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P-ADIC CLIFFORD ALGEBRAS

‘Bertin DIARRA

In a previous paper (2], we gave the index of the standard quadratic form of rank n
over the field of p-adic numbers. Here, We recover, 3s a consequence, the structure of the
associated Clifford algebra.

The classification of all ( equivalence classes of) quadratic forms over a p—a.dlc field
is well known ( cf. [5]) with this classification, one is able to classify all p-adic Clifford
algebras.

I- INTRODUCTION

Let K be a field of characteristic # 2 and E a vector space over K of finite dimension
n. A mapping ¢ : E — K is a quadratic form over E if there exists a bilinear symmetric
form f: E x E — K such that

o(2) = f(z,2) and f(2,9) = 3lale +9) ~ 4@) - o))

We assume that g is regular, that is f is non-degenerated.

An element z € E is isotropic if q(.t) 0. Let V be a subspace of E ; the orthogonal
subspace of V is the set V4 = {y € E/f(z y)=0 for all z € V}. The subspace V is
called totally isotropic if V C VL. It is well known ( cf. for example [1]) that any totally
isotropic subspace is contained in a maximal ‘tota.lly isotropic subspa.ée. The maximal
totally isotropic subspaces have the same dimension v, called the indez of ¢ and 2v < n. If
2v = n, then (E, q) is called a hyperbolic space and for the case n = 2, one says hyberbolic
plane. The index v = 0 iff ¢(z) # 0 for z # 0 i.e. (E,q) is anisotropic.
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Let E = K™ and B = (ey,...,€e,) be the canonical basis of E; the standard quadratic
form ¢o is the quadratic form associated to the bilinear form

n n n
<z,yY>= Z Tjy; ; where z =2 zje; and y = Z yieji
j=1 j=1 j=1

n
hence go(z) =< z,2 > = Z zl.
Jj=1

Let (E,q) be a qua.dra.txc space, possibly non regular ; an algebra C = C(E, q) over
K, with unit 1, is said to be a Clifford algebra for (E, q) if

(i)  There exists a one-to-one linear mapping p : E — C such that p(z)? = ¢(z)- 1.

(i) For every algebra A with unit 1 and linear mapping ¢ : E — A satisfying
#(z)? = g(z) - 1, there exists an algebra homomorphism ¢ : C — A such that §o p = ¢.

Clifford algebra exists and is unique up algebra isomorphism (cf. for instance [1]
or [3]). For example , let K < X;,---,X, > be the free algebra with free system of
generators Xi,---,X, and I be the two-sided ideal of K < X;,---,X, > generated by
XiX; + X;jX; — 2f(ei,ej) - 1,1 £ 4,j < n, where (e1,---,e,) is an orthogonal basis of
(E,q); then C(E,q)=K < X3,--+,Xa > /1. :

II- THE P-ADIC STANDARD QUADRATIC FORM qo
II-1. The index of qq

Let p be a prime number and Q, be the p-adic field i.e. the completion of the field of
rational numbers Q for the p-adic absolute value.
We denote by [a] the integral part of the real number a.

Proposition 1 [2]

n
The standard quadratic form qo(z) = Z z? over E = Q; has indez

Jj=1
G v= [g] if p=1 (mod. 4)
) v= [g] if p=38 (mod. 4) and n#2 (modd)
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Proof :
1°) I p =1 (mod.4), it is well known that i = /—1 € Q,. Let v = [g] and €; =

14
i egj—1+ €25, 1 <j<v,thenV = @Q,ej is a maximal totally isotropic subspace of
Jj=1

E=Q.
2°) p=3(mod.4)
Therefore i ¢ Q, and if n = 2 the index of go is 0.
If n = 3, applying Chevalley’s theorem and Newton’s method to go(z) = z} + 23 + =3
we find a, b € Qp, a # 0, b # 0, such that a?+b2+1=0. Therefore ; =ae;+bez+es3

is isotropic in:QJ and v = [-‘}] =1,
(a') For n = 4m, put €3;1 = a €453 + b e4j—2 + €45-1 and €25 = -b e4j—3 +

a esj—2 +esj, 1< j<m. Itis clear that go(ezj-1) = go(e25) = a?+b2+1=0and

< €j_1,€2j > = —ab+ab=0. Therefore V = @(Qpezj-l ® Qpe2;) is a totally isotropic
ij=1. .

subspace of Qp and v =2m = [g] .

If n = 4m + 1, with the same notations as above the subspace V is totally isotropic

in Qg and v =2m = {%}

m
On the other hand if n = 4m + 3 the subspaces V = @(Qpézj_l @ Qpez;) and
j=1
Qpé2m41 Where &2m41 = @ €4m+1 +b €4m+2 + €4m+3, are totally isotropic and orthogonal.

