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P-ADIC CLIFFORD ALGEBRAS

Bertin DIARRA

Ann. Math. Blaise Pascal, Vol. I N°1, 1994, pp. 85-103

In a previous paper [2], we gave the. index of the standard quadratic form of rank n
over the field of p-adic numbers. Here, we recover, as a consequence, the structure ,of the
associated Clifford algebra. 

’ 

,’, _ ’. ~~ "

The classification of all ( equivalence classes of) quadratic forms over a p-adic field
is well known ( cf.[5]), with this classification, one is able to classify all p-adic Clifford
algebras. .

I - INTRODUCTION . 
,

Let K be a field of characteristic = 2 and E a vector space over K of finite dimension
n. A mapping q : E --~ K is a quadratic f orm over E if there exists a bilinear symmetric
form f : E x E -; K such that . 

’

We assume that q is regular, that is f is non-degenerated.
An element x E E is isotropic if = 0. Let Y be a subspace of E the orthogonal

subspace of V is the set V-~- = {y E~ = 0 for all x E Y}. The subspace V is
called totally isotropic if V C It is well known ( cf. for example that any totally
isotropic subspace is contained in a maximal totally isotropic subspace. The maximal

totally isotropic subspaces have the same dimension v, called the indez of q and 2v  n. If

2v = n, then (E, q) is called a hyperbolic space and for the case n = 2, one says hyberbolic
plane. The index v = 0 iff ~(a?) ~ 0 for a? ~ 0 i.e. ~E, q) is anisotropic.
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Let E = ~f" and B = (e~, , . , , en) be the canonical basis of E; the standard quadratic
form qo is the quadratic form associated to the bilinear form

n

hence qg(x) = x,x > = £ x2.
j=1

Let (E, q) be a quadratic space, possibly non regular ; an algebra C == C(E, q) over
K, with unit 1, is said to be a Clifford algebra for (E, q) if

(i) There exists a one-to-one linear mapping p : E -~ C such that p(x)~ = q(x) .1.
(ii) For every algebra A with unit 1 and linear mapping ~ : : E -~ A satisfying

~(x)2 = q(x) ~ 1, there exists an algebra homomorphism ~ : C --> A such that ~ o p = ~.
Clifford algebra exists and is unique up algebra isomorphism (cf. for instance [I]

or [3]). For example, , let K  X~, ~ ~ ,Xn > be the free algebra with free system of
generators XI, ~ ~ ~ , .Xn and .I be the two-sided ideal of K  Xl, ~ ~ ~ , Xn > generated by
XX J + X’jX= - 2 f (e;, e~) . I,1  i, j  r~, where (e~, . ~ ~ , en) is an orthogonal basis of
(E, q); then C(E, q) = K  X’z, ... ~ Xn > ,

II - THE P-ADIC STANDARD QUADRATIC FORM qo

II -1 . . The index of qo

Let p be a prime nurnber and Qp be the p-adic field i.e. the completion of the field of
rational numbers Q for the p-adic absolute value.

We denote by ~a~ the integral part of the real number a.

Proposition 1 ~2~
n

The standard quadratic form q4(x) = £ xa over E = C~p has indez
j=1



87P-Adic Clifford Algebras

Proof :

1°) If p ~ 1 (mod.4), it is well known that ~ = E Qp. Let u = 2 and E? =
v 

_

i e2_1 + e2j, I ~ j  v, then V = is a totally isotropic subspace of

2°) p = 3 (mod.4)
Therefore i ~ Qp and if n = 2 the index of qo is 0.

If n = 3 , applying Chevalley’s theorem and Newton’s method to qo(z) = x1 +x2+x3
we find a, b E ~p, , a ~ 0, b ~ 0, such that az + bz + 1 ~ 0. Therefore e~ = a ei + b e2 + e3

is isotropic in and v = ~ ~ == 1’

(a) For n = 4m, put = a e4J_~ + b e4~.~~ + and E2~ ’= -b e~~.:3 +
a e4~_2 + , 1  j  m. It is clear that = = a2 ~- b~ + I ~~= 0 and

 > = -ab+ab = 0. Therefore V = ~ is a totally isotropic
~=1.. ,

subspace of t~p and v = 2m = r~ ’ .
If n = 4m + 1, with the same notations as above the subspace V is totally isotropic

in ~p and v = 2m = ~ 
’ 

. 

