4+00), whereas ||f 0 g,|| =2 for all n € N*. Hence,
™ # T2

2.- Let (K,| |) be a non-archimedean valued field of characteristic different from 2,
and let

G:= {(‘c‘ Z) ca,bc,d€ K and ad—bc:l}

endowed with the usual matrix multiplication. Let
a b
H = {(c d) € G : max{la ~ 1, 8], lel,|d — 1[} < 1}

Then, || || : G — [0, +0), given by

All= 1 if A ¢ Hy
. max{|a — 1|,]b], |c|,|d — 1]} otherwise
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a b
(where A= (c d) €G)
defines a non-archimedean norm on G for which 7, = 7; and d; # dj.
Indeed, it is straightforward to check that || || is a non-archimedean norm on G.

To see that m; = 75, observe that if A := (g 2) € G and r := max{|a—1|,|b|,]|c|, |d—

1{}, then for each n € N* one verifies that
A7l Uyym-ACUyn Ym > max{n,nr, nr?}.

Now, let (a,) be a sequence in K with lim a,, = 0. For each n € N, choose z,,y, € G

by
s = (9n @n (et an
"T\0 a7t ) =1 9 an )’

. . 1 242 1 2
Then, lim z,y, = lim 0 1" = 1g, whereas yp,z, = 0 1 does not converge

to 1g. This proves that d; # d,.

Before going into the subject of this paper we present a few more examples.

Clearly, every non-archimedean seminormed vector space is an abelian additive non-
archimedean seminormed group.

Now, let (G, || ||) be a non-archimedean (semi)normed group and let X be any set.
Then, as a natural extension of 3.A and 3.B in (8] we obtain that

{f: X — G : fis bounded map }
and
{f : X — G : for every € > 0, there exist only finitely
many elements x of X for which ||f(z)]| > €}
are non-archimedean (semi)normed groups, when we consider on them the supremun
(semi)norm.

In a similar way, extending the examples considered in 3.D - 3.G of [8] we can construct
more examples of non-archimedean seminormed groups consisting of continuous functions,
when we provide X with a topology.

If {(Gi,|| |li) : ¢ € I} is a family of non-archimedean (semi)normed groups, and IIG;
is the corresponding cartesian product, then

{a:=(a;) € IG; : {|la;]| : ¢ € I} is bounded }
is a non-archimedean (semi)normed group, endowed with the supremum (semi)norm.

If (G,|| ||) is a non-archimedean (semi)normed group and H is a subgroup of G, then
H is again in a natural way a non-archimedean (semi)normed group. If, in addition, H is
a normal subgroup of G, then

Il l#r : G/H — [0, +00) given by ||z - H||x := inf{||z2|| : z € H} (z € G),
is a non-archimedean seminorm on G/H, and such that || ||4 is a norm iff H is a 7y — closed
(or equivalentely, T2 — closed) subgroup of G.
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2. FUNCTIONAL CHARACTERIZATION OF EQUIVALENT SEMI-
NORMS

Throughout this section || || (resp. || ||') will be a non-archimedean seminorm on G
and 7; (resp. 7]) (j=1,2) will be the associated topologies. Also, for every r > 0, U, and

B, (resp. U] and B]) will denote the corresponding open and closed balls on || || (resp.
1

2.1 Definition. We say that || || is weaker than || ||' if ; < 7] (or equivalentely , < 73).

If 7y = 7] (or equivalentely 7, = 7;) we say that || || and || ||’ are equivalent seminorms.
As it is well known, if G is a vector space over a non-archimedean valued field (K, |.|)
and || |,|| ||I' are non-archimedean seminorms on G satisfying ||Az|| = |A|||z|| for all A €

K,z € G (and analogously for || ||'), then

(*) |l || is weaker than || ||’ iff there exists
M € (0,+00) such that ||z|| < M - ||z||’ for all = € G.

In the case of non-archimedean seminorms on arbitrary groups, property (*) is not
true in general (see 2.5.3). In this case, property (*) has to be reformulated by using some

classes of real functions instead of real numbers. This is the objective of this section. The
following result will be crucial to our purpose.