Therefore Vo = V @ Q, €am+1 is totally isotropic and v =2m + 1 = [-;—‘] .
(b) In=4m+2letV = @(Qpezj_l ® Q,é2;) be as obove. It.is easy to verify

=1
that if £ € Qj is isotropic and 7 is orthogonal to V then z € V. Therefore V is a maximal

totally isotropic subspace of Q7 and v =2m = [-;‘-] -1
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Proposition 2: Letp=2.
Letn=8m+s,0<s<T.

n .
The standard quadratic form go(z) = }: zf over E = QF has indez

i=1
(i) v=4m if 0<s<4
() v=4m+t if s=4+4+t , 1<t<3
Proof :

1°) If1<n<4,then the index of gq is 0.

Indeed, this is clear when n = 1.

n=2,letz==ze; + 126 € Q2 be isotropic and different from 0 i.e. go(z) =
2} + z2 = 0 and say z3 # 0. Therefore 1+a? =0 with a = z1z;" and vz(a) = 0 ie.
a=1+2"ay, p>1, vo(ag) =0.
Then 1+ a? =2 + 21y +22#a2 = 0 or 1+ 2%ag+ 2% ~1ao =0 ; in other words 1 =0
(mod.2) ; a contradiction.

In the same way, one shows that if n = 3 or 4 , the index of ¢o is 0.

2°) n=35
Let zp = 2¢; + €3 + €3 + ¢4 + €5 € Q3, then go(zo) = 8 and %‘-’:(zo) = 2 # 0 (mod.4),
i

2<;<5
By Newton’s method there exists
z = Z;.__l zje; € Q3 suchthat go(z) =0 with z;=2(mod.8),z; =1(mod.8), 2<
7 <8
Put a = 7175}, b= x325?, c = 2375}, d = z475", thena? +b02+c2+d?+1=0.
The two following elements of Q}
e1=aej+bertcest+des+es
ef=—ae —bey;~ce3—des+es
are isotropic with < €;, €} >= 2. Hence H = Q2¢; ® Qa¢] is a hyperbolic plane in Q3. Let
U = H* be the orthogonal subspace of H in Qj. The following three elements of Q3 :
uy=be —aey+dez—cey

__ac+bde +bc—ade
SR BN R AL I R

Ug =€
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ad—bce _ac+bdn
E+d2 T arart
are elements of U, with

us =ez +

(1) = =1, g0(ua) = = 35 = 00(ws)
Furthermore < u;,u; >=0if 1 <i#j <3, and (u1,u2,us3) is a basis of U.
For e‘fél‘.‘}" ﬁ‘i’f—"‘?ll"ul‘Fyéuzq‘ys‘ua € U we have go(u) = y%‘]o(fh)+y%¢10(u2)+y§%(u3) =
_Syt+diyi+uivul
2+ d?
rank 4 is anisotropic. In other words (U, o) is anisotropic and Q3 = H.LU is a Witt

decomposition of (Q3, go). Hence the index of ¢p is 1.

and qo(.u) = 0 iff u = 0 because the standard qué;giratic’ fq;m»bf

39) n=8m+4s, 0<s<4

Put,fdrOSj'Sm-—l

€j1 = aegjy1 + besjy2 + cesjyz + degjpa + €545
(1) €2 = —besgiy1 + aegjpa + desjpzs — cCesjya T+ €846
€j3 = —degjy1 + cegjyz — begjra + aegita + €47
€ja = Cegjy1 + degjya — aegiyz — begipa + esjys
and
e'. P . — b . . — d . + .
i1 = —aegjtl €gj+2 — C€gj+3 €8j+4 €8j+5
1
@) € = begjiy1 — aegjpz — degiyz + cCegita +  e€sjite
! i
€;3 = degjiy1 — cegj+2 + begjds — aesjta +  esjir
e’. F—3 p— . — d . . + b . + N
3,4 C €gj+1 €gj+2 + G esgj+3 €8j+4 €8;+8

A straightforward computation shows that < €;i,€j1 >= 0 =< € ;,€;; >, 0 < 4,j <
m-—1; 1<k I<4 and <e_,-,1,e;-’, >=2;0<j<m-=1; 1<1!<4. Furthermore
< €k €5 >=0 if (4,k) # (45,).

m=—1 m-1

Hence the subspaces V = @ Qz¢jy and W = @ Q26§-" are isotropic with
j=0 j=0
1<I<4 1<I<4

VAW =(0)
Therefore H = V@W is a hyperbolic subspace of E = Q3™*? , with dimV = dimW =
4m. .
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8m s
But E = E,, LE, ( orthogonal sum ) where B, = @) Qze; and E, = P Qeesm+i =
j=1 k=1
Q:.
If s = 0, we have E = E,, = V@®W = H and (E, go) is a hyperbolic space with index

4m.
K1<s<4; E=EynLE, with E,=VO®W =H. Since 1 < dimE, = s £ 4,

the standard quadratic space (E,, go) is anisotropic. Consequently E = (Ve W)LE, isa
Witt decomposition of E and the index of gg is 4m.

