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SEMINORMED SPACES

Pedro Telleria *

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.283-297

Abstract. Several functional characterizations of the equivalence of non-archimedean
seminorms on groups are given in this paper. This study allows us to define a "non-
archimedean seminorm" on the group of continuous homomorphims between non-archime-
dean seminormed groups, extending the usual and well-known norm defined on the space
of continuous linear maps between non-archimedean normed vector spaces.

1991 Mathematics subject classification: : ~2A05

0. INTRODUCTION.

In 1936 G.BIRKHOFF [1] and J.KAKUTANI [3] proved that a topological group
(G, ~, T) has a countable basis of neighbourhoods at the identity 1G if and only if T is
defined by a left (right)-invariant semimetric on G, or equivalentely, by a seminorm on G
(a map ~~ . ~~ : G --~ [0,+ oo) is called a seminorm if :
i) ~1G~ = 0,
ii) _ ~x~ ~x E G,
iii) . y~ ~ ~x~ + ~y~ ~x, y E G).

Later, A.MARKOV [5] applied the result of G.BIRKHOFF and J.KAKUTANI to
conclude that the topology of a topological group is defined by a family of seminorms.

The non-archimedean counterpart of the Birkhoff-Kakutani result was given in [6]
by G.RANGAN, who proved that a topological group (G, ~, T) has a countable basis of
neighbourhoods at the identity of G consisting of subgroups of G if and only if T is de-
fined by a non-archimedean left(right)-invariant semimetric d on G (i.e., satisfying the
strong triangle inequality d(x, y)  max{d(x,z),d(z,y)} ~x, y, z E G), or equivalentely, T
is defined by a non-archimedean seminorm (i.e., satisfying the strong triangle inequality
~x . y~ _ max{~x~, ~y~} ~x,y E G).

* Research partially supported by the Spanish Direccion General de Inves-
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Similarly to A.MARKOV in [5], we can also apply the result of G.RANGAN to derive
that the topology of a non-archimedean topological group is defined by a family of non-
archimedean seminorms (G is called non-archimedean if its topology has a basis B of
neighbourhoods at the identity such that V V C V for all V E B).

The aim of this paper is to give some functional characterizations of the topological
equivalence of non-archimedean seminorms on groups (Section 2). As an application,
we define a "non-archimedean seminorm" on the group of continuous homomorphisms,
extending the well-known definition of norm on the space of continuous linear maps between
normed vector spaces (Section 3). Also, several examples of non-archimedean seminormed
groups are given in Sections 1 and 4 (this last one devoted to describe the non-archimedean
semi norms on the additive group of integers numbers).

1. PRELIMINARIES AND EXAMPLES.

Throughout this paper G,G’ will be multiplicative groups and 1G, 1G’ will be its

corresponding identity elements.

1.1 Definition. (See e.g. [2] and [7]). A non-archimedean seminorm on G is a map
~ ~ : G ~ [0, +00) with the properties

i) ~1G~ = 0.
ii) = ~x~ for all x E G.

iii) J) x ’ y~  max { ~x ~, J! y~ } for all x, y E G.

If in addition, ~x~ = 0 ~ x = 1G , then we say that )[ [[ is a non-archimedean
norm on G.

The pair II) is called a non-archimedean (semi)normed group.
Similarly to [8], 1.1.5, we have that if x, y E G and ~x~ ~ ~y~, then yJJ =

max{~x~, ~y~}.
A non-archimedean semi norm II II on G is called trivial if ~ II = 0 or z E

G, ~x~ > 0} > 0.
For each r > 0, Ur (resp. Br) will denote the open ball {x E G : ~x~  r} (resp. the

closed ball {x E G :  r}). And we will call Bo := {x E G : : ~x~ = 0}.
A non-archimedean seminorm induces two non-archimedean semimetrics dl, d2 on G

by
y) = ~x-1y~ (left invariant), .

d2(x, y) = ~xy-1~ (right invariant), (x, y E G),
and thereby two zerodimensional topologies on G, which will be denoted by Tl and T2
respectively (observe that the map x  x’1 is an isometry from onto (G, d2)).