2.2 Lemma :  Suppose that || || is weaker than || ||'.
a) Let A:={s>0:3r >0 such that B, C B,}, and let J be the convez hull of A.
Then, the map f : J — [0,+00) given by

. _Jinf{r>0:B,CB,} ifs>0
=1 Feoo

satisfies the following properties :
1) f(0) = 0 and fis continuous at s=0.
2) fis an increasing map.
3) Nzl £ f(llzl|') for all z € G with ||z||' € J.
4) fis the smallest map among all maps from J into [0, +00) that verify 1),2) and
3).
b) Let1 be the convez hull of {||z|| : £ € G}. Then, the map g : I — [0, +0),
given by
_ Jmax{s>0:U,CU,} ifr>0
9(r) ‘“{o ifr=0

satisfies the following properties :
1) g(r)=0 < r=0.
2) g is an increasing map.

3) g(llzll) < llzll"  for aliz €G.
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4) g is the biggest map among all maps from I into [0, +00) that verify 1),2) and 3).
Proof : We only prove a). The proof of b) is similar.

Firstly observe that since || || is weaker than || ||’, A is non-empty set and so f is well
defined.

Obviously the map f satisfies 2) anf f(0) = 0.

Now, suppose that there exists a sequence (s,) in J with lim s, = 0 and inf f(s,) > €
for some € > 0. Then, for all n = 1,2,... we obtain that B, is not included in B, which
contradicts the fact that || || is weaker than || ||'. This proves that f is continuous at s = 0.

To prove 3), let z € G with ||z||' € J — {0} (if ||z]|' = O then ||z|| = 0 and the result
is trivial). If ¢ € {r > 0: B, C Br}, then |jz|| < ¢, and so ||z|| < f([lz]|").

Finally, assume that h : J — [0, +00) satisfies 1), 2) and 3), and there exists s € J
for which h(s) < f(s). Then, thereis z € G with ||z||' < s and ||z|| > k(s), a contradiction
(observe that if ||z]|' < s, then ||z|| < A(||z]]") < h(s)).

If K € [0,4+0oc], by Ix we indiscriminately denote the real interval [0,K) or [0,K] (being
in the first case K > 0 and in the second case K < +o0). If K = 0 we agree that I = {0}.
With this notation and applying 2.2 we can now formulate the main result of this section.

2.3 Theorem :  The following are equivalent :

i) || || is weaker than || ||'.

1) There exists a H € (0,400] and an increasing map f : Iy — [0,+00) vanishing
at s=0 and continuous at s=0, such that ||z|| < f(||z||') for all z € G with ||z||' € Iy.

1) There ezists a M € [0,+00] and an increasing map g : Iny — [0, +00) vanishing
only at r=0, such that g(||z||) < ||z||' for each z € G.
Proof :

i) = 11) Let A be as 2.2.a). Then, take H := sup A and f the map defined in 2.2.b)
with J = Iy.

i) = 112) Take M := sup{||z| : z € G} and g the map defined in 2.2.b) with I = Ij,.

it) = 1) Given r > 0, there exists s € Iy — {0} such that f(s) < r. Thus, for z € G
with ||z]|’ < s, we have ||z|| < f(||lz]|") £ f(s) < r, and we conclude that U] C U,.

it1) = i) We can assume M > 0 (if M=0, then || || = 0 and i) follows trivially). Let
r € Iy — {0} be given and take s = g(r) > 0. If z € U} then g(||z]|) < ||z]|' < s = ¢(r)
and so ||z|| < r, which implies that U} C U,.

2.4 Corollary :  The following are equivalent :

i) |l |l and || ||' are equivalent seminorms.

it) There ezist H,H' € (0,+0o0] and incresing maps f : [y — [0,+00), f': [y —
[0, +00) vanishing and continuous at 0, such that ||z|| < f(l|lzl|') for all z € G with
llzll' € In and |z||' < f'(l|z]|]) for all z € G with ||z|| € Iy.

i) There ezist M,M' € [0,+0c0] and increasing maps g : Iy — [0,4+00),g’ :
Inge — [0, 400] vanishing only at 0, such that g(||z]|) < ||z||' end ¢'(||z]|') < ||lz|| for
each z € G.
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2.5 Remarks :
1.- Let f: Iy — [0, 4+00) be the map of 2.2.a) with H = sup A > 0. Then,

i) f(s)=min{r >0: B, C B,} (s € In).

ii) For all K > 0 with Ix C Iy, the restriction of f to Ik, f|Ix, is the smallest map
among all maps A : Ix — [0, +00) verifying 1), 2) and ||z|| < h(||z||') for all z € G with
llzll" € I

2.- In 2.3.ii) we can not assure in general the existence of a map f satisfying ||z|| <
f(lz|l') for all z € G (compare with 2.3.iii)).