’

m

On the other hand if n = 4m + 3 the subspaces V = QpE2j) and
;=1 

’

where a e4m+1 -~- b e4~+~ + e4m+3, are totally isotropic and orthogonal.

Therefore Vo = Qp E~m+1 is totally isotropic and v = 2m + 1 == 2 .
m .

(b) If n = 4m + 2, let V = be as obove. It, is easy to verify

that if x e G~p is isotropic and x is orthogonal to V then x E V . Therefore Y is a maximal

totally isotropic subspace, of C~p and v = 2m = r~ ~ 3.. ....
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Proposition 2 : Let p = 2.

, 0 ~ ~ ~ 7.
~ 

n 
’

The standard quadratic form = ~ x’ over ,~ ~ t~~ has index
" .." 

~..1

(i) II = 4m if 0_s_4

(ii) II = 4m + t if s=4~-t , , 1t3

Proof :

~ ° ) If 1  n  4 , then the index of qo is 0.

Indeed, this is clear when n = 1.
If n = 2 , let x = + E ~Z be isotropic and different from 0 i.e. qo( x) =

xi + a?~ = 0 and say a?2 7~ 0. Therefore 1 + a~ = 0 with a = and v2(a) = 0 i.e.

a == 1 + , p.’ 1 . s = 0.

Then 1 + a2 = 2 + + 2~~‘a~ = 0 or 1 + + = 0 ; in other words 1 ~ 0

(mod.2) ; a contradiction.
In the same way, one shows that if n = 3 or 4 , the index of qo is o.

2~) __...._

Let x~ = 2ei + e2 + e~ + e4 + e5 E G~~, then qo(xo) = 8 and = 2 ~ 0 (mod.4),
ax~

2j5
By Newton’s method there exists

x = ~~l1 E G~~ such that = 0 with xx = 2 (mod.8) .~ 3 (mod.8), 2 

’5
Put a = xix51, , b = x2x5 ~, , c ~. x~x51, , d = x4x~ 1, , then a~ + b~ -~ c2 ~- d~ -~ 3 = 0.

The two following elements of ,

are isotropic with  El, >= 2. Hence H = is a hyperbolic plane in Q~. . Let
U = be the orthogonal subspace of H in . The following three elements of Q~ : :
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are elements of ~ with

Furthermore  M,, ~ >= and (~1,~2? is a basis of !7.

For every we have 
c2~2~~~2_!~2.~2 

" 

,’.,. ’ 
"

- 

1 

c2 ’~ 
2 a and = 0 IS u = 0 because the standard quadratic form of

rank 4 is anisotropic. In other words is anisotropic and Q~ == is a Witt

decomposition of (Q~, Hence the index of ~o is 1.

3~) n = 8m +s , 0 ~ ~ 4.

Put, for

and

A straightforward computation shows that  >= 0 = >, Q _ i, j 

rra -1 ; ; 1 _, k, I  4 and  >- 2 ; ; U _ ~  m " 1’; ; 1  t  4. Furthermore

 ~i,k~ >"~’ ~ if ~i, k~ ~ (~~ t~~
m-1 m-1

Hence the subspaces V = ~ and W = fl~ 1 are isotropic with
~=a ~~o 

Therefore H = is a hyperbolic subspace of E = with dim V = dim W =

4m.
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8m ~

But E = ( orthogonal sum ) where Em = ~ and ~ = ~ 
k=l

Q2.
If s = 0, we have E = Em = V ~ W = ~l and (E, qo~ is a hyperbolic space with index

4m.

If 1  s  4 ; ; E = with ~m = V ~ W = H. Since 1 ~ dimE. = s ~ 4,

the standard quadratic space is anisotropic. Consequently E = is a

Witt decomposition of E and the index of qo is 4m.

4°) n = 8m 4. 4 -~t , , 1 ~ ~ ~ 3.

a) n == 8m + 5
5

With the same notations as above, we have E = where Es = 
k=1

‘"~2. .
Let us write , as for n = 5,

and

The subspace Us = (~ of ~ is anisotropic. On the other hand, =

h~1

~ = *  >= 2 and are orthogonal to . Therefore

vo == V ® and Wo = W ~ are isotropic subspaces of E and E = 

is a Witt decomposotion of E. Hence the index of q~ is dim Vo = dim W~ = 4m+1. .

(b) n == 8 m+6.
6

As before, we have E = Em..LE6 where E6 = hence and
, 

k=1

E6.