Relative to these topologies, the map G x G --; G : (x, y) -~ xy is continuous at
(Ie? Ic) and the map G 2014~ G : .c 2014~ ~"~ is continuous at Moreover j9 := 

N * } (where Vn = U1/n or Vn = N * = N - { 0 } ) is a countable basis of neighbourhood
of 1 ~ for both topologies and satisfies the following properties :

1) For all n E N * Vn is a subgroup.
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2) For all n, m N* there exists p N* such that Vp ~ Vn n Vm.
Conservely, if B := n ~*} is a countable collection of subsets of a group G

verifying the above properties 1) and 2), we can derive, like in the proof of Theorem 1 of
[6], the existence of a non-archimedean seminorm ~ ~ on G such that jB is a neighbourhood
basis at lc for the topologies 7-1 and T2 associated with ~j )~

One can easily see that 7-1 = T2 if and only if (G, (j = 1 or 2) is a topological group,
i.e., multiplication and inversion are continuous maps. This, for example, happens when
G is an abelian group. But in general we can have 1 ~ 7*2 and also 1 = 7-2 while di ~ d2 ,
as it is showed in the following examples.

1.2 Examples.
1.- Let G :=={/: : [0, 2] 2014~ [0,2] : f is a biyection } endowed with the composition

operation o , and let ~ ~ : G ~ [0, +~) given by

~f~ .= ; sup{x [0,2] : ~ x} if f ~ 7,
0 otherwise

’"" 0 otherwise

(where Id denotes the identity map from [0,2] onto [0,2]). Then, (G,)j ))) is a non-

archimedean normed group for which 7-2.

Indeed, one can easily see that [[ [[ is a non-archimedean norm on G. To prove that

1 ~ 2, let f,gn G (n N*) given by

/(~):=2-~

~n~) - ~ 2 - (2 - ~) otherwise
(where ~ [0,2]).

Then, ~gn o f~ = 0 (n ~ +00), whereas o gn~ = 2 for all n N*. Hence,
1 ~ 7-2.

2.- Let (K, [ )) be a non-archimedean valued field of characteristic different from 2,
and let

G:= {( ) : a, b, c, d ~ K and ad - bc = 1}
endowed with the usual matrix multiplication. Let

~i:={(~ ~ 
Then, )H) : : G 2014’ [0,+oo), given by

( [a - I ) , [b[ , )c) , )d - I ) ) 
if A ~ H1

max{|a - 1|, |b|, |c|, |d - 1|} otherwise
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( where A = a c d b E G)
defines a non-archimedean norm on G for which rl = T2 and c!i ~ d2.

Indeed, it is straightforward to check that )[ ~~ is a non-archimedean norm on G. 
’

To see that Tl = T2, observe that if 

then for each n E N * one verifies that

A C max{n, nr, nr2}.

Now, let (an) be a sequence in K with lim an = 0. For each n E N, choose xn, yn e G
by

xn = () , yn = ().

Then, lim xnyn = lim 0 1 2a 1 2 n =1 G whereas ynxn = 0 1 2 1 does not converge
to 1G. This proves that d1 ~ d2.

Before going into the subject of this paper we present a few more examples.
Clearly, every non-archimedean seminormed vector space is an abelian additive non-

archimedean seminormed group.
Now, let (G, jj ~~) be a non-archimedean (semi)normed group and let X be any set.

Then, as a natural extension of 3.A and 3.B in [8] we obtain that
{ f : X --~ G : f is bounded map }

and

{f X ----~ G : for every E > 0, there exist only finitely
many elements x of X for which ~~ > E}

are non-archimedean (semi)normed groups, when we consider on them the supremun
(semi)norm.

In a similar way, extending the examples considered in 3.D - 3.G of [8] we can construct
more examples of non-archimedean seminormed groups consisting of continuous functions,
when we provide X with a topology.

If i E I} is a family of non-archimedean (semi)normed groups, and IIGi
is the corresponding cartesian product, then

{a := E 03A0Gi : {~ai~ : i E 1} is bounded }
is a non-archimedean (semi)normed group, endowed with the supremum (semi)norm.

If (G, ~~ ~~) is a non-archimedean (semi)normed group and H is a subgroup of G, then
H is again in a natural way a non-archimedean (semi)normed group. If, in addition, H is
a normal subgroup of G, then

~ ~H : G/H ~ (0,+oa) given by ~x . H~H := in f{~xz~ : z E H} (x E G),
is a non-archimedean seminorm on G/H, and such that ~ ~H is a norm iff H is a 1 - closed
(or equivalentely, T2 - closed) subgroup of G.
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2. FUNCTIONAL CHARACTERIZATION OF EQUIVALENT SEMI-
NORMS

Throughout this section ~~ ~~ (resp. ~~ ~~’) will be a non-archimedean seminorm on G
and T3 (resp. Tj) ( j=1,2) will be the associated topologies. Also, for every r > 0, Ur and
Br (resp. Ur and Br) will denote the corresponding open and closed balls on ~~ I~ (resp.
~ ~’).