Indeed, if G is a group endowed with a non-bounded non-archimedean seminorm || ||,
then for every € > 0, the formula

lizlle = min{llz],e} (=€ G)
defines a bounded non-archimedean seminorm on G, which is equivalent to || ||.

3.- The group G considered in the above Remark shows also that two equivalent
seminorms on a group do not have, in general, the same bounded sets (compare with the
well-known situation in the case of normed vector spaces).

We finish this section showing some relations between the maps f and g defined in 2.2.
To do that we need to introduce some auxiliary functions.
Let o € [0,+00] and let h: I, — [0, +00) be an increasing map vanishing at 0. Let
B := sup{h(z) : z € I,} and I the convex hull of h(I,). Clearly, we have the following
three possibilities :
a) I,=[0,a) , Iz3=][0,08).
b) Io=[0,e) , Iz=[0,4]
c) In=[0,a] , Iz=1{0,8]
Then we define the following maps :
i) hi:Ig — I, given by
hi(y) :=1inf{z € Io : h(z) 2y} (y € Ip).
i) hy:Izg— I, given by
he(y) := sup{z € I : h(z) <y} (y € Iz) in cases a) and c),

__Jsup{z el :h(z)<y} ify<p
hs(y) -—{inf{zela:h(z)-_—ﬂ} ify=/p incaseb).

It is straightforward to verify that the maps h; and h,, previously defined satisfy the
following properties.

2.6 Lemma :
1) h; and h, are increasing maps.

i) h; is left continuous and h, is right continuous in Ig.

i) hi(h(z))<z Vz €I, and hsh(z))>z Yz e h™1([0,h)).
) hi(y) <hs(y) Vye€ls

v) y<y' =>ho(y) <hi(y") (y.y €lp)
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2.7 Proposition :  Suppose || || is weaker than || ||'. Let H,M,f : Iy — [0,+00)
and g : Iy — [0,+00) be as in 2.2 and 2.3. Let M' := sup{f(s) : s € Iy} and
H' := sup{g(r) : v € Ipg}. Then,

i) M < M and fi(r) < g(r) < fu(r) Vr <M
(If M' = 0, then f; = f, =0 on Iy = {0}, and g =0 on Ips = {0}).

i) H' < H and gi(t) < f(t) < gs(t) Vi < B’
(If H' =0, then g; = g, =0 on Iy = {0}, and f =0 on [0, +0)).
Proof: We only prove i). The proof of ii) is similar.

Observe that, for each s € Iy — {0}

f(s)=inf{r>0: B, CU,}, (1)
and for each r € I — {0}
g(r)=sup{s>0: B, CU,}. (2)

If M' > M, there exist t > M and s € Iy — {0} such that f(s) >¢. By (1), B’ is not
included in U; = G, a contradiction. Hence, M’ < M.

Choose r < M' and assume f;(r) > g(r). Then, there exists a t > g(r) (and hence B}
is not included in Uy, by (2)) such that t < fi(r). It follows from 2.6.1),iii), that f(t) <,
and so B; C U, (see (1)), a contradiction. Hence, fi(r) < g(r). Analogously, one can see

that g(r) < fs(r).

CONTINUOUS HOMOMORPHISMS BETWEEN SEMINORMED GROUPS
We shall apply the results proved in section 2 to define a ”seminorm” on the group
of continuous homomorphisms (see 3.5), extending the usual norm defined on the space of
continuous linear maps between non-archimedean normed vector spaces. To do that we
need some preliminary machinery.