4°) n=8m+4+t, 1<t<3.
a) n=8m+5

5
With the same notations as above , we have E = E,, L E5 where E5 = @ Qaegmak ™
k=1
Q3.

Let us write , as for n = 5,

degme1 + Desmiz + cCesmyzs + desmis +  Esm4s
—a €gmt1 — Desmyz — Cesmiz — desmis +  Esm4s

3) { €am-+1

!
€im+1

and
b esm+1 — G €8m+2 + d €8m+3 — C C8m+4
€sm+1 — %%%gesm+3 + %f’:?d'gCSm+4
eam+2 + FroFesms — HEFeom+d

on

Um+1
4) Umet2

Um+3

il

3
The subspace Us = @ QU4 of Es is anisotropic. On the other hand, go(eam+1) =
h=1
0 = qo(€hmt1) } < E4m1,€hmey >= 2 and €4m+1, Egpmqy are orthogonal to Us . Therefore
Vo =V ® Qzeqm+1 and Wy = W & Qaéj,,, ., are isotropic subspaces of Eand E=(Vp &

Wa)LUs is a Witt decomposotion of E. Hence the index of go is dim Vo = dim Wy = 4m+1.

(b) n=8m+6.

6
As before, we have E = E,, LEg where Eg = @Qgegm.{_k D Es ; hence €ym41 and
) k=1

Eftm+1 € Es.
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Let us put
(5) €im+2 = —Degmyr +. aegmiz + degmez — Cegmis + €smts
€im+z = . besmy1 — aegmyz — degmis + Cesmis + €3m+s
and
= bd— d+b
©6) Wmtl = egmi1 + BroFesm+s — Hofesmtd
— betad ac—bd
Wmtz =  gmiz — Frgresm+3 + HrgiCom+e

The subspace Us = Qawm+41 ® Q2wm42 of Eg is anisotropic. Moreover, ¢o(€sm+2) =
0 = go(€m+2) 5 < €am+2,€qmiz >= 2 and €4m42, €jpm4g are orthogonal to Us. Therefore
Vi = Vo ® Qeéqmyz and W) = Wy & Qie"m“ are isotropic subspaces of E and E =
(V1 ®@W,)LUg is a Witt decomposition of E. Hence the index of g isdim Vy =dim W) =
4m + 2.

(c) n= 7.
7
We have E = E,, L E;, where E; = @ Q2e8m+k D Es.
k=1 .
Let us write
) €4m+3 = —desgmy1 + Cegmyz — besmis + G €smis +  €8m47T
€Qm+3 = degm+1 — Ce€smi2 + besmis — aesm+s + €s3m47T
and
(8) Um = Cegmy1 + degmiz — G esmes — besmis

The subspace Uz = Qaup, of E; is anisotropic. Furthermore go(eésm+3) = 0 =
90(€hm+3) 3 < €4m+3;Eqmys >= 2 and €4m43, €443 are orthogonal to Uz, Therefore V; =
Vi ®Q2€4m+2 and Wy = W, ®Q2€4m+2 are isotropic subspaces of E and E = (V,@W2) LUy
is a Witt decomposition of E. Hernce the uldex of go is dimV, = dimW, = 4m + 3.

Remark
Let K be a non formally real field . The level of K is the least integer s such that

-1= Zaf where a; € K,a; # 0. It is well known that s = 2"; r>0 (ci [3]or [4]).
Jj=1
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The level of a p-adic field is 1 if p=1(mod 4);2if p=3( mod 4) and 4 if p=2.
If the level of a field K is 1 ( resp. 2, resp.4) then the indez of the standard quadratic '
form over K™ is given by Proposition 1 - (i) [ resp. Prop.1 - (ii) - (iii) , resp. Prop.2].
More generally let K be a field of level s = 27,r > 0. If we write for any integer
n,n =m2"*! 4 g where 0 < a < 2"+! — 1 ; then the index of the standard quadratic form
over K" is
i v = m2r if 0<a<?r
@) v = m2 4+t if a=2"4t 1<t<2 -1

II-2 The Clifford algebra C(Qg,90)

The following results can be deduced from a general setting (cf. [3] p. 128-129). Here

we establish them by using the computation of the index of ¢¢ made in II-1.
* Let us recall that if E is a vector space over a field K then the exterior algebra A(E)

is the Clifford algebra associated to the null quadratic from over E.

