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Regularity of the stress field for degenerate and/or singular elliptic
problems

Benjamin Lledos

Abstract

We investigate the regularity of the solutions to degenerate and/or singular elliptic equations. We prove
the continuity of 𝐺 (∇𝑢) where 𝑢 is a locally Lipschitz solution of div𝐺 (∇𝑢) = 𝜆 ∈ R in dimension
two under some growth assumptions on𝐺. Additionally, we establish a result that holds in any dimension,
indicating that the separation between ∇𝑢 and the degeneracy set of 𝐺 is continuous.

Régularité du stress field pour des équations elliptiques dégénérées et/ou
singulières

Résumé

Nous étudions la régularité des solutions d’équations elliptiques dégénérées et/ou singulières. Nous
prouvons la continuité de 𝐺 (∇𝑢) où 𝑢 est une solution localement Lipschitz de div𝐺 (∇𝑢) = 𝜆 ∈ R en
dimension deux sous certaines hypothèses de croissance sur 𝐺. De plus, nous établissons un résultat
valable en toute dimension, indiquant que la séparation entre ∇𝑢 et l’ensemble de dégénérescence de 𝐺
est continue.

1. Introduction

1.1. A first example

In this article, we establish the continuity of certain functions of the gradients of solutions
for elliptic partial differential equations. For instance, let us consider a locally Lipschitz
continuous function 𝑢, which is defined on an open subset Ω of R2, and minimizes the
following functional:

𝑣 −→
∫
Ω

𝜑(∇𝑣) − 𝜆𝑣 (1.1)

among the functions in𝑊1,2
𝑢 (Ω). The set𝑊1,2

𝑢 (Ω) is the set of functions 𝑣 ∈ 𝐿2 (Ω), with
a distributional gradient that is also in 𝐿2 (Ω), such that 𝑢 and 𝑣 have the same trace on
the boundary 𝜕Ω of Ω. Here, we assume that 𝜆 ∈ R+ and 𝜑 has the following form:

𝜑(𝑧) :=


1
2 |𝑧 |

2 if |𝑧 | ≤ 1,
|𝑧 | − 1

2 if 1 < |𝑧 | < 2,
1
4 |𝑧 |

2 + 1
2 if 2 ≤ |𝑧 |.

(1.2)
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This convex function is not strictly convex and is not C2. Hence, we cannot apply the
classical regularity theory for smooth strictly convex functions. The case where we do not
have ellipticity at only one point has also been well studied. For instance, in the case of the
𝑝-Laplacian when 𝜑(𝑧) = |𝑧 |𝑝 with 𝑝 > 1 we know that the solutions are C1,𝛼. However,
in our example, 𝐷2𝜑(𝑧) has an eigenvalue equal to 0 on the entire annulus {1 < |𝑧 | < 2}.
Thus, we cannot use the results already known when the set of degeneracy is just a point.

For this kind of problems, we know that we can not expect 𝑢 to be C1 on Ω. In fact,
by [10, Theorem 1] the function

𝑢(𝑥) :=

{
𝐶 − 𝜆

4 |𝑥 |
2 if |𝑥 | ≤ 2

𝜆
,

𝐶 + 1
𝜆
− 𝜆

2 |𝑥 |
2 if 2

𝜆
< |𝑥 | ≤ 1

(1.3)

is a minimizer of (1.1) with 𝜑 as in (1.2) on the set 𝑊1,2
𝑢 (Ω) with its own boundary

condition.
The problem (1.1) with 𝜑 as in (1.2) was introduced by Kawohl, Stara and Wittum

in [23] where the authors want to prove the uniqueness of the solutions. They assume
that Ω has several symmetries to establish the Lipschitz continuity of the level sets of
the minimizers. However, we prove in this article that Ω need not have any symmetry to
achieve this result. This shows that a good understanding of the regularity of the solutions
can be useful to prove the uniqueness of the minimizers. Nevertheless, for (1.1) with 𝜑 as
stated in (1.2) and 𝜆 ∈ R+, [27, Theorem 1.1] presents a direct proof of uniqueness.

Since in general, 𝑢 is not C1, one of our main objectives is to prove the continuity of
∇𝜑(∇𝑢). This new result has important applications, such as the local C∞ regularity of
the solution around points where the gradient has a norm either smaller than one or larger
than two. In addition, this demonstrates that, in general, the level sets of a solution are C1

curves.
More generally, the aim of the article is to prove this kind of continuity estimates

for various non-strictly convex functions defined on R2. These estimates are provided
in the broader context of elliptic equations, which also encompass the Euler–Lagrange
equations linked to minimization problems. In Theorem 1.10, we partially generalize
these results to any dimension 𝑁 ∈ N.

1.2. General problem

Let 𝐺 : R𝑁 → R𝑁 be a continuous function with 𝑁 ∈ N. In this article, we study the
regularity of locally Lipschitz continuous weak solutions of the following equation:

div𝐺 (∇𝑢0) = 𝑓 in Ω (1.4)
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Regularity of the stress field

with Ω an open bounded set of R𝑁 and 𝑓 : R𝑁 → R in𝑊1,𝑞 (Ω) with 𝑞 > 𝑁 . We assume
that 𝐺 is monotone in the following sense:

⟨𝐺 (𝑧1) − 𝐺 (𝑧2), 𝑧1 − 𝑧2⟩ ≥ 0 (1.5)

for every 𝑧1, 𝑧2 ∈ R𝑁 . By solution, we mean every locally Lipschitz function 𝑢0 such that∫
Ω

⟨𝐺 (∇𝑢0),∇𝜃⟩ = −
∫
Ω

𝑓 𝜃

for every function 𝜃 ∈ C∞
0 (Ω). When 𝐺 is the gradient of a convex function 𝜑, we obtain

a nonlinear elliptic equation that can be seen as the Euler–Lagrange equation associated
to the minimization of ∫

Ω

𝜑(∇𝑣) + 𝑓 𝑣. (1.6)

Many results state that the solutions are locally Lipschitz under suitable growth on
𝐺 at infinity, see e.g. [7], [9], [16] and [18]. The main goal of the paper is to prove the
continuity of the stress field 𝐺 (∇𝑢0) depending on the assumptions of 𝐺 and 𝑓 .

If 𝐺 is smooth and if there exists 𝐶 > 0 such that
1
𝐶
|𝐴 − 𝐵 |2 ≤ ⟨𝐺 (𝐴) − 𝐺 (𝐵), 𝐴 − 𝐵⟩ ≤ 𝐶 |𝐴 − 𝐵 |2

for every 𝐴, 𝐵 ∈ R𝑁 then the solutions of (1.4) are C1 when 𝑓 ∈ 𝐿 𝑝 (Ω) with 𝑝 > 𝑁 ,
(see [17, Theorem 6.33]). This is the case for instance for the Poisson equation when𝐺 = 𝐼𝑑.
When there exist 𝐴 and 𝐵 two distinct vectors ofR𝑁 such that ⟨𝐺 (𝐴)−𝐺 (𝐵), 𝐴−𝐵⟩ = 0 we
say that the equation is degenerate. If we cannot bound from above ⟨𝐺 (𝐴) −𝐺 (𝐵), 𝐴−𝐵⟩
by a constant times the quantity |𝐴 − 𝐵 |2, then we say that the equation is singular. In
these two critical frameworks, the C1 regularity is not guaranteed.