2.1 Definition. We say that ~~ ~~ is weaker than ~~ ~~’ if Tl  rl (or equivalentely rz  r2).
If Tl = r~ (or equivalentely T2 = T2) we say that ~~ ~~ and ~1 ~~’ are equivalent seminorms.

As it is well known, if G is a vector space over a non-archimedean valued field ( k’, ~. ~ )
and ~ ~, ~ ~’ are non-archimedean seminorms on G satisfying ~03BBx~ = for all a E

K, x E G (and analogously for ~~ ~~’), then

(* ) ~ ~ is weaker than ~ ~’ iff there exists
M E (0, +~) such that ~x~  M . ~x~’ for all x E G.

In the case of non-archimedean semi norms on arbitrary groups, property (*) is not
true in general (see 2.5.3). In this case, property (*) has to be reformulated by using some
classes of real functions instead of real numbers. This is the objective of this section. The
following result will be crucial to our purpose.

2.2 Lemma : Suppose that ~~ i~ is weaker than ~~ j~’.
a) Let A := {s > 0 3r > 0 such that Ba C Br}, and let J be the convex hull of A. .

Then, the map f : J ~ [0, +~) given by

f(s) : = ( inf{r > 0 : B’s ~ Br} if s > 00 if s = 0

satisfies the following properties : :
1) f(O) = 0 and f is continuous at s=0.
2) f is art increasing map.
3) ~x~ _ for all x E G with ~x~’ E J.
4) f is the smallest map among all maps from J into [0, +~) that verify 1),2) and

3).
b) Let I be the convex hull of x E G}. Then, the map g : I ~ [o, +~),

given by

9(r) .-- 0 
> ° : U’s ~ vri if r = o

0 if r = 0
satisfies the following pro perties :

I) g(r) = 0 ~ r = 0.
2) g is an increasing map.
3) ~x~’ for all x E G.
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4) g is the biggest map among all map3 f rom I into [0, +~) that veri f y 1),2) and 3).
Proof : We only prove a). The proof of b) is similar.

Firstly observe that since ,~ ~~ is weaker than ~) ~~’, A is non-empty set and so f is well
defined.

Obviously the map f satisfies 2) anf f(0) = 0.
Now, suppose that there exists a sequence (sn) in J with lim sn = 0 and inf f(sn) > E

for some E > 0. Then, for all n = 1,2,... we obtain that BSn is not included in ~E, which
contradicts the fact that (~ ~~ is weaker than ~~ ~~’. This proves that f is continuous at s = 0.

To prove 3), let x E G with ~x~’ E J - {0} (if ~x~’ = 0 then ~x~ = 0 and the result
is trivial). If t E {r > 0 : B’~x~’ C Br}, then ~x~  t, and so ~x~  f(~x~’).

Finally, assume that h : J ~ [0, +~) satisfies 1), 2) and 3), and there exists s E J
for which h(s)  f (s). Then, there is x E G with ~x~’  sand ~x~ > h(s), a contradiction
(observe that if ~x~’  s, then ~x~   h(s)).

If h E [0, +~], by IK we indiscriminately denote the real interval [0,K) or [0,K] (being
in the first case K > 0 and in the second case K  +oo). If K = 0 we agree that Ik = ~0}.
With this notation and applying 2.2 we can now formulate the main result of this section.

2.3 Theorem : The following are equivalent :
i~ ~~ ~~ is weaker than ~~ ~~’.
ii~ There exists a H E (o, +oo~ and an increasing map f : IH ---~ ~0, +od} vanishing

at s=D and continuous at s=D, such that ~x~  for all x E G with ~x~’ E IH.
iii) There exists a M E [0, +~] and an increasing map g : IM ~ [0, +~) vanishing

only at r=0, such that  ~x~’ for each x E G.
Proof :

i) ~ it) Let A be as 2.2.a). Then, take H := sup A and f the map defined in 2.2.b)
with J = IH.

i) ~ iii) Take :’~f := x E G} and g the map defined in 2.2.b) with I = IM.
ii) ~ i) Given r > 0, there exists s E IH - {0? such that f (s)  r. Thus, for x E G

with ~x~’  s, we have ~x~   1(8)  r, and we conclude that Us C Ur.
iii) ~ i) We can assume M > 0 (if M=0, then ~ ~ = 0 and i) follows trivially). Let

r E IM - {0} be given and take s = g(r) > 0. If x E U$ then  ~x~’  s = g(r)
and so ~x~  r, which implies that Us C Ur.