On the other hand , let (E,q) be a regular quadratic space over K. 1 E =V &
W is a hyperbolic space (V' and W being maximal totally isotropic subspaces ) , it is
well known that the Clifford algebra C(E,q) is isomorphic to End(A(V)), the space of
linear endomorphisms of the vector space A(V). Furthermore the subalgebra of the even
elements of C(E,q), say C4(E,q) is isomorphic to End (A4+(V)) x End(A_(V)) where
A+(V) (resp. A (V)) is the subspace of the even ( resp. odd ) elementts of A(V).

Generally, if E = (VOW) LU isa Witt decomposition of E, then
C(E,q) ~ End(A(V)) ®2 C(U,q), the tensor product of Z/2z - graded algebras (cf. for
example [1] ).

I dimE =n , then dimC(E, ¢q) = 2" = dim A (E).

If a,b € K*, we denote by (%b) the associated quaternion algebra : i.e. the algebra

a,b

% ) is the Clifford algebra

generated by i,j withi2 =a ; j2=b ; ij=—ji. Also(

of the rank 2 quadratic form ¢(z) = az? + bz3.
Let us write M(n, K) the algebra of the n x n matrices with coefficients in K.
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Theorem 1: p=1(mod. 4)
() In=2m,  then C(Q}a) = M(2™ Q)
() Ifn=2m+1, then C(Qp,q)~M(2™, Q) M(2™,Q,)

Proof
Indeed, if n = 2m, then (Qy, go) is a hyperbolic space.

It follows that C(Qp,g0) ~ End(A(Q}")).
And, if n = 2m + 1, we have a Witt decomposition Qp = (V & W)LU where U = Qpen.
It follows that C(U,qo) ~ Qp & Q, which gives (ii)

Theorem 2 : p =3 (mod. 4)
() Ifn=4m,  then C(Qp,q) =~ M(2*™,Q;)
(i) Ifn=4m+1, then C(QR,q)~ M(2™,Q,) ® M(2*™,Q,)
(i) Ifn=4m+2, then C(QF,q) = M(22™1,Q,)
(v) Ifn=4m+3, then C(QR,q0) = M(22™+, Qi)
with i = /1.

Proof :

The case (i) is evident , since Q2™ is a hyperbolic space.

If n.=4m + 1, we have a Witt decomposition Qp = (Ve W) LU where U = Qpu
with 4 = @ €4m—3 + b e4m—2 + €am—1 — €4m+1 and go(u) = a®+ > +1+1= 1. It follows
that C(U, go) ~ Qp ® Q,, which gives (ii).

If n = 4m + 2, we have a Witt decomposition Q; =(Ve W) LU where
U = Qpus ® Qpuz and u; = a €4m—3 + b €am—2+ €am—1+a €4m41 + b €4my2

ug = —b €4m-3+ @ €4m—2 + €4m — b €4m+1+ @ €amy2

-1,-1
Furthermore < uy,uz >= 0, go(u1) = =1 = go(uz) and C(U,go0) =~ ( Q
o . p

). This

~1,-1
quaternion algebra contains an element z with N(z) = a?+5?+1 = 0. Hence ( C’Z ) ~
»

M(2,Q,) and finally we have C(QJ,q0) ~ M(2*™,Q,) ®2 M(2,Q,) ~ M(22™*1,Q,).
If n = 4m + 3, we have a Witt decomposition Q3 = (V & W) L U where U = Qpu,
with © = —b e4m+1 + @ €4m+2 and go(u) = 4% + a? = —1. Hence C(U, qo) = Q,[i], because

u? = go(u) = -1.



94 Bertin DIARRA

We conclude that C(Q3, go) ~ M(22™+1, Q,[i]).

In the proof of the forecoming theorem, one needs the following lemma

Lemma :
Let K be a field ( char. #2), ¢,d € K* such that c® + d% #0.

1 B
Ifo= popnpt then ( e ) ~ ( %)
If the two-rank quadratic forms g1(z) = —oz? —- 022 and ¢y(z) = —2? ~ 22 are

equivalent, then their Clifford algebras are isomorphic. But, putting z; = ¢z} + dz! and
2 = dzj — ez}, we have ¢1(u(2')) = —o(cz} + dz})? — o(dz) — czh)? = —o(c? +d2)(z'? +

z7) = ga(z"). Hence ¢; and ¢, are equivalent and the lemma is proved.

Remark
The quaternion algebra (-2_1> = H; is a skew field.
Indeed, for any z € H, = (—]a—l), z # 0, the norm of z is N(z) = 22 +z2+ 23422 #
2

0 ( the standard quadratic form of rank 4 over Q, is anisotropic).