However, the study of the regularity of the solutions for degenerate and/or singular
equations with a large set of degeneracy and/or singularity is a recent and dynamic subject.
In the seminal paper [1], the authors study the partial C1,𝛼 regularity of the solutions.
Namely, let 𝑢0 be a minimizer of (1.6), if 𝑥 ∈ Ω is a Lebesgue point of ∇𝑢0 such that
𝜑 is C2 and 𝐷2𝜑 is positive-definite on a neighborhood of ∇𝑢0 (𝑥), then there exists
an open neighborhood 𝑈 of 𝑥 such that 𝑢0 ∈ C1,𝛼 (𝑈). If we apply this result to 𝜑 as
in (1.2) then there exist two open sets 𝑈1 and 𝑈2 such that 𝑢0 ∈ C1,𝛼 on these two sets.
Moreover, |∇𝑢0 | < 1 on 𝑈1, |∇𝑢0 | > 2 on 𝑈2 and for a.e. 𝑥 ∈ Ω\(𝑈1 ∪ 𝑈2) we have
1 ≤ |∇𝑢0 (𝑥) | ≤ 2. The drawback of this result is that we do not know the behavior of
∇𝑢0 at the boundary of the set where 𝑢 ∈ C1,𝛼. Specifically, as 𝑥 approaches 𝜕𝑈2 ∩ Ω

from the interior of𝑈2, will |∇𝑢0 (𝑥) | converge to 2?
Some results of our paper use ideas from [15]. In this article, De Silva and Savin prove,

in particular, two theorems stating that the minimizers of (1.6) with 𝑓 ≡ 0 and 𝜑 strictly
convex, are C1. The first one is [15, Theorem 1.1] where 𝜑 is not singular and degenerate
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on the same set. The second one is [15, Theorem 1.2] where 𝜑 is not singular except at a
finite number of points.

There is a recent family of results when the set of degeneracy or singularity is convex.
In this case, 𝐺 = ∇𝜑 with 𝜑 a convex function that is strongly convex outside a convex
set 𝐶 containing the origin. Let us quote two results of continuity everywhere on Ω. The
first one is an article of Santambrogio and Vespri [30, Theorem 11] in dimension two and
the second one an article of Colombo and Figalli [14, Theorem 1.1]. In the latter case,
the authors prove that 𝐹 (∇𝑢) is continuous on Ω when 𝐹 is a continuous function that
vanishes on 𝐶. When 𝜑 is as in (1.2), thanks to [14, Theorem 1.1] we get that ( |∇𝑢0 | − 2)+
is continuous on Ω. In our paper we obtain a similar result for (1 − |∇𝑢0 |)+ even if the set
of degeneracy is not convex.

In the vectorial case, the article [4] extends [14] for a particular 𝜑 that is equal to
1
𝑝
( | · | − 1) 𝑝+ with 𝑝 > 1. It would be interesting to see if we can extend the results of our

paper to the vectorial case.

1.3. Main results

We state the new results of this paper. Theorem 1.1, Theorem 1.5 and Theorem 1.7 are
only valid in dimension two. Theorem 1.10 which is valid in any dimension extends [28,
Theorem 2.1] with a larger class of degeneracy sets.

Theorem 1.1. Let us assume that 𝐺 ∈ C0,1
loc (R

2) and 𝑓 = 0. We also assume that:

for every 𝐿 > 0 there exists 𝐶𝐿 > 0 such that for every 𝑧1, 𝑧2 ∈ 𝐵𝐿 (0):

⟨𝐺 (𝑧1) − 𝐺 (𝑧2), 𝑧1 − 𝑧2⟩ ≥ 𝐶𝐿 |𝐺 (𝑧1) − 𝐺 (𝑧2) |2. (𝐴1)

Then for every solution 𝑢0 of (1.4) the function 𝐺 (∇𝑢0) is continuous.

Remark 1.2. We point out that (𝐴1) does not imply that 𝐺 is strictly monotone or a
gradient of a convex function. However, if𝐺 is the gradient of a C1,1

loc (R
2) convex function,

then it satisfies (𝐴1) with 𝐶𝐿 = 1
∥𝐷𝐺 ∥𝐿∞(𝐵𝐿 (0) )

.

Moreover, we have an explicit modulus of continuity:

Remark 1.3. Let 𝑢0 be a solution of (1.4). Then, for every 𝑥 ∈ Ω, for every 𝑦 ∈ 𝐵 dist(𝑥,𝜕Ω)
2

(𝑥),
we have

|𝐺 (∇𝑢0 (𝑥)) − 𝐺 (∇𝑢0 (𝑦)) | ≤ 𝐶𝜔( |𝑥 − 𝑦 |).
Here, 𝐶 > 0 is a constant depending on the Sobolev norm of 𝐺 (∇𝑢0) :

𝐶 =
√

2𝜋∥𝐺 (∇𝑢0)∥2
𝑊1,2

(
𝐵 dist(𝑥,𝜕Ω)

2
(𝑥 )

) ≤ 9𝜋𝐿
4𝐾
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where 𝐿 = ∥∇𝑢0∥𝐿∞
(
𝐵 3 dist(𝑥,𝜕Ω)

4
(𝑥 )

) and 𝐾 > 0 depending only on ∥𝐷𝐺∥𝐿∞ (𝐵𝐿 (0) ) and

𝐶𝐿 the constant introduced in (𝐴1).
Moreover, 𝜔 is a modulus of continuity independent of 𝑢0, for every 0 ≤ 𝑟 < dist(𝑥,𝜕Ω)

2 :

𝜔(𝑟) = 1√︂
ln

(
dist(𝑥,𝜕Ω)

2

)
− ln(𝑟)

.

When 𝑓 ∈ R is not equal to zero, we can extend the previous result under structural
assumptions on 𝐺. In order to state the next result, we need the following definition:

Definition 1.4. We say that a convex function N : R𝑁 → R+ is a pseudo-norm if
N(0) = 0, N is positively homogeneous and {𝑧 ∈ R𝑁 such that N(𝑧) < 1} is an open
strictly convex bounded set with a C1,1 continuous boundary.

It is important to notice that N is not necessarily symmetric. Hence, the definition of a
pseudo-norm is more general than the definition of a norm with C1,1 level sets.