For every increasing map h : I, — [0,+00) (a € (0,+0o0]) vanishing at 0, we will
consider the corresponding upper and lower right Dini derivatives of h at 0 (see e.g. p.101
of [4]), given by

D*th(0) = inf{sup{ﬁii) :0<z<s}:s€ly—{0}} €[0,+)]

D h(0) = sup{inf{@ :0<z<r}:rel,—{0}}€[0,+o0]
If a = 0, we define D*h(0) = 0 and D4h(0) = +o0.
One can easily check that given h,h': Iy, — [0, +00) then
- h<h' => D*%h(0) < D*R'(0) and D, h(0) < D,h'(0). 3)
- D*(max{h, h'})(0) = max{D*h(0), D*1'(0)}. ' (4)
D (min{h, h'})(0) = min{D4h(0), D4h'(0)}.

3.1 Proposition :  Suppose that || || and || ||' are two non-archimedean seminorms on

G such that || || is weaker than || ||'. Let H, M, H’, M’, f, g be as in 2.7. Then,
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i) D*g;(0) = D*f(0) = D*g,(0).
i) Dy fi(0) = D4g(0) = D+ £4(0).

11) D4g(0) = -Dq—lf—@ (with the criterion f; =0 and § = +o0).

Proof: i) By 2.7.i), D*g;(0) < D*f(0) < D*g¢,(0).
Assume D%g;(0) < D*g,(0) and choose u > 0 such that D¥g;(0) < u < D*g,(0).
Since D*g;(0) < u, there exists s’ € Iy» — {0} such that
gi(s)<u-s Vselyg, s<yé. (5)
On the other hand, since u < D*g,(0), then u < .sup{a"ﬁ(zl :0 < t < s'} and therefore
there exists t < s’ such that
u-t < gyt). (6)
Now, take s € Iy, witht < s < s’, such that u-t < u-s < g4(t). Then g;(s) <u-s <
gs(t), which is a contradiction (see 2.6.v)).
The proof of ii) is similar.
iii) Assume that D, g(0) # 0 and D* f(0) # 0, and there is u > 0 such that D, ¢(0) >
u> ﬁo_)' By ii), D4 fs(0) > u, and so there exists t' € I — {0} such that

fot)>ut Vte Iy —{0}t<t. (7)
Also, since Dt £(0) > L, sup{£2:0<t < s} > 1 forall s € Iy —{0}, and therefore
f®)>< vtelp -{0}. (8)

Now, take t € Ipy — {0} such that max{t,£} < ¢'. Then, by (7), fs(£) > t, and
applying 2.6.i),iii) we obtain that f(t) < £, which contradicts (8). Hence, D4g(0) <
Dilf(o)'

Analogously, we can prove that D4g(0) > 'bq,%'o—).

3.2 Definition. Let (G,|| ||) and (G',|| ||') be a non-archimedean seminormed groups
and let 7; (resp. 7;) (j=1,2) be the corresponding topologies associated with || || (resp.
|| I').: We say that a homomorphism ¢ : G — G’ from G into G’ is continuous if ¢ :
(G,m1) — (G', 7)) is continuous (or equivalentely, ¢ : (G,m2) — (G',73) is continuous).
Observe that, if ¢ : G — G’ is a homomorphism, then the formula
lzlls == llé(@)II' (= € G)
defines a non-archimedean seminorm on G. Also, ¢ is continuous iff || |4 is weaker than

|| ]l Taking account this fact in conjuction with 2.2 and 2.3, we obtain the following
characterization of the continuous homomorphisms between seminormed groups.

3.3 Theorem :  Let (G,|| ||) end (G',|| ||') be non-archimedean seminormed groups and
let ¢ : G — G' be a homomorphism. Then, the following are equivalent :
t) ¢ is continuous.
i) There ezist Hy € (0,400] and fg : Iy, — [0,+00) such that
1) f4(0) =0 and fy is continuous at s=0.

291
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2) fs is an increasing map. _
8) (@' < folllzll)  for allz € G with ||z|| € I, .
Moreover, for all K > 0 with I C Iy,, the restriction f|Ix is the smallest map

among all maps h : Iy — [0, +00) verifying 1), 2) and ||¢(z)||' < h(||z||]) for aliz € G
with ||z|| € Ik, (see 2.5.1).

ui) There ezist My € [0,400] and g4 : Ing, — [0,+00) such that
1) go(r)=0 <= r=0.
2) g4 is an increasing map.
) gs(lle(@N') < izl for aliz € G.