Theorem3: p=2
The Clifford dlgebm C(Q3,qo) is isomorphic to :
(0)  EndAQ™) ~ M(Z*™Qy), if n=8n
(1) M@2*"™Q)oM(2™,Q;), if n=8m+1
(2) M@+ Q,), if n=8m+2
3) M(24™* Quli]), with i=+/=1, if n=8m+3
4) M24™t1 H,), if n=8m+4
(5) M(2*m+1 H,) @ M(2™t H,), if n=8m+5
(6) M(2¢™*2 H,), if n=8m+6
) M(24m+3 Qqali]), if n=8m+7

Proof
According to the proof od Proposition 2, if n = 8m + 5,0 < s < 7, then Qr=(Ve
W)LE, where V and W are totally isotropic subspaces of dimension 4m, and (E,, qo)
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(Q3,90). It follows that C(QZ,qo) = End(/\(Qg"‘)) ®2 C(Q3,g0). It is easy to see that

C(QZ’ qo) ~ Q2 & QZ H C(Q%) ‘10) ~ (}QL'::) > M(2, QZ) and C(ng q()) = M(2’ Qg[t])

. -1,-1
If s = 4, the subalgebra, generated by e; ez, eze4 and eje4 , is isomorphic to ( Q’ ) =
2

H,. Hence C(Q$,90) ~ M(2,H,).
If s =5, then Q3 = F.LU, where F is a hyperbolic plane and U a three-dimensional
anisotropic subspace, with orthogonal basis (u1,uz,us) satisfying go(u1) = —1,go(u2) =

-—a=qo(u3).(a= =+ and a,b,¢,d € Q; such that a® + b* + c¢? + &2 + 1 =0).

Therefore C4+(U, qo) ~ (-"—3:'1) ~ H, ; C; stands for the even subalgebra. But in

2
C(U, go), (u1usus3)? = 02 is a square in Q, ; therefore C(U, qo) ~ Hy © H;. Furthermore
C(Q3,40) > C(F, q0) ®2 C(U, qo) =~ M(2,Hz) ® M(2,H;), because C(F, q0) ~ M(2,Qz).
K s = 6, then Q3 = FL1U, where F is a hyperbolic space of dimension 4 and U a

two-dimensional anisotropic subspace with an orthogonal basis (u;,uz) satisfying q(u;) =
—0 = ¢(uz). Therefore C(U,qp) =~ (-'—”‘Q:—”) ~ H,. And consequently C’(Qg,qo) ~
C(F,a0) 2 C(U, q0) = M(2, Hy). 7

If s = 7, then Q] = F.LU, where F is a hyperbolic space of dimension 6 and U = Q,u,
with go(u) = —1. Hence C(U, go) =~ Q2[i] and C(Q3, q0) ~ M(23,Q2]i]).

One deduces the isomorphisms of the therorem from C(QZ, go) ~ M(2*™, Q3)®:C0(Q3, 90)-

N.B : A classical way to prove the above theorems is based on the isomorphisms
C(K™*%,q0) =~ C(K"—g0) ® C(K?qo)
and C(K™?,~q) =~ C(K"q) ® C(K? —q)
which give first 8-periodicity, etc ...
(—qo is the opposite of the standard quadratic form gq )

95
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III- THE FAMILIES OF P-ADIC CLIFFORD ALGEBRAS

III-1. . Equivalent classes of the p-adic quadratic forms

Let a,b € Q; = Qp \ {0}. The Hilbert symbol (a,b) is defined by (a,b) = 1 if the
quadratic form of rank 3, ¢'(z) = 22 — az? — bz} is isotropic (a,b) = —1 otherwise.

N.B. (a,b)=1 iff (%’f):M(Z,Q,).

Let E be a vector space over Q, of dimension n. Let us consider a regular quadratic
form ¢ over E. If (e;)1<j<n is an orthogonal basis of E and a; = g(e;) ; then the discrimi-

nant d(q) of g is equal to a; ...a, in the group M, = Q;/qs2- Let e(gq) = I l (ai,aj).
P
1<i<j<n

Theorem A
@) The p-adic regular quadratic forms g and ¢' of rank n are equivalent iff

d(q) = d(q') and e(q) = «(¢').
(ii) Letd € M, and e = +1. There ezists a p-adic regular quadratic form g such
thatd(¢g)=d and e(g)=¢ iff
(a) n=1 and e=1
() n=2 and (d,e)#(-1,-1)
(c)n>3

Proof: cf. [5]

According to that proof of Theorem A, one can give, explicitily, representatives of the
equivalence classes of p-adic regular quadratic forms.

Let us recall that M; = {+1,+2,+5,+10} and M, = {1,p,w,wp} if p # 2, Where w

is a unit such that (p) =-1; ( ;) = the Legendre symbol. Furthermore —1 =1 in

M, if p =1 (mod.4) and M, = {1,p,~1,—p} if p =3 (mod.4).