The next theorem is stated when 𝑓 ≡ 𝜆 ∈ R and 𝐺 is the sum of gradients of convex
functions:

Theorem 1.5. Let us assume that 𝑓 ≡ 𝜆 ∈ R and 𝐺 =
∑𝑛
𝑖=1𝐺𝑖 with 𝑛 ∈ N. Here, the

functions (𝐺𝑖)1≤𝑖≤𝑛 are gradients of convex functions (𝜑𝑖)1≤𝑖≤𝑛 that have one of the two
following forms:

𝜑𝑖 (𝑧) := 𝑓𝑖 (N𝑖 (𝑧 − 𝜉𝑖)) and 𝑓 ′𝑖 (𝑧) = 0 ⇔ 𝑧 = 0 (𝐴2)

with 𝑓𝑖 ∈ C1,1
loc (R) a convex function, N𝑖 a pseudo-norm and 𝜉𝑖 ∈ R2.

𝜑𝑖 (𝑧) := 𝑓𝑖 (⟨𝑧, 𝜉𝑖⟩) (𝐴3)

where 𝑓𝑖 ∈ C1,1
loc (R) is a convex function and 𝜉𝑖 ∈ R2\{0}.

Then for every solution 𝑢0 of (1.4) the function 𝐺 (∇𝑢0) is continuous.

Remark 1.6. In this article, we use the convention that 0 ∉ N.

We can apply Theorem 1.5 to𝐺 = ∇𝜑with 𝜑 as in (1.2). Hence,∇𝜑(∇𝑢0) is continuous.
In this particular case, [1 − |∇𝑢0 |]+ is continuous which is a new feature that can not
be obtained with [14], [28] or [30] since the set of degeneracy is an annulus. Thus, we
know that |∇𝑢0 (𝑥) | has to go to 1 when 𝑥 converges to the boundary of the open set
{𝑥′ ∈ Ω such that |∇𝑢0 (𝑥′) | < 1} from the inside. This new result is useful to study
global regularity of the level lines.

Theorem 1.5 can also be used for orthotropic type functionals. By orthotropic we mean
that 𝐺 = ∇𝜑 and 𝜑 is the sum of convex functions 𝑧 ↦→ 𝜑𝑖 (𝑧) that depends only on one
coordinate of 𝑧. Hence, if 𝜑(𝑧) = |𝑧1 |𝑝1 + |𝑧2 |𝑝2 with 2 ≤ 𝑝1 ≤ 𝑝2 and with 𝑧𝑖 := ⟨𝑧, 𝑒𝑖⟩,
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then ∇𝜑(∇𝑢0) is continuous. In the singular case where 1 < 𝑝1 ≤ 2 ≤ 𝑝2 we have the
following result:

Theorem 1.7. Let us assume that 𝑓 ≡ 𝜆 ∈ R and 𝐺 = 𝐺1 + 𝐺2 with

𝐺𝑖 (𝑧) := 𝑓 ′𝑖 (⟨𝑧, 𝜉𝑖⟩)𝜉𝑖
where 𝑓1 ∈ C1,1

loc (R) and 𝑓2 ∈ C1 (R) ∩ C1,1
loc (R\{0}) are two convex functions and

𝜉1, 𝜉2 ∈ R2\{0} are non colinear. Moreover, we assume that there exist 𝑟 > 0 and a
modulus of convexity 𝜔 : R+ → R+ for 𝑓2. Namely, 𝜔 is a continuous function satisfying
𝜔(𝑡) = 0 ⇔ 𝑡 = 0 such that for every 𝑥, 𝑦 ∈ (−𝑟, 𝑟) we have

( 𝑓 ′2 (𝑥) − 𝑓 ′2 (𝑦)) (𝑥 − 𝑦) ≥ 𝜔( |𝑥 − 𝑦 |).
Then for every solution 𝑢0 of (1.4) the function 𝐺 (∇𝑢0) is continuous.

Theorem 1.7 can be used to prove some regularity results of the solutions in the case
of orthotropic functionals with more general growth than power-type growth. In fact, if
𝜑(𝑧) = |𝑧1 |𝑝1 + |𝑧2 |𝑝2 with 1 < 𝑝1 < 2 ≤ 𝑝2 as in a case of [5] then the functional is
singular on {𝑧1 = 0} and degenerate on {𝑧2 = 0}. Hence, this is only when 𝑧 = 0 that we
have both problems. In our case, the set where 𝜑 is singular and degenerate at the same
time can be a line. For instance, we can consider 𝑓1 (𝑡) := ( |𝑡 | − 𝑟)2

+ and 𝑓2 (𝑡) = |𝑡 | 3
2 for

every 𝑡 ∈ R. But we do not have the C1 regularity in that case.
However, the two functions ( |𝜕1𝑢0 | − 𝑟)+ and 𝜕2𝑢0

|𝜕2𝑢0 |1/2
are continuous. We can see that

the continuity of this last function implies the continuity of 𝜕2𝑢0. Hence, the regularity
of 𝐺 (∇𝑢0) can be useful when we exploit the local properties of 𝐺. For instance, in the
setting of Theorem 1.1, Theorem 1.5 or Theorem 1.7 we have a local C1 regularity result:

Proposition 1.8. Under the assumptions of Theorem 1.1, Theorem 1.5 or Theorem 1.7,
𝐺 (∇𝑢0) has a continuous representative 𝜎. If 𝐺 is a homeomorphism between two open
sets𝑈 and 𝑉 then 𝑢0 ∈ C1 (𝜎−1 (𝑉)).

In the case where 𝜎−1 (𝑉) = Ω then 𝑢0 is C1. The above proposition can be seen as an
extension of what is known in dimension one. For instance, [13, Theorem 15.5] states
that a Lipschitz minimizer 𝑢0 of

∫ 𝑏
𝑎
𝐹 (𝑥, 𝑢(𝑥), 𝑢′ (𝑥)) d𝑥 is C1 when 𝑦 → 𝐹 (𝑥, 𝑢0 (𝑥), 𝑦)

is strictly convex for a.e. 𝑥 ∈ (𝑎, 𝑏).
This proposition is useful in the case of orthotropic functionals with 𝜑(𝑧) = |𝑧1 |𝑝1 +

|𝑧2 |𝑝2 . The first result on this subject [15, Theorem 1.1] provides the C1 regularity of the
locally Lipschitz minimizers when the problem is fully singular: 1 < 𝑝1 ≤ 𝑝2 ≤ 2 or fully
degenerate: 2 ≤ 𝑝1 ≤ 𝑝2. We point out that we can use Theorem 1.5 and Proposition 1.8
to obtain a new proof of the C1 regularity of 𝑢0 in the degenerate case 2 ≤ 𝑝1 ≤ 𝑝2.

The singular and degenerate case where 1 < 𝑝1 < 2 < 𝑝2 is studied in [5] using ideas
of [15] but Proposition 1.8 combined with Theorem 1.7 gives a new proof of the C1
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regularity in this case. The fully singular case 1 < 𝑝1 ≤ 𝑝2 ≤ 2 is out of the scope of
Theorem 1.5 and Theorem 1.7 unless 𝑝2 = 2. Some other cases with different exponents
can be found in the following papers: [6], [26] and [29].