91P-Adic Clifford Algebras

Let us put

and

The subspace U6 = of E6 is anisotropic. Moreover, 
0 = ~~‘E4m+2l ~ ;  E4m+2~ E4m+2 >= 2 and ~m+~, , E~m.~2 are orthogonal to U6. Therefore
Vi = Vo (B and Wi = are isotropic subspaces of E and E =

is a Witt decomposition of E. Hence the index of qo is dim V’~ = dim 
4~n + 2.

(c) n= 8m 7.

7 
’

We have E = where E~ _ E6.
k=1 -

Let us write ..

and .

The subspace U7 - of E7 is anisotropic. Furthermore = 0 =

*  E4m+3~ ~4m+g >= 2 and E4m+3, , are orthogonal to U~. . Therefore vZ =

and W2 = are isotropic subspaces of E and E = 

is a Witt decomposition of E. Hence the index of qo is dim V2 = dim W2 = 4rn + 3.

Remark
Let, K be a non formally real field. . The level of K is the least integer s such that

~ ..’~_ , .

- 1 == where a ~ E K, a ~ ~ o. It is well known that s = 2’", r > 0 ~c f. ~3~ or ~4I).
;=1
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The level of a p-adic field is 1 .if p ~ 1 ( mod 4) ; 2 if p ~= 3( mod 4) and 4 if p ~ 2.
. If the level o f a field K is I ( resp. 2, resp.4) then the index o f the standard quadratic 

1

form over is given by Proposition I - (i) j resp. Prop.I - (ii) - {iu) , resp. Prop.2].
More generally let K be a field of level s = 2r, r > 0. If we write for any integer

n, n = + a where 0 ~ a ~ 2~+~ - 1 ; then the index of the standard quadratic form
over is

(i) v = m2~ if oa2~’

(ii) x/ = m2r + t if  a = 2r + t, 1_t_2r-1.

II - 2 The Clifford algebra 

The following results can be deduced from a general setting (cf. ~3~ p. 128-129). Here
we establish them by using the computation of the index of qo made in 11-1.

Let us recall that if E is a vector space over a field K then the exterior algebra A(E)
is the Clifford algebra associated to the null quadratic from over E.

On the other hand , let (E, q) be a regular quadratic space over K. If E = V’ ~
W is a hyperbolic space (V and W being maximal totally isotropic subspaces ) , it is

well known that the Clifford algebra C(E, q) is isomorphic to End(n{V ) ), the space of
linear endomorphisms of the vector space I1 (V ). Furthermore the sub algebra of the even
elements of C(E, q), say C+(E, q) is isomorphic to End (~+(V )) x End(11_(V)) where
il +(V ) (resp. !1 _ (Y)) is the subspace of the even ( resp. odd ) elementts of A(V).

Generally, if E = (V ~ W) 1 U is a Witt decomposition of E, then

C{E, q) ^-’ End ®x C(U, q), the tensor product of Z j2~ - graded algebras (cf. for

example [1] ).
If dimE = n , then dimC(E, q) = ~’~ = dim l1 (.~’).

If a, b E ~C*, we denote by a’ ~. b the associated quaternion algebra . ~ i.e. the algebra

generated by with i~ = a , 
~ 

= b ~ , i a = -ji. Also ~ K b is the Clifford algebra
of the rank 2 quadratic form g(a?) = + 

Let us write M(n, K) the algebra of the n x n matrices with coefficients in K.
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Theorem 1: : 

’

(i) If n = 2m, , 

(ii) If n = 2m +1, then M(2~, Qp) C M(2~, Qp)

Proof ..

Indeed, if n = 2m, then (Q~, qo) is a hyperbolic space.
It follows that 

’

And, if n = 2m + 1, we have a Witt decomposition Q~ = (V C where U = 

It follows that C(!7, Qp which gives (ii) 
.

Theorem 2 : p = 3 (mod. 4)
(i) If n=4m, . 

(ii) If n = 4m + 1, then 

(iii) If n = 4m + 2, then C(Q~, M(2~~, Qp)
(iv) ~n=4m+3, 

’

with i = ~IT.

Proof : 
. 