We are content ourself here, with the primes p different from 2. Then a complete set
of representatives of the equivalent classes of regular p-adic quadratic forms is obtained as
follows.
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(a) n=1
Then ¢%(z) = az?,a € Mp; and the Clifford algebras C(Q,,¢*) are isomorphic re-
spectively to Q, ® Q,, Q,[/7], Q,lvw] and Q,[,/wp].

() n=2

Then we have over Q2 ( with w = —1if p = 3 (mod.4))

q0(z) = 2§ + 23 wu(z)=pai+wpziif p=1(modd)
qi(z) =23 +p <} (resp.  gqu(z) =p 2% + p o} if p=3 (mod.4))
q2(z) =wzi +w p =3 g5(z) =21 +wp 3

gs(c) =<} +w 2} g6(z) = p 21 +w =3

Furthermore ¢(g¢) =1if £=0,1,3,5 and €(q;) = —1if £ = 2,4,6.

N.B: If p=2, then for n =2, one has
8 regular quadratic forms ¢ such that ¢(g) =1
and 7 regular quadratic forms ¢ such that ¢(¢) = —1.

() n=3
If (e1, €2, €3) is the canonical basis of Q3 , then
o i) = gizrer + z2e2) + 23, 0<L<6
" and
o gi(z)=pzt+twsl+wprl=ge(zies+z2e2) +w p 23 if p=1 (mod.4)
resp.
o gi(z)=pal-2%+pazl=qe(zie; + z262)+p % if p= 3 (mod.4)
Furthermore d(g3) = d(ge),€(4}) = e(az), 0 < £ < 6 and d(g}) = ~1,e(g}) = ~1.

(d) n24

Let (ej)1<j<n be the canonical basis of Qp, then

n
o ¢/(z) =quzie1 +3262) + ) 37, 0 LG
i=3

In other words qé’(:z:) = q¢(z1€1 + T2€2) + o (Z a:jej)

1l
i)

e Jj=3
i.0.(QE af) & (Q2,00) L(Q) %, 0), 0 £ <6
(@ a)L -
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e gf(z)= qé(i a:,-e,-) + zn:zf = qf,(‘z:a:jej) + qo(i a:je,-)

Jj=1 Jj=4 j=1 j=4
ie.(Qp,97) ~ (Q3,¢7) L(Qr 3, q0)

NB: p=2

If n = 3, then the classes of regular quadratic forms have 15 representative forms ¢’
with €(¢') = 1,resp.€(¢’) = —1 and d(q’) # —1, obtained from corresponding representative
quadratic forms of ranks 2 by adding the rank 1 form z2. The other representative form
is g5(2) = —oF — oF — 23 with e(g}s) = —1 and d(gl) = ~1.

And if n > 4, one proceeds as above.

III- 2 The p-adic Clifford algebras
With the above notations , we have the following concrete propositions

Proposition 3: p#2
(i) C(Q?n Qt) = M(z’ Qp) zf L= 07-11 31 5.

() C(QZq)=~ (%‘;i) =H, = the p-adic quaternion field , if £=2,4,6.

Proof
(i) Indeed, if £=0,1,3,5; then ¢(g¢) = 1. Therefore C(Q2,g¢) =~ M(2,Q,).
(ii) If€=2,4,6 then the Clifford algebras C(Q2, ¢¢) are isomorphic to the qﬁater—
nion algebras with norm respectively ,
Nyz) =z} —wal-wpzi+w?psl;
Ny(z)=z3—pzl—wpz2+wp?z? if p=1(modd);
(resp. Ny(z) =23 —p 2% — p 2% + p?z2 if p=3 (mod. 4))
and Ng(z) = 22 —p 2?2 —w 22 +w pzl.
It is easily seen that these quadratic forms are anisotropic and equivalent. Therefore

C(Q}, ¢2) ~ C(Q2,q4) ~ C(Q2,46) = (%_w_) = H,, is a skew fied. Hence H,, is the unique

»
quaternion field over Q, ( according isomorphism). This result obtained directly here is a

general result for local fields (cf. [3]).
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Proposition 4: =1 (mod. 4)

The Clzﬂ'ord algebra C(Q,,q,) 18 isomorphic to
B M(2,Q,)0M(2,Q,) i £=0
@  ME Q) i =1,
@) M@ Q@) if =34
(iv) M(2,Q,[,/=p)) if £=5,6
v) H,oH, if £=7

Similarly we have

Proposition 4’ : p =3 (mod4)

The Clifford algebra C(Qf,,q}) is isomorphic to
) M(2, Qi) if £=0,4
@  MEQWT) i =12
(iii) M2,Q,)8 M(2,Q,) if £=3
(iv) M(2,Q,[\/7]) if £=35,6
(v) H,¢oH, if £=7

Proof of Propositions 4 and 4’

Let us recall that if (E, ) is a regular quadratic space over a field K with n = dimE
odd, then C(E,q) ~ Z @ C4(E,q), where Z is the centre of C(E,q) and C(E,q) the
subalgebra of even elements. Furthermore, if (e;,...,e,) is an orthogonal basis of (E, q)
then u =e;...e, is such that u? = (=1)[#1d(¢) and Z = K[u].