Under the assumptions of Theorem 1.5, when 𝐺 is the gradient of a convex function 𝜑
that depends only on the Euclidean norm, we have that ∇𝜑 (∇𝑢0 )

|∇𝜑 (∇𝑢0 ) | =
∇𝑢0
|∇𝑢0 | is continuous

when ∇𝑢0 ≠ 0. This allows to define the normal of the level sets as a continuous function.
Consequently, we have the following result on the regularity of the level sets of a solution:

Proposition 1.9. Let 𝜑 be a radial C1,1
loc (R

2) convex function and 𝑢0 a solution of (1.4)
with 𝐺 = ∇𝜑. We denote by 𝜎 the continuous representative of ∇𝜑(∇𝑢0) obtained in
Theorem 1.5. Then for a.e. 𝑡 ∈ R, the connected components of [𝑢0 = 𝑡] ∩ [𝜎 ≠ 0] are
C1 curves.

Our last result is an improvement of [28, Theorem 2.1]. In this article, Mooney
considers a C1 convex function 𝜑 and proves that the Lipschitz minimizers of

𝑢 −→
∫
Ω

𝜑(∇𝑢)

are C1 under some assumptions on 𝜑. He introduces the sets

O𝑘 :=
{
𝑧 ∈ R𝑁 , 1

𝑘
|𝑣 |2 < ⟨𝐷2𝜑(𝑧)𝑣, 𝑣⟩ < 𝑘 |𝑣 |2 ,∀ 𝑣 ∈ R𝑁

}
and 𝐷𝜑 = R𝑁\

⋃
𝑘∈N

O𝑘 .

Then [28, Theorem 2.1] establishes that if 𝜑 is C2 outside 𝐷𝜑 and if 𝐷𝜑 is a finite set of
coplanar points, then the solutions are C1.

In order to state the last theorem, we assume that there exists a compact set 𝐷𝐺 such
that 𝐺 ∈ C1 (R𝑁\𝐷𝐺) and 𝐷𝐺 = R𝑁\⋃

𝑘∈N O𝑘 with this time

O𝑘 :=
{
𝑧 ∈ R𝑁 , 1

𝑘
|𝑣 |2 < ⟨𝐷𝐺 (𝑧)𝑣, 𝑣⟩ < 𝑘 |𝑣 |2 for every 𝑣 ∈ R𝑁

}
.

For every 𝑡 ≥ 0, we introduce the closed 𝑡−neighborhood of a set𝑈 as

𝑁 𝑡 (𝑈) :=
{
𝑧 ∈ R𝑁 such that dist(𝑧,𝑈) ≤ 𝑡

}
.

Theorem 1.10. Let us assume that 𝑓 ∈ 𝑊1,𝑞 (Ω) with 𝑞 > 𝑁 , 𝐷𝐺 is contained in a plane
and has finitely many connected components. We assume that there exists 𝑡0 > 0 such that
for every 0 ≤ 𝑡 ≤ 𝑡0 the connected components of 𝑁 𝑡 (𝐷𝐺) are simply connected. Then,
for every solution 𝑢0 of (1.4), dist(∇𝑢0, 𝐷𝐺) and dist(∇𝑢0, 𝐷𝐺) × ∇𝑢0 are continuous.
Moreover, if 𝐺 is constant on each connected components of 𝐷𝐺 , then 𝐺 (∇𝑢0) is
continuous.

This assumption on the simply connected neighborhoods is satisfied when the connected
components of 𝐷𝐺 are simply connected with a Lipschitz boundary. The main difference
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between this result and [28, Theorem 2.1] is that the degeneracy set 𝐷𝐺 is not just points.
However, even if the conclusion is weakened, the solutions are still C1 around points
𝑥 ∈ Ω such that ∇𝑢(𝑥) is outside this set of degeneracy. Furthermore, we prove that the
distance between ∇𝑢 and the degeneracy set is a continuous function.

This extension is natural in the sense that this is an improvement of [28] comparable
to the improvement of [14] and [30] to the 𝑝-Laplacian case. In fact, we view [14] or [30]
as an extension of what is known for the 𝑝-Laplacian case, where the set of degeneracy
is one point, to the case where the set of degeneracy is larger. This is exactly what we
are doing in Theorem 1.10 with respect to [28, Theorem 2.1]. Here, it is proven that the
distance between ∇𝑢0 and the degeneracy set is continuous.

The study of the regularity of the solutions of (1.4) with a right-hand side 𝑓 ∈ 𝐿𝑞 (Ω)
with 𝑞 > 𝑁 is a widely studied subject in the classical framework of uniform elliptic
equations and degenerate problems. It is the case in [4] and [14] for instance. In our case,
the right-hand side belongs to the smaller set of Sobolev functions: 𝑓 ∈ 𝑊1,𝑞 (Ω) with
𝑞 > 𝑁 .

It is important to notice that the case where𝐺 is constant on each connected components
of 𝐷𝐺 does not cover the framework of Theorem 1.1, Theorem 1.5 and Theorem 1.7
since the connected components of 𝐷𝐺 must be simply connected. That is not the case
when 𝐺 = ∇𝜑 with 𝜑 as in (1.2), for example.

1.4. Ideas of the proofs

The proof of the continuity of 𝐺 (∇𝑢0) in Theorem 1.1, Theorem 1.5 and Theorem 1.7
uses ideas from [15]. In this article, the authors prove the C1 regularity for Lipschitz
minimizers of the following functional:

𝑣 −→
∫
Ω

𝐹 (∇𝑣).

A major difference between our article and [15] is that we do not require 𝐺 to be
strictly monotone, which, as expected, weakens the conclusion. The solutions are not
necessarily C1 as shown in (1.3) but Proposition 1.8 provides a partial answer to that.

We can divide the proofs of Theorem 1.1, Theorem 1.5 and Theorem 1.7 in four parts:

Part 1. We regularize 𝐺 in order to work with smooth elliptic equations of the form

div𝐺𝑚 (∇𝑢𝑚) = 𝑓𝑚.

We have to be careful when we approximate our problem since the functions (𝐺𝑚)𝑚∈N
have to share some properties of 𝐺 such as the pseudo-norm structure or the orthotropic
form.
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Part 2. As in [15], we want to prove that ∥𝐺𝑚 (∇𝑢𝑚)∥𝑊1,2 (Ω) can be bounded uniformly
in 𝑚 ∈ N. Since Theorem 1.1 is stated for a function 𝐺 that is not necessarily the
gradient of a convex function, we have to adapt some ideas of [15] to the setting of partial
differential equations. In the case of Theorem 1.1 and Theorem 1.5 we prove the following
result:

Proposition 1.11. We assume that 𝐺 ∈ C1 (R𝑁 ) satisfies the assumptions of Theorem 1.1
or Theorem 1.5. Then 𝐺 (∇𝑢) ∈ 𝑊1,2

loc (Ω).