’

The case (i) is evident, since is a hyperbolic space.
If n = 4m + 1, we have a Witt decomposition Q~ = (V e W) ..L. U where U = Qpu

with ~ = a C4~-3 + b 64~-2 + and qo(u) = o~ + ~ + 1 + 1 = 1. It foUows

that C(U, Qp Qp, which gives (ii).
= 4m + 2, we have a Witt decomposition Q~ = (V C W) L U where

Furthermore  >= 0, = -1 = and . This

quaternion algebra contains an element z with ~V(~) = o~ + &~ +1 = 0. Hence 

M(2, Qp) and finally we have M(2~, Qp) 02 M(2, Qp) ~ 
= 4m + 3, we have a Witt decomposition Q~ = (V 0 W) -L U where U = QpM.

with ~ = -b + a 64~+2 and  qo.(u) = ~ + ~ = -1. Hence C(U, go) ~ because

~~ = qo(u) = -1. - .



94 Bertin DIARRA

We conclude that C(Q), qo) rr M(2~"’+~ , 
In the proof of the forecoming theorem, one needs the following lemma

Lemma :

Let K be a field ( char. # 2), c, d e K* such that c~ + d~ # 0.

If q = c2 + d2 ’ 
then K ~ T .

If the two-rank quadratic forms = and q2(z) = -z) - z§ are
equivalent, then their Clifford algebras are isomorphic. But, putting z i = cz[ + dz[ and
’~2 ~ ~~’~ ~ "’~ have " + /~*°~)~ ~ C’~~)~ " ~U(C~ + ’)(If +
z[~) = q2(z’). Hence qi and q2 are equivalent and the lemma is proved.

Remark

The quaternion algebra ( ©i~) = H2 18 « skew field.
Indeed, for any z e H2 = ( ~’ ~ ) , z # 0, the norm of z is N(z) = zg +z] +z) +z§ #

0 ( the standard quadratic form of rank 4 over Q2 is anisotropic).

Theorem 3 : p = 2

The Clifford algebra C(Qg, qo) is isomorphic to :

(0) ri M(2~"’ , Q2 ), if n = 8m

(1) M(2~"’ , Q2 ) e &f(2~"’ , Q2 ), if n = 8m + 1

(2 ) M(2~’~’+~ , Q2 ) , if n = 8m + 2

(3) M(2~"’+1 , Q2 [I]) , with I = if n = 8m + 3

(4) M(2~"’+~ , H~ ) , if n = 8m + 4

(5) M(2~"’+1 , H2 ) e M(2~"’+1 , Hz ) , if n = 8m + 5

(6) M(24"’+2, H2 ) , . if n = 8m + 6

(7) M(24"’+3 , Q2 [I]) , if n = 8m + 7

Proof

According to the proof od Proposition 2, if n = 8m + s, 0  s  7, then Qg = (V e
W)iE, where V and W are totally isotropic subspaces of dimension 4m, and (Es, qo) £i
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(Q~~o). It follows that C(Qg, qo) = 02 It is easy to see that

If s = 4, the subalgebra, generated by and is isomorphic to
H2. Hence M(2,H2).
If s == 5, then Q~ = where F is a hyperbolic plane and U a three-dimensional
anisotropic subspace, with orthogonal basis satisfying 
- or = = ~~ and a, b, c, d Q2 such that a2 + &~ + c~ + ~ + 1 = oY .
Therefore ("5~) ~ C+ stands for the even subalgebra. But in

= cr~ is a square in Q2 ; therefore H2 0 H:2. Furthermore

C(F, qo) 02 C(U, M(2, H2) C M(2, N2), because C(F, M(2,02).
If s = 6, then Q~ =  F.LU, where F is a hyperbolic space of dimension 4 and U a
two-dimensional anisotropic subspace with an orthogonal basis satisfying g(Mi):=
- r = g(~2). Therefore (~~) ~ ~2. And consequently 

C(F,qo) 02 M(2~,H2). ,
If s = 7, then Q~ = F±!7, where F is a hyperbolic space of dimension 6 and U = Q2~,
with = -1 Hence Q2[z] and M(2~Q2H).
One deduces the isomorphisms of the therorem from M(2~~, Q2)02C(Q~, 

N.B : A classical way to prove the above theorems is based on the isomorphisms
0 

and 0 

which give ’first 8-periodicity, etc ... 

’

is the opposite of the standard quadratic form qo )
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III - THE FAMILIES OF P-ADIC CLIFFORD ALGEBRAS

III-1. Equivalent classes of the p-adic quadratic forms

Let a, b Q~ = Qp B {0}. The Hilbert symbol (~&) is defined by (~) = 1 if the
quadratic form of rank 3, ~(:r) = ~r~ - ~ is isotropic (a, &) = -1 otherwise.