Moreover, g4 is the biggest map among all the maps from Ip, tnto [0,+00) that verify
1), 2) and 3).

3.4 Theorem :  Let (G,|| ||) and (G', ]| ||') be non-archimedean seminormed groups and
assume thar G’ is abelian. Then,
C(G,G'):={¢:G — G': ¢ is a continuous homomorphism }

is an abelian group with respect to the product operation ((¢-¥)(z) := ¢(z)-¥(z), z € G).

Also, the map || || : C¢(G,G") — [0, +00] given by

ll#ll := D¥ f4(0) (= ey by S-1.43))

(where ¢ € C(G,G'), f4,9¢ as in 3.3) satisfies the following properties :

i) 1]l =0 (wherel: G — G’ is the identity element of C(G,G")).

i) |l =gl for all ¢ € C(G,G").

i) ||¢- ¢l < max{|l¢,|¥ll} for all 4,4 € C(G,G").

Proof: It is easy to see that (C(G,G"),-) is an abelian group.

i) Obviously f; =0 on Iy, =[0,+0o0) and so ||1|| = D* f,(0) = 0.

ii) It follows from the fact that

Il = l8(z) I = 6~ (@)|  for all z € G.

iii) Let ¢,% € C(G,G’) and let H := min{Hy, Hy} < Hy., (Where Hy, Hy and Hy.y
are as in 3.3.i1)). Then, for all z € G with ||z|| € Iy one verifies
(¢ - D))" = llé(z) - (@' < max{llg(z)l,(2)lI'} < max{fo(llzll), fu(llzID} =
(max{fs, fu (2.

By 3.3.ii), fg.¢(s) < max{fs(s), fu(s)} for all s € Iy. Applying properties (3) and
(4), we deduce

|6 - ¥l = D* f4.4(0) < D*(max{f4, fy})(0) =
max{D* f4(0), D* f,(0)} = max{||g||, ll¥[|}-

3.5 Remarks :
1.- We can have |||l = 0 and ¢ # 1, even when (G, || ||) and (G',|| ||') are normed
groups.
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Ezample : Let p be a prime number and take G := G' := @, || || := | |ps
Il == 12, and ¢ : (G, ]| I|) — (G", || |I') given by ¢(z) = = (where | |p denotes the p-adic
valuation on @Q,, see [8]).
Since || || and || || have the same bounded sets, Hy = +o0. Also, by 3.3.ii), f4 :
[0, +00) — [0, 400) verifies that f4(s) < s? for all s € [0,400). Applying (3) we obtain
that D¥ f4(0) < D*(s%)(0) = 0. Hence ||¢]| = D* f4(0) = 0.
2.- We can have ||¢]| = +oo.

Using the above example with now || || := | |, and || ||' := | |§, it is not dificult to see
that D f4(0) = D*(s7)(0) = +oo.

3.- In order to obtain a non-archimedean seminormed group we can consider the
following possibilities :

i) Define CB(G,G’) := {¢ € C(G,G") : ||| < +oc}. Then, CB(G,G') is a
subgroup of ¢(G,G'), and (CB(G,G"), || ||) is a non-archimedean seminormed group.

ii) Define || || : ¢(G,G') — [0,+00) given by ||¢|l; := min{||¢||,1}. Then
(¢(G,G"), |l ll1) is a non-archimedean seminormed group (see 2.5.2).

4.- Let (E, || ||) and (F, || ||') be non-archimedean normed spaces over a non-archime-
dean valued field. As it is well known, the space L(E, F) of all continuous linear maps
from E into F is again a non-archimedean normed space with the norm

lglll = sup{1& . s ¢ B,z £0} (4 € L(E, F))
(see [8], p.59).

On the other hand, thinking of E and F as additive normed groups, for every ¢ €

L(E, F) we can define ||¢|| according with 3.4. But, happily we have that
llell = lliglll  for all ¢ € L(E, F).

Indeed, observe that since ||¢(z)||' < |||l|| - ||z]| for all z € E,Hy = +00 (see 2.3).
Also, by 3.3.ii), fg : [0,+00) — [0, +00) verifies that f4(s) < |||¢|||s for all s € [0, +o0)
and therefore D¥ f4(0) < |||4]|].