We have an analogous result in the framework of Theorem 1.7. In our case, we have to
combine some results of [15] with an adaptation of [8, Theorem 2.1] to obtain Sobolev
estimates in this particular framework. Hence, we can avoid the singularity at the origin
with the following result:

Proposition 1.12. We assume that 𝐺 ∈ C1 (R𝑁 ) satisfies the assumption of Theorem 1.7.
Then for every Ω′ ⋐ Ω and every 𝑟 > 0:∫

Ω′∩𝑈𝑟

|∇[𝐺 (∇𝑢)] |2 ≤ 𝐶 (𝐺, 𝑟,Ω′) (1.7)

where𝑈𝑟 := {𝑥 ∈ Ω such that |⟨∇𝑢(𝑥), 𝜉2⟩| ≥ 𝑟}. Moreover, 𝐺1 (∇𝑢) ∈ 𝑊1,2
loc (Ω).

There exists several other results about the Sobolev regularity of 𝐺 (∇𝑢) with more
general right-hand side 𝑓 . We can cite the recent papers: [2], [11], [12] and [21] for
instance.

Part 3. We use this uniform estimate to obtain a uniform modulus of continuity. The
original idea, specific to the dimension two, is due to Lebesgue and is used e.g. in [15,
Lemma 2.1] and [26, Lemma 3.1]:

Proposition 1.13. Let 𝐻 ∈ 𝑊1,2
loc (Ω). If for every 𝜖 > 0 and every 𝑥0 ∈ Ω there exists

𝐶 (𝜖, 𝑥0) > 0 such that for every 0 < 𝛿 < dist(𝑥0, 𝜕Ω):

osc𝐵𝛿 (𝑥0 ) 𝐻 ≥ 𝜖 =⇒ osc𝜕𝐵𝛿 (𝑥0 ) 𝐻 ≥ 𝐶 (𝜖, 𝑥0),

then 𝐻 is continuous at 𝑥0. Here, osc𝐵𝛿 (𝑥0 ) 𝐻 := sup𝑥,𝑦∈𝐵𝛿 (𝑥0 ) |𝐻 (𝑥) − 𝐻 (𝑦) |.

The second tool is a classical maximum principle, see e.g. [19, Theorem 3.1]:

Proposition 1.14. Let 𝑢 be a C3 solution of (1.4) with 𝐺 ∈ C2 and 𝑓 ≡ 𝜆 ∈ R. Then for
any 𝑒 ∈ S𝑁−1 and any open set Ω′ ⋐ Ω, we have that

sup
𝑥∈Ω′

𝜕𝑒𝑢(𝑥) = sup
𝑥∈𝜕Ω′

𝜕𝑒𝑢(𝑥).
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This maximum principle is used as in [15] to prove that 𝐺𝑚 (∇𝑢𝑚) satisfies the
assumptions of the result from Lebesgue uniformly in 𝑚 ∈ N. Hence, the functions
𝐺𝑚 (∇𝑢𝑚) are uniformly continuous in 𝑚 ∈ N.

Part 4. We pass to the limit when 𝑚 goes to +∞ and we prove that the sequence
𝐺𝑚 (∇𝑢𝑚) converges uniformly to 𝐺 (∇𝑢0).

The strategy of the proof of Theorem 1.10 is different. Since the result is stated in
any dimension, we can not use the result from Lebesgue. The proof is an adaptation of
the one from [28, Theorem 2.1]. In our case, the result is stated with partial differential
equations and with a non-zero right-hand side 𝑓 ∈ 𝑊1,𝑞 (Ω) with 𝑞 > 𝑁 , which create
some technical difficulties.

The proof shows that one of the two following cases occurs:

• either ∇𝑢(𝐵𝑟 (𝑥0)) is outside the degeneracy set 𝐷𝐺 for 𝑟 small enough.

• or ∇𝑢(𝐵𝑟 (𝑥0)) is inside the convex hull of 𝐷𝐺 when 𝑟 is small enough.

In the first case, we are reduced to the framework of uniform elliptic partial differential
equations and the conclusion follows from classical results. In the second case, we use the
fact that the set of degeneracy 𝐷𝐺 is in a plane to show that either ∇𝑢(𝐵𝑟 (𝑥0)) converges
to a point outside 𝐷𝐺 when 𝑟 → 0 or ∇𝑢(𝐵𝑟 (𝑥0)) is contained in a neighborhood of 𝐷𝐺
when 𝑟 → 0.

1.5. Plan of the paper

In the following Section 2, we approximate our equation (1.4) by smooth equations in
order to work with smooth functions. We also prove that if we pass to the limit, we obtain
a solution of (1.4). In Section 3, we prove a uniform continuity estimate for Theorem 1.1
and Theorem 1.5 thanks to a uniform Sobolev estimate. Section 4 is devoted to the proof
of Theorem 1.7 for approximated solutions. In the subsequent Section 5, we prove an
intermediate result for Theorem 1.10. Finally, we pass to the limit in Section 6 to obtain
the final conclusions. Section A is an appendix about classical results for the Minkowski
functional used for the pseudo-norms.

2. Approximations of the solutions by smooth functions

In this article, we assume a priori that the solution 𝑢0 of (1.4) is locally Lipschitz
continuous. This regularity can be obtained under a uniform convexity condition at infinity.
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For instance, we can apply [16, Theorem 4.1] or [7, Theorem 2.1] when there exist 𝐶 > 0
and 𝑅 > 0 such that 𝐺 ∈ C1 (R𝑁\𝐵𝑅 (0)) and

1
𝐶
|𝜉 |2 ≤ ⟨𝐷𝐺 (𝑧)𝜉, 𝜉⟩ ≤ 𝐶 |𝜉 |2 (2.1)

for every 𝑧 ∈ R𝑁\𝐵𝑅 (0) and every 𝜉 ∈ R𝑁 . Under these assumptions for every Ω′ ⋐ Ω

there exists a constant 𝐿 := 𝐿 (Ω′, 𝑅, 𝐶) such that ∥∇𝑢0∥𝐿∞ (Ω′ ) ≤ 𝐿.
Since we want to prove some local regularity results, we can assume that 𝑢0 is globally

Lipschitz continuous on Ω. Hence, we can change 𝐺 outside a sufficiently large ball in
order to assume that there exist 𝐶 > 0 and 𝑅 > 0 such that 𝐺 satisfies (2.1).

In this section, we describe an approximation argument for the proofs of the main
theorems, which must be adapted for each theorem in order to have smooth approximations
(𝐺𝑚)𝑚∈N that have the same properties as 𝐺 and (2.1) uniformly in 𝑚 ∈ N.

We begin with an infinitesimal version of the assumption (𝐴1):

Lemma 2.1. Let 𝐿 > 0 and 𝐻 be a C1 function that satisfies (𝐴1). Then there exists
𝐶𝐿 > 0 such that for every 𝑧 ∈ 𝐵𝐿 (0) and every 𝑣 ∈ R𝑁 we have:

⟨𝐷𝐻 (𝑧)𝑣, 𝑣⟩ ≥ 𝐶𝐿 |𝐷𝐻 (𝑧)𝑣 |2.