2.4 Corollary : The following are equivalent :
z~ lilt and ~~ ~~’ are equivalent seminorms.
ii) There exist H, H’ E (0, +~] and incresing map3 f : IH ~ [0, +oo), f’ : IH’ ~

[0,+~) vanishing and continuous at 0, such that ~x~  f(~x~’) for all x E G with
~x~’ E IH and ~x~’ ~ f’(~x~) for all x E G with ~x~ E IH’.

iii) There exist M, M’ E [0, +~] and increasing maps g : IM ~ (o, +oo), g’ : :
IM’ ~ [0, +~] vanishing only at 0, such that ~x~’ and  ~x~ for
each x E G.
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2.5 Remarks :
1.- Let f : IH ---~ [0, +00) be the map of 2.2.a) with H = sup A > 0. Then,
i) I(s) = min{r > 0 B9 C Br} (s E IH).
ii) For all K > 0 with IK C IH, the restriction of f to is the smallest map

among all maps h : IK ~ (o, +oo) verifying 1), 2) and  for all x E G with

IIxll’ E ~k ~
2.- In 2.3.ii) we can not assure in general the existence of a map f satisfying 

for all x E G (compare with 2.3.iii)).
Indeed, if G is a group endowed with a non-bounded non-archimedean seminorm ~ ~,

then for every E > 0, the formula
= min{~x~, ~} (x E G)

defines a bounded non-archimedean seminorm on G, which is equivalent to [) )[ .
3.- The group G considered in the above Remark shows also that two equivalent

seminorms on a group do not have, in general, the same bounded sets (compare with the
well-known situation in the case of normed vector spaces).

We finish this section showing some relations between the maps f and g defined in 2.2.
To do that we need to introduce some auxiliary functions.

Let a E [0, +~] and let h : I03B1 ~ [0, +00) be an increasing map vanishing at 0. Let
03B2 := :r I03B1} and I03B2 the convex hull of Clearly, we have the following
three possibilities :

a) ~=[0,c.) , , Ip = ~~~ ~).
b) ~ Ip = [0, ~~.
c) ~=[0,aj , ~ I p = (~, ~~.

Then we define the following maps :
i) h; : I p - Ia given by

hi(y) := in f{x E lOt: ~ y} (y E I03B2).
ii) ~ : : I p ---. Ia given by

hs(y) := sup{x E I03B1 : h(x)  y} (y E Ip) in cases a) and c),

: h(x)  y? if y  ;Q9(y)v= :h () x - 03B2} if y - a in case b).

It is straightforward to verify that the maps h; and hs, previously defined satisfy the
following properties.

2.6 Lemma :

i) hi and /t~ are increasing maps.
ii) hi is left continuous and hs is right continuous in Ip.
iii)  x dx E la and hs(h(x)) > x b’x E h-1([0,03B2)).
iv) hs(y) Vy E Ip.
v) y  y’ ~ hs(y) ~ hi(y’) (y, y’ E I03B2).
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2.7 Proposition : Suppose ~ ~ is weaker than » ~’. Let H, M, f : IH - [0, +~)
and g : IM --~ ~0, +oo) be as in ,~.2 and 2.~. Let M’ := sup~ f {s) : s E IH} and
H’ := sup{g(r) : r E IM}. Then,

i~ M’  ~1 and f ={r)  g{r)  f~(r) Vr  M’

(If M’=0, then fs ~ 0 on IM’ ={o}, and g ~ 0 on IM = {0}).
ii) H’  Hand gi(t)  J(t)  gs(t) ’It  H’

(If H’ = 0, then g= - 0 on IH’ = {p}, and f ~ 0 on [0, +~)).
Proof : We only prove i). The proof of ii) is similar.

Observe that, for each s E IH - {4?
 i >

and for each r E IM - {o}
g(r) = sup{s > 0 : B’ C Ur}. (2)

If M’ > M, there exist t > M and s E IH - {o} such that I(s) > t. By (1), Bs is not
included in Ut = G, a contradiction. Hence, M’  M.