Suppose that D* f4(0) < |||4||| and take ¢ € R such that D*¥ f4(0) < ¢ < |||#|||. Then
there exists 6 > 0 such that f4(s) < c- s for all s € (0,6) and therefore ||¢(z)||' < ¢ ||z]|
for each z € E with ||z|| < é.

However, as |||¢||| = min{d > 0: ||¢(z)|' < d-||z|| Yz € E}, there exists = € E such
that ||¢(z)||' > c- ||z||. Taking A € K, with 0 < |A| < 1, and z := A" . ¢ € E such that
llz]| < 8. Then, ||¢(2)||' > c- ||z]|, and this is a contradiction.

4. NON-ARCHIMEDEAN SEMINORMS ON

Let Z be the additive group of integers numbers. In this section we are
going to describe the non-archimedean seminorms on Z. As an application,
we obtain a new formula for ||¢|| (see Theorem 3.4) when ¢ is a continuous

homomorphism from Z into a non-archimedean seminormed and abelian group
G’.
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First, we fix some notation. By | | we denote the usual absolute value on

Z. Also, if n,m € Z, by njlm we mean that m is a multiple of n; otherwise we
write n | m.

4.1 Proposition :  Let

N:={||||: Z — [0,+00) : || || i3 @ non-archimedean seminorm on Z } and S = s'Us”,
where

s’ := {((n1,a1), (n2,a2),...) : nm € N*,n1 = L,np|nmt1,2m # Pms1 Ym € N* and
(am) 18 a strictly decreasing sequence in [0, +00)}
and

s" := {((n1,a1),(n2,82),...) : nn € N*,am € [0,+0) Vm € N*,ny = 1 and there
ezists mog € N* such that np—1|nm,Nm—1 # Nm,@m=1 > @m if m < my, and ny, =
Nmgs Gm = Gm, if M > mg}

(with the criterion ng = ag = +00,+0|1 and +00 > a;).
Then, the map v :N— S given by
() := ((n1, @1), (n2, @2), ...)  with
ny = 1
N4 :=min{n € N*:||n|| <|Inm||} if this set is not empty,
and Ny i =ngy, otherwiqe
am = |Inml| (meN7) (9)
18 a bijection.
Proof :

1) First we prove that v is well-defined. For each m € N*, let np,,a,, defined as in
(9). Obviously ny, < Ny and @y 2 @y for all m.

Without loss of generality we can assume that {n € N* : ||n|| < ||nm]|} is a non-empty
set for all m. We clearly have in this case that n,, # nn,4; for all m and (an) is a strictly
decreasing sequence in (0, +00). Also, if there exists m > 1 for which n,, t nm41, then we
can choose k € N*,k < n,, and h € N such that n,4+1 = hnp, + k. Hence

Il < )l < sl < 1]
and so (see the Preliminaries),

Inmsll = max{|[hnml, K]} = ||&l,

a contradiction.
2) Next, we prove that for every z € N* there exists an unique s € N* and p € N*

such that ¢ = pn, and ||z|| = a,. To see that, take s := max{h € N* : nu|zr and
na—1 # nx} and choose p € N* such that z = pn,. Then, obviously ||z|| < ||n,|| = a,. On
the other hand, if n,4 1 z, we can prove, like in the proof of the last part of 1) that
Izl > il = a (10)

and if ny4i|z, then ny = nyy (and hence, a, = a,4¢) for all t € N, wich implies that (10)
again holds. Thus, ||z|| = a,.

3) Now, the fact that v is injective follows directly from 2).

4) Finally, we prove that + is surjective. Let ((n;,a;),(n2,a2),...) € S and let

lll: 2 — [0,4+00) given by
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liofj := 0
liz]| := a,, if € Z*, where |z] = pn, (p € N*,s = max{h € N* : np|jz|,np_1 #
ny}, see the proof of 2)).
Clearly || || satisfies properties i) and ii) of 1.1. Also, given z,y € Z* with |z| = pn,
and |y| = gn¢ with s < t, we have that n,ln, and so n,||z + y|, which implies that
lz + yll < @y = max{|jz], lyl|}.