In particular for n = 3 and ¢(z) = a 22 + § 22 + v 2%, we have €2 =a,e = 4,

=y;u? = —afy =6 # 0 and C4(E, q) =< 1,e1e3, €163, €263 >= subspace.generated by
1,...,ez2e3. Put Ey = eje3,Ey = eye3,E3 = —aeze;, hence Cy(E,q) =< 1,E;,Eq, E; >

with E} = —af, E? = —av, E\E; = E; = —E,E,. Therefore C—}-(Ea q) = (_&ﬂl,{_a’y)-

Consequently (1) if § € K*2, then Z ~ KGBK and C(E, q) ~ ( a,@, ) ® (—aﬂI,{—a'y)

-af3, -
—“mﬂ)-

~ Applying these remarks to Propositions 4 and 4’, one finds the desired isomorphisms.
For example if p = 1 (mod. 4) and £ = 2, then § = —w?p = (iw)?p and Z = Q,[,/p] , hence

(2)if 6 ¢ K*%, then Z = K[u] is a field and C(E, q) = (
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—-w?p, —w
C(Q}, ¢2) =~ ( Qpﬁ’/'ﬁ] ( af ﬂ) M(2,Q,[v7]) : §(v) = p z* + wy® represents

1 over Qp[\/p]. Also if £ =7, then § = —p?w? = (iwp)?, hence Z ~ Q, ® Q, and since

—pw, —wp? W
( qQ ) ~ (p‘g, ) ~ H, we have C(Q3,¢7) ~ H, ® H,,

In the case p = 3(mod. 4), for example if £ = O(resp.£ = 3) we have §
—1 (resp. = 1) and Z =~ Quli],(resp.Z ~ Q, ® Q,). Hence C(Q},q0) =~ (:Q—:ﬁ-l-) ~
M(2, Qyli), (resp.C(Q%,a) =~ (T572) @ (L) = M(2,Q,) © M(2,Q,)).

The other verifications are left to the reader.

Lemma 2 : p#2
C(Qp,97) ~ M(2,H,). O

Indeed, since ¢f = p 22 + w 22 + w' p 2% + 22 where v’ = w if p = 1 (mod.4)

and w = —1 = 1if p = 3 (mod. 4) ; we have C(Q%,¢7) ~ (P’ ) (... 1) o~
Hp ®2 M(27 QP) :M(z’HP)'

Theorem 4 : p=1(mod. 4);n2>4
1°)  Ifn = 2m, then the C'hﬁard algebra C(Qp, q7) is isomorphic to
(1) M(z 7QP) ’f . ‘e = 01 17315

@) M(@2™"1,H,) if €=2,4,6,7
2°)  Ifn=2m+1, then the Clifford algebra C(Qy,q;) is isomorphic to
() ME™Q)eM2"Q,) i =0
(i) ME2™, Q7)) if £=1,2,3,4,5,6
with 7 = p (resp.w,respwp) for £ =1,2 (respl = 3,4 ; resp.5,6).
(i) ME™LH,)eM2™ L H,)ift="7

Proof :
1%) n=2m

Notice th&t C(Q;‘,Q?) - C(Q 1410) ®2 C(pr Ql)a < £ £ 6. But by Proposi-
tion 3, we have d’cQ,,q,) ~ M(2,Q,) if £ = 0,1,3,5 and C(Q,,q,) ~ H, if £ =
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2,4,6. Since C(Qp~%,q0) ~ M(2™"1,Q,) by Theorem 1 - (i) - , we have C(Qy, ;) =

101

M(2™"1,Q,)®: M(2,Q,) ~ M(2™,Q,) if £=0,1,3,5 and C(Qj,¢}) = M(2™,Q,) @2

H, ~ M(2™"! H,) if { = 2,4,6.
For £ = 7, applying Lemma 2 -and Theorem 1 - (i) - we obtain C(Qp,q;) =
C(Qr,90) ®2 C(Q}, ¢f) ~ M(2™2,Q,) ®; M(2,H,) =~ M(2™", H,).