Choose r  M’ and assume f=(r) > g(r). Then, there exists a t > g(r) (and hence ~i
is not included in Ur, by (2)) such that t  f;(r). It follows from 2.6.i),iii), that J(t)  r,
and so Bt C Ur (see (1)), a contradiction. Hence, fi(r)  g(r). Analogously, one can see
that g(r)  

CONTINUOUS HOMOMORPHISMS BETWEEN SEMINORMED GROUPS
We shall apply the results proved in section 2 to define a seminorm" on the group

of continuous homomorphisms (see 3.5), extending the usual norm defined on the space of
continuous linear maps between non-archimedean normed vector spaces. To do that we
need some preliminary machinery.

. For every increasing map h Ia ---~ ~0, +oo) (a E (0, +ooj) vanishing at 0, we will
consider the corresponding upper and lower right Dini derivatives of h at 0 {see e.g. p.101
of ~4j ), given by

D+h(O) = : 0  x  s : } s E I a - {On E ~0~ ‘~"o°j
x

D + h ( 0 ) = : 0  x  r } r E Ia - {0}} E [0,+~]

If a = 0, we define D+h(o) = 0 and D+h(0) _ +~.
One can easily check that given h, h’ Ia - [0, +~) then

- h  h’ ~ D+h(0) _ D+h’(0) and D+h{0)  D+h’(Q). (3)
- D+(max{h, h’})(o) = max{D+h(o),D+h’(o)}. 

~ 

(4)
D+(min{h, h’})(0) = min{D+h(o), D+h’(o)}.

3.1 Proposition : Suppose that ~) (~ and ~) ~!’ are two non-archimedean seminorms on
G such that ~~ (~ is weaker than ~~ ~~’. Let H, M, H ; M’, f, g be as in 2.7. Then,
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i) D+gi(0) = D+f(0) = D+gs(0).
ii) D+ f z(o) = D+9(0) = D+fs(0).
iii) D+g(0) = 1 D+f(0) (with the criterion 1 +~ = 0 and o = +~).

Proof : i) By 2.7.ii), D+gi(0)  D+ f(O)  D+gs(0).
Assume D+g=(o)  D+gs(0) and choose u > 0 such that D+g=(0)  u  D+gs(0).

Since .D+g;(o)  u, there exists s’ E IH~ - {o} such that
gi(s)  u . s ~s ~ IH’, s  s’. (5)

On the other hand, since u  D+gs(o), then u  sup{ 0  t  s’} and therefore
there exists t  s’ such that

u ~ t  gs(t). (6)
Now, take s E IH~, with t  s  s’, such that u ~ t  u - s  Then gi(s)  u ~ s 

gs(t), which is a contradiction (see 2.fi.v)).
The proof of ii) is similar.
iii) Assume that 0 and D+ f (o) ~ 0, and there is u > 0 such that D+g(0) >

u > 1 D+f(0). By ii), D+ f 9(0) > u, and so there exists t’ ~ IM’ - {0} such that
fs(t) > ut ~t ~ IM’ - {0}, tt’. (7)

Also, since D+ f(0) > u, sup{ tt : 0  t  s} > u for all s E IH - {o}, and therefore

f (t) > u Vt E IH~ - ~0}. (8)
Now, take t {o} such that max{t, ,-~~ }  t’. Then, by (7), f s( ;~ ) > t, and

applying 2.6.i),iii) we obtain that f(t)  u, which contradicts (8). Hence, D+g(o) 

1 D+f(0).

Analogously, we can prove that D+g(0) > 1 D+f(0).

3.2 Definition. Let (G, (I II) and (G’, (I (I’) be a non-archimedean seminormed groups
and let TJ (resp. Tj) (j=1,2) be the corresponding topologies associated with II ,I (resp.
II II’). We say that a homomorphism 03C6 : G ~ G’ from G into G’ is continuous if 03C6 :
(G, 1) ~ (G’, is continuous (or equivalentely, 03C6 : (G, T2) ~ (G’, TZ) is continuous).

Observe that, if § : G ----~ G’ is a homomorphism, then the formula
~x~03C6 := ~03C6(x)~’ (x E G)

defines a non-archimedean seminorm on G. Also, § is continuous iff I) is weaker than

~I ~I. Taking account this fact in conjuction with 2.2 and 2.3, we obtain the following
characterization of the continuous homomorphisms between seminormed groups.