4.2 Remarks :

1.- Let || | € N and ((n1,a1),(n2,a2),...) = ¥(|| ||)- Then {|jz| : z € Z} = {a1,4a2,...}U

{0}. Moreover, if r > 0, we have
1) r>2a; => B,=2Z=B,,.
i) am-1>r>am forsomem>2 = B,={nny:y€ Z}=B,,.
i) r<ap, foralmeN* = B,={0}.

2.- The restriction of v to Ny := {|| || : Z — [0,400) : || || is a non-trivial non-
archimedean norm on Z} provides a bijection from N; onto S; := {((n1,a1),(n2,82),...) €
s': lim a,, = 0}.

3.- Analogously, the restriction of v to Ny := {|| || : Z — [0,4+00) : || || is a trivial
non-archimedean seminorm on Z} provides a bijection from Nz onto Sy := {((n1,a) ,
(no,az),...) €S’ : lima, >0} US".

Taking into account 4.1 and the results proved in the previous sections, we can now
give the following formula for ||¢|| (see Theorem 3.4) when ¢ € C(Z,G’).

4.3 Corollary :  Let (Z,]| ||) be the additive group of integers numbers endowed with
a non-archimedean seminorm || || and let (G',] ||') be an abelian non-archimedean sema-
normed group. If ¢ € C(Z,G’), then

lloll := {lim supp, M——a:") if || || is a non-trivial norm.
0 otherwise

(where fg4 is as in 3.4, and ((n1,a1),(n2,a2),...) is the sequence associated with || || ac-
cording to 4.1).
Proof :  Firstly, recall that if ¢ € C(Z,G'), then the formula
lzlle = llé(@)II" (z € Z)
defines a non-archimedean seminorm on Z, such that ¢ is continuous if and only if || ||4
is weaker than || ||. Also, observe that since || ||4 is bounded (||z|l4 < ||1l|l¢ V= € G) we
obtain that Iy, = [0, +00).
Then, according with 2.2, we have that f, : [0, +00) — [0, +00) is given by
fo(s)=inf{r>0: B,C B¢} =inf{r>0:{z€Z:|z|| <s}C
Cl{zeZ:|z|s <r}} (11)
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Now, assume that || || is a non-trivial norm on Z and call b := limsup,, Lda:‘L) Clearly
b < D*£4(0) = ||¢|| (see (3) and 4.2.2).

Suppose there isa t € R with b <t < D% f4(0). Then, t < sup{if;(—’-)- :0<s<r}for
all r € [0, 400), and therefore we can choose mg € N* and a strictly decreasing sequence
(sn) in (0, 4+00) with lim s, = 0 verifying

folom) i:"‘) <t Ym2>my (12)
t< Lela) vne N

Take m > mg and k such that a,, < s; < am—; (and hence B,, = B, by 4.2.1.ii)).
Then,

t < felon) < Solon) _ Jolam) .y
Sk - am [ 19 !
a contradiction.

Finally, assume that || || is not a non-trivial norm on Z. We have the following possi-
blities :

a) (am) is a strictly decreasing sequence in (0, +00) with lim a,, > 0.

b) There exists mg € N* such that ap—; > a,, if m < mg and a,, = ap, > 0 if
m > mg.

c) There exists mo € N* such that am—y1 > am if m < mp and am = apm, = 0 if
m > my.

In case a), b) we can choose a > 0 with @ < a,, for all m € N*. Then, for each
s € (0,a), B, = {0} (4.2.1.ii1)) and so fg(s) = 0 (see (11)). Hence, ||¢]| = D* f4(0) = 0.

In case c), we can suppose that mg > 1 (if a; = 0, then || || = || || = 0, which
gives that fy = 0). Take s € (0,400) with am, = 0 < s < amm,—1. We shall prove that
fo(s) =0 (and so ||| = D* f4(0) = 0). Suppose f4(s) > 0. Then, there exists # > 0 with
0 < B < fg(s). It follows from 4.2.1.ii) and (11) that B, = By = {z € Z : ||z|]| = 0} is not
included in B;. On the other hand, since || ||4 is weaker than || ||, there exists ¢ > 0 such

that By € B, C Bg, a contradiction.
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