2°) n=2m+l |
If1 < £ <6, then we have C(QF,¢;) ~ C(Qp~3,40)®2C(Q}, ) = M(2™1,Q,) ®2

C(Q3,20)-

Applying Proposition 4, we obtain the isomorphism C(Qg, @)~ M (2"‘,9,,[\/? ) as

claimed. _
The case £ = 0 is Theorem 1 - (ii) -

If£=17, then C(Q},q}) = H, ®H, and C(Q}, ¢f) ~ M(2™,Q,) ®: (H, & H,) =
M(2™"', H,) @ M(2™!, Hy). | |

Theorem 5 : p=3(mod4); n>4
The Clifford algebra C(Qy,qy) is isomorphic to the following matriz algebra or direct

sum of two matriz algebras.

1°) n=4m -
(1) M(22m’ Qp) if £ = 0,1,3,5

() M(2*™1H,)  if  £=2,4,6,7

2°) n=4m+1
G) M2™Q)eM@2™Q,) if =04
() M@2™ Q7 if  £=1,2,3,56,7

with T =p (resp. — 1,res. — p) for £=1,2 (resp.l =3,7,resp.l = 5,6).

3°) 0 =4m+2
G)  M@*™,Q,) if  £=0,1,3,5
(i) M(2™ H,) if  £=24,6,7
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4°) n=4m43

@) ME@™,Q)eM@™,Q,) i  £=3

(11) M(22m+1’ QP[\/;:D ’f L= 0,1,2, 4,5,6,

witht = -1 (resp.—p,res.p) for €=0,4 (resp. £=1,2,resp. £=25, 6).
(i) M(2*™H,)e M(2*™ H,) if £=T.

Proof :

1°) n=4m

As in Lemma 2, it is readily seen that C(Qj,47) ~ M(2%,Q,) if £ = 0,1,3,5 and
C(Q;,q7) ~ M(2,H,) if £=2,4,6,T. ,

Ifn=4m, m 2 2, we have C(Qj,q;) ~ C(QF™*, ) ®2 C(Qj,¢7)- But Theorem
3 - (i) - gives C(Qp™*,q0) ~ M(2°™2,Q,). Therefore C(QF,q)) ~ M(2*™2,Q,) ®;
M(2?2,Q,) ~ M(22™,Q,)if£=0,1,3,5 and C(Qp,q/) =~ M(2°™~2,Q,) ®2 M(22,H,) ~
M(22m=1 L) if € = 2, 4,6, 7. "

29) n = 4m+tl

With notations used in the proof of Propositions 4 and 4’ we have C(Q;,q7) ~
Z®C1(Qy,q7) and Z = Q,[u] where u? = d(g}). Hence Z is isomorphic to Q, ® Q, if
£=0,4; resp. Qp[\/B] if £=1,2; resp. Qp[v/=1] if £=3,7; resp. QlV/-plifl=
5,6. On the other hand C4(Qy, ¢7) =~ C+(Qp 24, 22)RC(QF™1, —¢)) =~ c(Qp ™, —q)) ~
M(2*™ Q,). Hence C(Q;,9/) ~ Z ® M(2°™,Q,) which proves the isomorphisms.

3°) n=4m+2

Since n - 2 = 4m, we obtain C(Qp,g;) ~ C(Q™, ¢0) @2 C(Q2, qe).
By Theorem 2 - (i) - one has C(Q4™, 40)  M(2*™, Q) and by Proposition 3, C(QZ, gr) =
M(2,Q,) if £ =0,1,3,5 and C(Q2,q¢) ~ H, if £ = 2,4,6. It follows that C(Qp,97) ~
M(2*™+1,Q,) if £=0,1,3,5 and C(QP,q}) ~ M(2>™, H,) if £ = 2,4,6.

For the case £ =7, since n — 4 = 4(m — 1) + 2 we have C(Q?, ") ~ C(Q;,"‘*, do) ®2

P
C(Qj,9¢). By theorem 2 - (iii) -, C(Q; ™ q) =~ M(22'"+1,Q,,)‘and by Lemma 2,
C(Q3,97) ~ M(2,H,). Hence C(Q;p,q7) ~ M(2*™, H,).

Notice that in 1°) and 3°) the exponent of 2 is 2.
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4°) n = 4m+3

Here, -3 = 4m and C(Qp,q}) =~ C(Q:™, 90) ®2 C(Q3,¢;)- But C(Qp™,q0) =
M(2%™,Q,) and by Proposition 4’ , C(Q3, ;) is isomorphic to M(2,Q,) .@ M(2,Q,) if
£=3, resp. Ho@ H, if £ =7, resp. M(2,Q,[y/7]) if £=0,1,2,4,5,6 with r = -1 for
£=0,4; T=—pforl,2and r =pfor £ =5,6.

Taking tensor product we obtain the desired isomorphisms.
Remark :

As for C(Qp, g0), for the other Clifford algebras C(Qp,q;) we have 2-periodicity when
p=1 (mod. 4) and §-periodicity when p=3 ( mod. 4).

N.B. When p =2, in the same way one can give as obove the table of the 2-adic Clifford
algebras.
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