N.B. (~6)=1 iif (~)~M(2~). .
Let E be a vector space over Qp of dimension n. Let us consider a regular quadratic

form q over E. If is an orthogonal basis of E and ~j == then the discrimi.

nant d(q) of q is equal to in the group A~ = . Let e(q) = TT 

Theorem A

(i) The p-adic regular quadratic forms q and ~~ of rank n are equivalent iff

(ii) Let d Mp and e = ±1. . There exists & p.adic regular quadratic form q ~~c&
that d(q) = d and e(q) =c t~

~ and c == 1

~ n=2 and (~E)~(-1,-1)
(c) ~ ~ 3

Proof : cf. [5]
According to that proof of Theorem A, one can give, explicitily, representatives of the

equivalence classes of p-adic regular quadratic forms.
Let us recall that M2 = {±1,±2,±5,±10} and Mp = if p2, where ~

is a unit such that the Legendre symbol. Furthermore

Mp if p=l (mod.4) and Mp = {l,p~ if p=3 (mod.4).
We are content ourself here, with the primes p different from 2. Then a complete set

of representatives of the equivalent classes of regular p-adic quadratic forms is obtained as
follows.
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Then g~(a?) = 6 and the Clifford algebras are isomorphic re-

spectively to Qp C Qp, and 
’

(b) n = 2

Then we have over Q~ ( with ~ = if 3 (mod.4)) .

= ~~ + ~ ~(~) (mod.4)

, . :..

. ~(a:) = a?~ + ~ a?~ 
Furthermore = 1 if l = 0,1,3,5 and = -1 if l = 2,4,6.

N.B : If p = 2, then for n = 2 one has
8 regular quadratic forms q such that e(q) = 1

and 7 regular quadratic forms q such that e(g) = -1.

(c) 
If (ei is the canonical basis of Q~ , then .

’ 

and

. ~(~) = p ~c~ + + ~ p a:~ = + ~2~2) + ~ if p ~ 1 (mod.4)
resp.

. = p ~~ + p .c~ = + ~2) + p ~~ if p = 3 (mod.4)
,,’- 

Furthermore d(~) = = 0 ~ ~ ~ 6 and d(~) = -1, e(~) = -1.

(d) ~>4

Let be the canonical basis of Q~, then
n

* 
, 0 ~ ~ ~ 6.

J=~
. it

In other words ~(.r) = + ~2) + 
.~’.~t. --.....’.. ~=;3 .

i.e.(Q~, g~) ~ (Q~, g~)±(Q~, ?o), 0 ~ ~ 6
,.. ’ , 

and
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~ 

,

N.B : p = 2
If n = 3, then the classes of regular quadratic forms have 15 representative forms q’

with E(q’) = l,resp.E(q’) = -~, and d(~~) 7~ -1, obtained from corresponding representative
quadratic forms of ranks 2 by adding the rank 1 form x3. The other representative form
is ~"l5~xl " "’~I -’ x~ - ~%3 with -1 and -1.

And if n > 4, one proceeds as above.

III - 2 The p-adic Clifford algebras ...

’ 

With the above notations , we have the following concrete propositions .

Proposition 3 : : p ~ 2

(i)

(ii) p ~ = Hp = the p-adic quaternion field, , if 1 = 2, 4, fi.

Proof

(i) Indeed, if l = 0,1,3,5; then = 1. Therefore qe~ ~ M(2, Qp).
(ii) If 1 = 2, 4, 5 then the Clifford algebras C(Q;, ql) are isomorphic to the quater-

nion algebras with norm respectively ,

_ w p x2 ~- w2 a

if (mod.4) ;
(resp. N4(z) = p p x~ + pZx3 if p .~ 3 (mod. 4))
and N6(z) = p a?~ + w px~.

It is easily seen that these quadratic forms are anisotropic and equivalent. Therefore

C( ~~, q2 ) ^~ C( ~ p, q~ ) N C( ~2, q6) ̂ ~ p- ~ = Hp is a skew fied. Hence Hp is the unique
quaternion field over Qp ( according isomorphism). This result obtained directly here is a
general result for local fields (cf. [3]).
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Proposition 4 : p = 1 (mod. 4) 

~ 

.

The Clifford algebra is isomorphic to

(i) ’ ’ ’ M(2,Q~)eM(2,Q~) ~ ~=0 
.