Proof. This result is true when 𝑣 = 0. By assumption (𝐴1), we have that for every
𝑧 ∈ 𝐵𝐿 (0), every 𝑣 ∈ R𝑁\{0} and every 0 < ℎ < 𝐿−|𝑧 |

|𝑣 | :

⟨𝐻 (𝑧 + ℎ𝑣) − 𝐻 (𝑧), ℎ𝑣⟩ ≥ 𝐶𝐿 |𝐻 (𝑧 + ℎ𝑣) − 𝐻 (𝑧) |2.
By dividing this last equation by ℎ2 and letting ℎ go to 0, we get:

⟨𝐷𝐻 (𝑧)𝑣, 𝑣⟩ ≥ 𝐶𝐿 |𝐷𝐻 (𝑧)𝑣 |2. □

We use this new version of (𝐴1) in order to approximate 𝐺 in the framework of
Theorem 1.1. In this section, the constant 𝐿 > 0 is such that ∥∇𝑢0∥𝐿∞ (Ω) ≤ 𝐿.

Proposition 2.2. If𝐺 satisfies the assumptions of Theorem 1.1 then there exists a sequence
of smooth functions (𝐺𝑚)𝑚∈N converging uniformly to 𝐺 on 𝐵𝐿 (0) that satisfy the same
assumptions as 𝐺 and (2.1) uniformly in 𝑚 ∈ N. Namely, there exists 𝐶1 > 0 independent
of 𝑚 ∈ N such that for every 𝑧, 𝜉 ∈ R𝑁 we have

⟨𝐷𝐺𝑚 (𝑧)𝜉, 𝜉⟩ ≥ 𝐶1 |𝐷𝐺𝑚 (𝑧)𝜉 |2. (𝐴′
1)

Moreover, 𝐷𝐺𝑚 is invertible everywhere for every 𝑚 ∈ N.

Proof. Let (𝜌𝑚)𝑚∈N be a standard radial mollifying sequence with support in 𝐵 1
𝑚
(0). We

introduce the convex function Φ(𝑧) := ( |𝑧 | − 2𝐿)2
+ for every 𝑧 ∈ R2 with 𝐿 the Lipschitz

constant of 𝑢0 and 𝜃 ∈ C∞
0 (𝐵4𝐿 (0)) such that 0 ≤ 𝜃 ≤ 1 on R𝑁 , 𝜃 ≡ 1 on 𝐵3𝐿 (0) and

∥∇𝜃∥𝐿∞ (R𝑁 ) ≤ 2
𝐿

.
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We set
𝐺𝑚 := 𝜃 (𝐺 ∗ 𝜌𝑚) + 𝐾∇Φ𝑚 + 1

𝑚
Id

where Φ𝑚 := Φ ∗ 𝜌𝑚 and 𝐾 > 0 to be fixed later. Thanks to Φ and the regularity of 𝐺,
𝐺𝑚 satisfies (2.1) uniformly in 𝑚 ∈ N. Since we add the identity in 𝐺𝑚, we have that
𝐷𝐺𝑚 is invertible everywhere. It remains to check that 𝐺𝑚 satisfies the assumption (𝐴′

1)
uniformly in 𝑚 ∈ N.

For every 𝑧1, 𝑧2 ∈ R2 we have

⟨𝐺∗𝜌𝑚 (𝑧1)−𝐺∗𝜌𝑚 (𝑧2), 𝑧1−𝑧2⟩ ≥
∫
R2
⟨𝐺 (𝑧1−𝑦)−𝐺 (𝑧2−𝑦), (𝑧1−𝑦)−(𝑧2−𝑦)⟩𝜌𝑚 (𝑦) d𝑦.

Thus, by assumption (𝐴1) we obtain that

⟨𝐺 ∗ 𝜌𝑚 (𝑧1) − 𝐺 ∗ 𝜌𝑚 (𝑧2), 𝑧1 − 𝑧2⟩ ≥ 𝐶3𝐿+1

∫
R2

|𝐺 (𝑧1 − 𝑦) − 𝐺 (𝑧2 − 𝑦) |2𝜌𝑚 (𝑦) d𝑦

for every 𝑧1, 𝑧2 ∈ 𝐵3𝐿 (0). By Jensen’s inequality we get that

⟨𝐺 ∗ 𝜌𝑚 (𝑧1) − 𝐺 ∗ 𝜌𝑚 (𝑧2), 𝑧1 − 𝑧2⟩ ≥ 𝐶3𝐿+1 |𝐺 ∗ 𝜌𝑚 (𝑧1) − 𝐺 ∗ 𝜌𝑚 (𝑧2) |2.

Hence, by Lemma 2.1 we obtain that

⟨𝐷𝐺 ∗ 𝜌𝑚 (𝑧)𝜉, 𝜉⟩ ≥ 𝐶3𝐿+1 |𝐷𝐺 ∗ 𝜌𝑚 (𝑧)𝜉 |2

for every 𝑧 ∈ 𝐵3𝐿 (0), every 𝜉 ∈ R𝑁 and every 𝑚 ∈ N. In (𝐴′
1) we can assume that |𝜉 | = 1.

For every 𝑧, 𝜉 ∈ R𝑁 with |𝜉 | = 1 we have that:

⟨𝐷𝐺𝑚 (𝑧)𝜉, 𝜉⟩ ≥ 𝜃⟨𝐷 (𝐺 ∗ 𝜌𝑚) (𝑧)𝜉, 𝜉⟩ + 𝐾 ⟨𝐷2Φ𝑚 (𝑧)𝜉, 𝜉⟩ − |∇𝜃∥𝐷 (𝐺 ∗ 𝜌𝑚) (𝑧) |

and

|𝐷𝐺𝑚 (𝑧)𝜉 |2 ≤ 4
(
|∇𝜃 |2 |𝐺 ∗ 𝜌𝑚 (𝑧) |2 + 𝜃2 |𝐷 (𝐺 ∗ 𝜌𝑚) (𝑧) |2 + 𝐾2 |𝐷2Φ𝑚 (𝑧)𝜉 |2

)
.

If 𝑧 ∈ 𝐵3𝐿 (0), then 𝜃 (𝑧) = 1 and ∇𝜃 (𝑧) = 0. Hence,

⟨𝐷𝐺𝑚 (𝑧)𝜉, 𝜉⟩ ≥ 1
4

min
{
𝐶3𝐿+1,

1
2𝐾

}
|𝐷𝐺𝑚 (𝑧)𝜉 |2.

If 𝑧 ∉ 𝐵4𝐿 (0) then 𝐷𝐺𝑚 = 𝐾𝐷2Φ𝑚. Thus,

⟨𝐷𝐺𝑚 (𝑧)𝜉, 𝜉⟩ ≥ 1
2𝐾

|𝐷𝐺𝑚 (𝑧)𝜉 |2.