3.3 Theorem : Let (G, ~ ~) and (G’,,I II’) be non-archimedean seminormed groups and
let 03C6 : G ~ G’ be a homomorphism. Then, the following are equivalent :

i) ~ is continuous.
ii) There exist H03C6 E (0, +~] and : IH03C6 ~ (o, +oo) such that

1) = 0 and f ~ is continuous at s=o.
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2~ ia an increasing map..
~~ ~~~~~)~~~ ~ for all x E G with E Ix,.

Moreover, for all K > 0 with IK C IH., the restriction f|IK is the smallest map
among all maps h : Ih ~ (0,-i-oo) verifying 1), 2) and  for all x E G
with E IK, (see 2.5.1).

iii) There exist E [0, +~] and g03C6 : IM03C6 ~ (0, -f-oo) such that
1) ) g~(r)=0 0 ~ r=0.

2~ is an increasing map.
3) 903C6(~03C6(x)~’)  ~x~ for all x E G.

Moreover, is the biggest map among all the maps from IMm into (0,+00) that verify
i), 2) and 3).

3.4 Theorem : Let (G, and (G’, ~~ (~’) be non-archimedean seminormed groups and
assume thar G’ is abelian. Then,

C(G, G’) := {~ : G - G’ : is a continuous homomorphism }
is an abelian group with respect to the product operation ((~ := ~(~) - ~(x), x E G).

Also, the map ~ ~ : C( G, G’) ~ [0, +~] given by
~03C6~ := D+f03C6(0) (= D+9o(o)’ by 3.1.iii))

(where ~ E C(G,G’), as in 3.3) satisfies the following properties: :
i) ~~1~~ = 0 (where 1 : G --~ G’ is the identity element of C(G,G’)).
ii) ~03C6-1~ = ~03C6~ for all 03C6 E C(G,G‘).
iii) ~03C6 . 03C8~  max{~03C6~, ~03C8~} for all 03C6, 03C8 E G’).

Proof : It is easy to see that (C(G, G’), .) is an abelian group.
i) Obviously f1 ~ 0 on IH, = [0, +~) and so ~1~ = D+fl(0) = 0.
ii) It follows from the fact that

l14(")ll~ " l14(~’)~~ll~ " ~~~ for E G.

iii) Let E C(G,G’) and let H :=  (where and H03C6.03C8
are as in 3.3.ii)). Then, for E G with E IH one verifies

~(03C6 . 03C8)(x)~’ = ~03C6(x) . 03C8(x)~’ s max{~03C6(x)~’,~03C8(x)~’}  max{f03C6(~x~), f03C8(~x~)} =
. 