(ii) 

(iii)
if ~=5,6

(v)

Similarly wehave 
’ 

.. ’ .. 
" 

..

Proposition 4’ : p = 3 (mod.4)
The Clifford algebra C’(~, ~) M isomorphic to
(i)
(ii) if ~=1,2
(iii) if ~=3 .

(iv) if ~=5,6 : 
.

(v)

Proof of Propositions 4 and 4’
Let us recall that if (E, q) is a regular quadratic space over a field K with n = dim E

odd, then Z ~ C’+(E,~), where Z is the centre of C(E, q) and C+(E,~) the
sub algebra of even elements. Furthermore, if (ei,..., en) is an orthogonal basis of (E, q)
then u = ei...  en is such that u~ = (-l)~id(~) and Z = K[u]. .

In particular for n = 3 and g(.c) = x a;~ + ~ ~~ + ~ ~~, we have e~ = a, e~ = ~,
c~ = T; u~ = == ~ ~ 0 and C+(E, q) = 1 eicz, e2e3 >= subspace generated by
l,...,e2C3. Put Ei = = = hence = I.,. Ei, E2, E3 >

with = = = Eg = Therefore C’+(E,g) ~ (*~~~)- .
Consequently (1) if 6 E A’~, then Z ~ and C(E, ~) ~ 

(2) if ~*~, then ~ = is a field and C(E, q) ~ f*~*~~. .
Applying these remarks to Propositions 4 and 4’, one finds the desired isomorphisms.

For example if p=l (mod. 4) and l = 2, then ð = = and Z = hence
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= (o~pf) " ~~’~~) = ~ ~ represents

1 over Also if l = 7, then 6 = = hence Qp (B Qp and since

(~~) ~ (~) ~ H, we have H C H,.Q~ 
~ 

Q~ 
~ ? we have ?’ ~ ~ P ED ?°

In the case p = 3(mod. 4), for example if  = O(resp.l = 3) we have ~ =

- 1 (resp.= 1) and Z =; Qp $ Qp). Hence 

M(2, ?a) ~ (~) C (~) ~ M(2, M(2, 
The other verifications are left to the reader.

Lemma 2 : p~ 2 
’ 

_ 

.

0

Indeed, since 9~ = p a~ + (/ p -r~ + :c~ where M’ = M if 1 (mod.4)

and w = = 1 if p = 3 (mod. 4) ; l we have C(Q~) ~ (~) ~2 f~-~-) ~

Theorem 4 : 1 (mod. 4) ; n ~ 4 .

I") If n = 2m, then the Clifford algebra C(Q~,~) is isomorphic to
(1) M(2m,Qp) if ~=0,1,3,5

(ii) if ~=2,4,6,7

2") If n = 2m + 1, then the Clifford algebra C(Q~,~) is isomorphic to
(i) ) ~=0 0

(ii) if ~=1,2,3,4,5,6
with r = p for ~=1,2 (resp.£ = 3,4 ; ; resp.5, 6).

(iii) Hp) 0 Hp) if l = 7

Proof :

I") n=2m

Notice t~C(Q~,~) ~ 02 6. But by Proposi-

tion 3, we have ~~,~) ~ M(2,Qp) if l = 0,1,3,5 and Hp if l =
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2,4,6. Since by Theorem 1- (i) - , we have 

Q,) ®2 M(2, ~(2~! Qp) = o? ~s 3, 5 and = ~(~m~l~ ~~~

Hp ~ if l 2’ 4’s. 
; 

, 

,

For l = 7 , , applying Lemma 2 ~rand Theorem 1 - (i) - we obtain ~~

~~ ~Z ~(2? Hp) ~’ ~’{2’n-1, Hp).

2°) n = 2m+l

If 1 ~ ~ ~ 6 , then we have C(~ns ~~~1 N ~(~n 3s N ~~2~.~~s’~pl ~2
C(~3~ ~’~)~ 

. 

1 

~ 

" _ ’ ,
Applying Proposition 4, we obtain the isomorphism ]) as

claimed.
The case ~ = 0 is Theorem 1- (ii) - . "

. If ~ = 7 , then and C(G~", q~ ) "’ Qp) ®~ (HP 

Hp) ~ Hp). 
’ 

’ 

-

Theorem 5 : : p ~ 3(mod.4) ; 4 .

The Clifford algebra is isomorphic to the following matrix algebra or direct

sum of two matriz algebras. 
~ 

: .

1°) 
~ 

n = 4m ..