Finally, if 𝑧 ∈ 𝐵4𝐿 (0)\𝐵3𝐿 (0) then we can bound |∇𝜃 | from above by 2
𝐿

. Hence, we want
to find 𝐶 > 0 such that:

𝐾 ⟨𝐷2Φ𝑚 (𝑧)𝜉, 𝜉⟩

≥ 4𝐶
(

4
𝐿2 |𝐺 ∗ 𝜌𝑚 (𝑧) |2 + |𝐷 (𝐺 ∗ 𝜌𝑚) (𝑧) |2 + 𝐾2 |𝐷2Φ𝑚 (𝑧) |2

)
+ 2
𝐿
|𝐷 (𝐺 ∗ 𝜌𝑚) (𝑧) |.
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By definition of Φ, when 𝑚 is large enough this is equivalent to

4𝐾
3

≥ 2
𝐿
|𝐷 (𝐺 ∗ 𝜌𝑚) (𝑧) | + 4𝐶

(
4
𝐿2 |𝐺 ∗ 𝜌𝑚 (𝑧) |2 + |𝐷 (𝐺 ∗ 𝜌𝑚) (𝑧) |2 + 4𝐾2

)
.

By global Lipschitz regularity of 𝐺 on 𝐵 := 𝐵4𝐿 (0) we can choose the two constants
𝐾 := 𝐾 (𝐿, ∥𝐷𝐺∥𝐿∞ (𝐵) ) > 0 and 𝐶 := 𝐶 (𝐿, ∥𝐷𝐺∥𝐿∞ (𝐵) ) > 0 such that this last
inequality is true. Hence, by taking 𝐶1 as min{𝐶, 1

8𝐾 ,
𝐶3𝐿+1

4 } the assumption (𝐴′
1) is

satisfied uniformly in 𝑚 ∈ N. □

In the case of Theorem 1.5 we proceed as follows:

Proposition 2.3. If𝐺 satisfies the assumptions of Theorem 1.5 then there exists a sequence
of C4 functions (𝐺𝑚)𝑚∈N converging to 𝐺 uniformly on 𝐵𝐿 (0) that satisfy the same
assumptions as𝐺 and (2.1) uniformly in 𝑚 ∈ N. Moreover, 𝐷𝐺𝑚 is invertible everywhere
for every 𝑚 ∈ N.

Proof. In the framework of Theorem 1.5, we have that 𝐺 =
∑𝑛
𝑖=1 ∇𝜑𝑖 with 𝜑𝑖 ( · ) =

𝑓𝑖 (N𝑖 ( · − 𝜉𝑖)) or 𝜑𝑖 ( · ) = 𝑓𝑖 (⟨ · , 𝜉𝑖⟩).
For 𝐿 ≥ ∥∇𝑢0∥𝐿∞ (Ω) and every 1 ≤ 𝑖 ≤ 𝑛, we introduce:

𝑓̃ 𝑖 (𝑡) :=


𝑓𝑖 (−2𝐿) + 𝑓 ′

𝑖
(−2𝐿) (𝑡 + 2𝐿) + (𝑡 + 2𝐿)2 if 𝑡 < −2𝐿

𝑓𝑖 (𝑡) if −2𝐿 ≤ 𝑡 ≤ 2𝐿,
𝑓𝑖 (2𝐿) + 𝑓 ′

𝑖
(2𝐿) (𝑡 − 2𝐿) + (𝑡 − 2𝐿)2 if 𝑡 > 2𝐿,

and Φ(𝑧) = ( | · | − 2𝐿)2
+. We divide the rest of the proof in four steps.

Step 1. If 𝜑𝑖 ( · ) = 𝑓𝑖 (⟨ · , 𝜉𝑖⟩) then we set 𝐺𝑚
𝑖
( · ) := ∇[ 𝑓 𝑚

𝑖
(⟨ · , 𝜉𝑖⟩)] for every 𝑚 ∈ N

with 𝑓 𝑚
𝑖
( · ) := 𝑓̃ 𝑖 ∗ 𝜌𝑚 ( · ) + 1

𝑚
| · |2.

Step 2. If 𝜑𝑖 ( · ) = 𝑓𝑖 (N𝑖 ( · − 𝜉𝑖)), we proceed as follows. We introduce 𝐶 :=
(N𝑖)−1 ({[0, 1)}), then N𝑖 is the convex gauge 𝛾𝐶 of the convex set 𝐶. We regular-
ize 𝛾𝐶 by convolution: 𝛾𝑚

𝐶
:= 𝛾𝐶 ∗ 𝜌𝑚. For every 𝑚 ∈ N, the function 𝛾𝑚

𝐶
is convex and

has strictly convex lower level sets thanks to Proposition A.2. By Sard’s theorem, we
can define 𝐶𝑚 as (𝛾𝑚

𝐶
)−1 ({[0, 𝑟𝑚)}) with 𝑟𝑚 → 1 when 𝑚 → +∞ selected such that

𝐶𝑚 is smooth. Moreover, we can assume that there exists 𝑟 > 0 independent of 𝑚 such
that 𝐵𝑟 (0) is in the interior of 𝐶𝑚. Then we define N𝑚

𝑖
as the gauge of 𝐶𝑚. Hence, by

Proposition A.1 N𝑚
𝑖

is a pseudo-norm smooth outside the origin. Moreover, for every
𝑧 ≠ 0 we have that

∇N𝑚
𝑖 (𝑧) =

𝜈𝐶𝑚
(𝑃𝑚 (𝑧))

⟨𝜈𝐶𝑚
(𝑃𝑚 (𝑧)), 𝑃𝑚 (𝑧)⟩

≠ 0
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where 𝑃𝑚 (𝑧) is the intersection between R+𝑧 and 𝜕𝐶𝑚 and 𝜈𝐶𝑚
is the unit outward normal

vector of 𝐶𝑚. In order to regularize 𝑓𝑖 we set

𝑓 𝑚𝑖 (𝑡) :=
(
𝑓̃ 𝑖 ∗ 𝜌𝑚 ( · ) +

1
𝑚
| · |2

) ((
|𝑡 |𝑞 + 1

𝑚

) 1
𝑞

−
(

1
𝑚

) 1
𝑞

+ 𝛼𝑚𝑖

)
.

Here, 𝑞 ≥ 6 is chosen in order to have 𝑓 𝑚
𝑖
(N𝑚

𝑖
) at least C5 for the upcoming

computations, 𝛼𝑚
𝑖

is the only point where the strictly convex and coercive function
𝑓̃ 𝑖 ∗ 𝜌𝑚 ( · ) + 1

𝑚
| · |2 attains its minimum. Finally, we set 𝜑𝑚

𝑖
( · ) := 𝑓 𝑚

𝑖
(N𝑚

𝑖
( · − 𝜉𝑖)).

Hence, 𝜑𝑚
𝑖

is a strictly convex function such that ∇𝜑𝑚
𝑖
(𝑧) = 0 ⇔ 𝑧 = 𝜉𝑖 .