By 3.3.ii),  for all s E IH. Applying properties (3) and
(4), we deduce

~~~ ~ _

= max{~03C6~, ~03C8~}.

3.5 Remarks :
1.- We can have ~03C6~ = 0 and 03C6 ~ 1, even when (G, ~ ~) and (G’, ~ ~’) are normed

groups.
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Example : Let p be a prime number and take G := G’ := Qp, ~ ~ := lip,
~.~’ := | |2p, and 03C6 : (G, jj !)) ~ (G’, ~ ~’) given by 03C6(x) = x (where | |p denotes the p-adic
valuation on Qp, see [8]).

Since j~ ~~ and II ~~‘ have the same bounded sets, jH~ = +00. Also, by 3.3.ii), /~ : :
[0, +oo) -~--~ [0, +oo) verifies that  s2 for all s E [0, +oo). Applying (3) we obtain
that D+ f ~(o)  D+(s2)(o) = 0. Hence ~~~~) = D+ f ~{o) = 0.

2.- We can have = +oo.

Using the above example with now ~ ~ := | |p and ~ ~’ := | |1 2p, it is not dificult to see

that D+ f03C6(0) = D+(s 2 )(o) _ +~.
3.- In order to obtain a non-archimedean seminormed group we can consider the

following possibilities :
i) Define CB(G, G’) := {03C6 E C(G, G’) : ~03C6~  +oo}. Then, CB(G, G’) is a

subgroup of C{G, G’), and (C8(G, G’), ~) ~~) is a non-archimedean seminormed group.
ii) Define ~ ~1 : C(G,G’) ~ [0, +~) given by := min{~03C6~, 1}. Then

(C(G, G’), ~~ ~~ 1 ) is a non-archimedean seminormed group (see 2.5.2).
4.- Let (E, and (F, ~ ~’) be non-archimedean normed spaces over a non-archime-

dean valued field. As it is well known, the space L(E, F) of all continuous linear maps
from E into F is again a non-archimedean normed space with the norm

(see [8], p.59).
On the other hand, thinking of E and F as additive normed groups, for every § E

L(E, F) we can define (~~~~ according with 3.4. But, happily we have that
. 

~03C6~ = |||03C6||| 1 for all 03C6 E L(E,F).
Indeed, observe that since ~~ ~{ x) ~~’  for all x E E, H~ = +oo (see 2.3).

Also, by 3.3.ii), ~0,+00) ---~ [0, +00) verifies that f~(s)  for all s E [0, +oo)
and therefore D+f~(o)  

Suppose that D+ f~{0)  ~~,~~’i and take c E R such that D+ f~(0)  c  ~~r~r~~. Then
there exists 6 > 0 such that f03C6(s) ~ c . s for all s E (0, 6) and therefore ~03C6(x)~’  c . ~x~
for each x E E with ‘) x !)  ~.

However, as = mzn{d > 0  d . ~x~ V.r E E}, there exists x E E such
that > c Taking’B E K, with 0  ~~~ I  1, and z := x E E such that

~z~  6. Then, ~03C6(z)~’ > c and this is a contradiction.

4. NON-ARCHIMEDEAN SEMINORMS ON

Let Z be the additive group of integers numbers. In this section we are
going to describe the non-archimedean seminorms on Z. As an application,
we obtain a new formula for ~03C6~ (see Theorem 3.4) when 03C6 is a continuous
homomorphism from Z into a non-archimedean seminormed and abelian group
G’.
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First, we fix some notation. By ( ~ we denote the usual absolute value on
Z. Also, if n, m E Z, by n~m we mean that m is a multiple of n; otherwise we
write n f m.

4.1 Proposition : Let
N := Z ~ [0, +oo) : ~ ~ is a non-archimedean seminorm on Z } and S = S’US",

where
S’ := {((n1,a1),(n2,a2),...) : nm E N*, nl = 1,nm|nm+1, nm ~ nm+1 bm E N* and

(am) is a strictly decreasing sequence in [0, 
and

S" := {((n1,a1),(n2,a2),...) : nm E N*, am E [0, +~) ~m E = 1 and there
exists mo E N* such that nm-1|nm, nm-1 ~ nm, am-1 > am if m  mo, and nm =
nma, am = amo 1m> mo}
(with the criterion no = ao = +~,+~|1 and +~ > a1).

Then, the map y : N ---~ S given by
~~) = ((nl, al), (n2~ a2), ...) with

nl :=1

nm+1:= min~n E N*  if this set is not empty,
and nm+1:= nm otherwise

a’m ’= ~nm~ (m E N*) (9)
is a bijection.
Proof :

1 ) First we prove that ~y is well-defined. For each m E N *, let nm,am defined as in

(9). Obviously nm  nm+1 and am > am+1 for all m.
Without loss of generality we can assume that ~n E N* :  is a non-empty

set for all m. We clearly have in this case that nm ~ nm+1 for all m and (am) is a strictly
decreasing sequence in (0, +~). Also, if there exists m > 1 for which nm t nm+1, then we
can choose kEN *, k  nm and hEN such that nm+1 = hnm + k. Hence

~hnm~ _ ~nm~  ~nm-1~ ~ ~k~
and so (see the Preliminaries),

~nm+1~ = max{~hnm~, ~k~} ’- ~k~,
a contradiction.

2) Next, we prove that for every x E N * there exists an unique s E N * and p E N *