(i) NI (22"~, ~p) i f : . ~ = o,1, 3, 5

(ii) if ~ = 2~ 4! 6~ 7

2°) n = 4m+l .

(i) tf .~ ~ o~ 4

(ii) ~{22~‘~ 
~ 

if ~ = ~~ 2~ 3! 5? fi~ ?
with T = p (resp. - 1, res. - p) jor ~ = I, 2 (resp.l = 3, 7;resp.l = 5,6).

3°) n = 4m+2

(i) ,. ~(22mm ~ ~P) : s f ~ = y ~.~ 3~ 5 .

(ii) M(22m, Hp) 
. 

if 
~ ~ = 2, 4, fi, 7 .
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4°) n = 4m 3

(I) M(22m+1 , Qp) e M(22m+1 , Qp) ;f  = 3

(ii) M(2~ "’+~ , Qp [Jfl ) if 1 = 0, 1 , 2, 4, 5, 6,
with r = -I (resp. - p, res.p) for £ = 0, 4 (resp. £ = 1, 2, resp. 1 = 5, 6).
(iii) M(22 "’ , Hp ) e M(22"’ , Hp ) if £ = 7.

Proof :

io) ~ _ ~

As in Lemma 2, it is readily seen that C(Q§, q§’) £r M(2~, Qp) if £ = 0, 1, 3, 5 and
C( Q § , q§’ ) ~ M(2,Hp) if 1 = 2, 4, 6, 7..

If n = 4m, m > 2, we have C(Q), q§’) £i ©2 C(Q§, q§’). But Theorem
3 - (I) - gives C(Q)~~, qo) £r M(2~"’~2, Qp). Therefore C(Q§, q§’) = M(22"~~~, Qp) ©2
M(2~ Qp) ~ M(22W., Qp ) if £ = 0, 1, 3, 5 and C( Q), q§’) £r M(2~"’~~ Qp) ©2 M(22 , H, ) rr
M(2~ "’~l , Hp) if 1 = 2, 4, 6, 7.

2°) n = 4m 1

With notations used in the proof of Propositions 4 and 4’ we have C(Q), q§’) £ti

Z © C+(Qg, q§’) and Z = Qp[u] where u~ = d(q§’). Hence Z is isomorphic to Qp e Qp if
£ = 0, 4 ; resp. ] if £ = 1, 2 ; resp. ] if 1 = 3, 7 ; resp.
5, 6. On the other hand C+(Q), ~ -q§’) ~ , -q§’) £i
&1(2~"’, Qp). Hence £i Z © M(2~"’, Qp) which proves the isomorphisms.

3°) n = 4m 2

Since n - 2 = 4m, we obtain C(Q), q§’) £i C(Q§"’, qo) §§2 C(Q§, qi).
By Theorem 2 - (I) - one has C(Q§"’, qo). ~ M(2~"~, Qp) and by Proposition 3, C(Q§ , q ) £i
M(2,Qp) if £ = 0, 1, 3, 5 and C(Q§, qi) rr Hp if £ = 2, 4, 6. It follows that C(Q), q§’) rr
M(22"’+1 Qp) if 1 = 0, 1, 3, 5 and C( Q), q§’) = iV(22"°, Hp) if l = 2, 4, 6.

For the case £ = 7 , since n - 4 = 4(m - 1 ) + 2 we have C(Q), q#’) £i ©2

C(Q§, q§’). By theorem 2 - (iii) -, ot- and by Lemma 2,
C(Q§, q#’) £i M(2, Hp). Hence C(Q), q#’) ~ M(2~"’, Hp).

Notice that in 1°) and 3°) the exponent of 2 is f.
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4°) n=4m 3

Here, n-3 = 4m and C(G~n, q~ ) = ~2 But 

~VI (2~’~, Qp) and by Proposition 4’ , C(~p, qi) is isomorphic to M(2, ,~(2, if

.~ = 3, resp. Hp if l = 7, resp. M(2, ]) if l = 0,1, 2, 4, 5, fi with r = -1 for
~==0,4 ; ; r== -pfor 1,2 and for

Taking tensor product we obtain the desired isomorphisms.

Remark : 
’

As for qo), for the other Clifford algebras q~ ) we have 2-periodicity when

p ~ 1 and 4-periodicity when 3 (mod. ,~~.

N.B. When p = 2, in the same way one can give as obove the table of the 2-adic Clifford

algebras. 
’
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