such that x = pn’ and ~x~ = a9. To see that, take s := max{h E N* : nh|x and

nh} and choose p E N* such that x = pns. Then, obviously ~x~  = as. On

the other hand, if n$+1 t x, we can prove, like in the proof of the last part of 1) that
~x~ ? ~ns~ = a9 (10)

and if ns+1|x, then ns = ns+t (and hence, a9 = for all tEN, wich implies that (10)
again holds. Thus, ~x~ E = as.

3) Now, the fact that ~y is injective follows directly from 2).
4) Finally, we prove that ~y is surjective. Let ((nl, al), (n2, az), ...) E S and let
~~ ~~ ~ Z -"’.~ ~~~ +~) given by
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~0~ := 0
~x~ := if x E Z*, where Ixl = pns (p E N*, s = max{h E N* : nh~x|, nh-1 ~

n h ~, see the proof of 2)).
Clearly ~ I) satisfies properties i) and ii) of 1.1. Also, given x, y E Z * with |x| = pns

and Iyl = qnt with s  t, we have that nslnt and so ns~x + yl, which implies that
~x + y~ ~ a9 = max{~x~, ~y~}.

4.2 Remarks :
1.- Let 1111 = ~). Then {lIxll: x E Z} = 

{ 0 } . Moreover, if r > 0, we have
i) r  al ====~ Br = Z = Bal"
ii) r > am for some m ~ 2 ~ Br = X/ Z} = Bam.
iii) r  am for all m E N* ===~ Br = ~0?.

2.- The restriction of 03B3 to N1 : Z ~ [0, +oo) : II II is a non-trivial non-

archimedean norm on Z} provides a bijection from N1 onto Si := {((nl, al), (n~, a2), ...) E
S’ : lim am = 0?.

3.- Analogously, the restriction of 03B3 to N2 := {~ ~ : Z ~ [0, +oo) : ~ II is a trivial

non-archimedean semi norm on Z} provides a bijection from N2 onto 52 := ~((nl, al) ,
(n2, ~2),...) E S’ : lim am > o~ U S".

Taking into account 4.1 and the results proved in the previous sections, we can now
give the following formula for I~~~I (see Theorem 3.4) when § E C(Z, G’).

4.3 Corollary : : Let (Z, II ~I) be the additive group of integers numbers endowed with
a non-archimedean seminorm I) ~ and let (G’, ~ ~’) be an abelian non-archimedean semi-
normed gronp. If 03C6 E C(Z, G’), then

~03C6~ := {lim supm f03C6 (am) am if ~ ~ is a non-trivial norm.
0 otherwise

(where f03C6 is as in 3.4, and {(ni, al), (n2, a2), ...) is the sequence associated with ~ ~ ac-

cording to ,~.I).
Proof : Firstly, recall that if § E C(Z, G’), then the formula

~x~03C6 = (x E Z)
defines a non-archimedean seminorm on Z, such that § is continuous if and only if II II ~
is weaker than II II . Also, observe that since ~ ~03C6 is bounded (~x~03C6 ~ ~1~03C6 ~x ~ G) we
obtain that IH~ = C0, +oo).

Then, according with 2.2, we have that f ~ : [0, +oo) --> [0, +oo) is given by
= in f{r > 0 : C B03C6r} = in f{r > 0 E Z : ~x~  s} C

(11)
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Now, assume that ~ ~ is a non-trivial norm on Z and call b := lim supm f03C6(am) am. Clearly
b  = (see (3) and 4.2.2).

Suppose there is with b  ~  D+/~(0). Then, t  : 0  s  r} for
all r E [0, +oo), and therefore we can choose mo E N* and a strictly decreasing sequence
(sn) in (0, +oo) with lim sn = 0 verifying

f03C6(am) am  t ~m > mo (12)
~ ~ 

Take m > mo and k such that am ~ Sk  am-i (and hence Bsk = Bam by 4.2.1.ii)).
Then,

t   2014 ~(~fn) ~ ~ t
a contradiction.

Finally, assume that ~ ~ is not a non-trivial norm on Z. yVe have the following possi-
blities :

a) (am) is a strictly decreasing sequence in (0, +00) with lim am > 0.
b) There exists mo E N* such that am-1 > am if m  mo and am = amo > 0 if

m > mo.

c) There exists mo E N* such that am-1 > am if m  mo and am = amo = 0 if
m > mo .

In case a), b) we can choose a > 0 with a  am for all m E N*. Then, for each
s E {4} (4.2.1.iii)) and so = 0 (see (11)). Hence, ~~~~~ = D+ f ~(4) = 4.

In case c), we can suppose that mo > 1 (if a1 = 0, then ~ ~ = ~ ~03C6 = 0, which
gives that = 0). Take s E (4, +oo) with amo = 0  s  am0-1. We shall prove that

f ~(s) = 0 (and so ~~~i~ = D+ f ~(D) = 0). Suppose f ~(s) > 0. Then, there exists ~i > 0 with
0  ~3  f ~(s). It follows from 4.2.1.ii) and (I1) that B~ = Bo = {~ E Z = 0} is not
included in B;. On the other hand, since j~ (~~ is weaker than [[ [[ , there exists t > 0 such
that B0 ~ Bt c B03C603B2, a contradiction.
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