Step 3. We prove that 𝜑𝑚
𝑖

and ∇𝜑𝑚
𝑖

converge uniformly to 𝜑𝑖 and ∇𝜑𝑖 on every compact
set when 𝑚 → +∞. For every 𝑧 ∈ R2\{0} we have that

|𝛾𝐶 (𝑃𝑚 (𝑧)) − 𝛾𝐶 (𝑃𝐶 (𝑧)) | ≤ |𝛾𝑚𝐶 (𝑃𝑚 (𝑧)) − 𝛾𝐶 (𝑃𝑚 (𝑧)) | + |𝛾𝐶 (𝑃𝐶 (𝑧)) − 𝛾𝑚𝐶 (𝑃𝑚 (𝑧)) |

with 𝑃𝐶 (𝑧) the intersection of 𝜕𝐶 and R+𝑧. By uniform convergence of 𝛾𝑚
𝐶

to 𝛾𝐶 on
compact sets, the first term in the right-hand side converges to 0 when 𝑚 → +∞ uniformly
in 𝑧 ∈ R2\{0}. The second term is equal to |𝑟𝑚 − 1| and converges also to 0 uniformly
in 𝑧 ∈ R2\{0}. This means that 𝛾𝐶 (𝑃𝑚 (𝑧)) converges uniformly to 1 on R2\{0} when
𝑚 → +∞. Hence, 𝑃𝑚 converges to 𝑃𝐶 uniformly on R2\{0}. By homogeneity of N𝑚

𝑖
,

we get that N𝑚
𝑖
(𝑧) = |𝑧 |

|𝑃𝑚 (𝑧) | for every 𝑧 ≠ 0. The convergence of 𝑃𝑚 combined with the
fact that N𝑚

𝑖
(0) = 0 = N𝑖 (0) gives that N𝑚

𝑖
converges uniformly to N𝑖 on every compact

sets of R2 when 𝑚 → +∞. Thus, we obtain that 𝜑𝑚
𝑖

converges uniformly to 𝜑𝑖 on every
compact sets of R2 when 𝑚 → +∞.

When 𝑧 = 𝜉𝑖 , ∇𝜑𝑚𝑖 (𝜉𝑖) = 0 and for every 𝑧 ≠ 𝜉𝑖 , we have that

∇𝜑𝑚𝑖 (𝑧) = ( 𝑓 𝑚𝑖 )′ (N𝑚
𝑖 (𝑧 − 𝜉𝑖))∇N𝑚

𝑖 (𝑧 − 𝜉𝑖).

Moreover, if we set 𝑓 𝑚
𝑖

:= 𝑔𝑚
𝑖
(Θ𝑚𝑞 ) with Θ𝑚𝑞 (𝑡) = ( |𝑡 |𝑞 + 1

𝑚
)

1
𝑞 −

( 1
𝑚

) 1
𝑞 then

( 𝑓 𝑚𝑖 )′′ (𝑡) = (𝑔𝑚𝑖 )′ (Θ𝑚𝑞 (𝑡)) (Θ𝑚𝑞 )′′ (𝑡) + (𝑔𝑚𝑖 )′′ (Θ𝑚𝑞 (𝑡)) ((Θ𝑚𝑞 )′ (𝑡))2.

The fact that (𝑔𝑚
𝑖
)′ (0) = 0 and (Θ𝑚𝑞 )′′ (𝑡) ≤ 𝐶

𝑡
with 𝐶 independent of 𝑚 ∈ N gives

that the functions ( 𝑓 𝑚
𝑖
)𝑚∈N are uniformly in C1,1 (R2). Hence, it only remains to check

that ∇N𝑚
𝑖

converge uniformly to ∇N𝑖 on R2\{0}. For every 𝑧 ∈ R2\{0} we have that
∇N𝑚

𝑖
(𝑧) = 𝜈𝐶𝑚 (𝑃𝑚 (𝑧) )

⟨𝜈𝐶𝑚 (𝑃𝑚 (𝑧) ) ,𝑃𝑚 (𝑧) ⟩ ≠ 0. The function 𝜈𝐶𝑚
(𝑃𝑚) is equal to ∇𝛾𝑚

𝐶
(𝑃𝑚 )

|∇𝛾𝑚
𝐶
(𝑃𝑚 ) | that

converges uniformly on R2\{0} to ∇𝛾𝐶 (𝑃𝐶 )
|∇𝛾𝐶 (𝑃𝐶 ) | that is equal to 𝜈𝐶 (𝑃𝐶 ). Since there exists a

small ball 𝐵𝑟 (0) with 𝑟 > 0 independent of 𝑚 ∈ N inside every 𝐶𝑚 the scalar product
⟨𝜈𝐶𝑚

(𝑃𝑚 (𝑧)), 𝑃𝑚 (𝑧)⟩ can be bounded from below by a positive constant independent
of 𝑚 ∈ N. Hence, ∇N𝑚

𝑖
converges uniformly on R2\{0} to ∇N𝑖 . Thus, ∇𝜑𝑚

𝑖
converges

uniformly on every compact sets of R2 to ∇𝜑𝑖 .
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Thanks to Proposition A.3 the sets 𝐶𝑚 have a Lipschitz continuous normal with a
Lipschitz constant independent of 𝑚 ∈ N. Hence, the functions

∇𝜑𝑚𝑖 (𝑧) := ( 𝑓 𝑚𝑖 )′ (N𝑚
𝑖 (𝑧))∇N𝑚

𝑖 (𝑧)

if 𝑧 ≠ 0 and ∇𝜑𝑚
𝑖
(0) = 0 are equi-Lipschitz continuous on each compact set of R2.

Step 4. In order to have (𝐺𝑚)𝑚∈N satisfying (2.1) uniformly in𝑚 ∈ Nwe add a term of the
following form: ∇[(Φ∗𝜌𝑚 ( | · |) + 1

𝑚
| · |2]. We define𝐺𝑚 as the following:𝐺𝑚 :=

∑𝑛
𝑖=1𝐺

𝑚
𝑖

.
Since we add the identity in 𝐺𝑚, we have that 𝐷𝐺𝑚 is invertible everywhere. Thus,
𝐺𝑚 is a function that satisfies the assumptions of Theorem 1.5 and (2.1) uniformly in
𝑚 ∈ N. □

We have the following result for Theorem 1.7:

Proposition 2.4. If𝐺 satisfies the assumptions of Theorem 1.7 then there exists a sequence
of smooth functions (𝐺𝑚)𝑚∈N converging to 𝐺 uniformly on 𝐵𝐿 (0) that satisfy the same
assumptions as𝐺 and (2.1) uniformly in 𝑚 ∈ N. Moreover, 𝐷𝐺𝑚 is invertible everywhere
for every 𝑚 ∈ N and for every 0 < 𝑟 < 𝐿, sup𝑟≤𝑡≤𝐿 ( 𝑓 𝑚2 )′′ (𝑡) can be bounded uniformly
in 𝑚 ∈ N.

Proof. Let us consider 𝐿 > ∥∇𝑢0∥𝐿∞ (Ω) . In the framework of Theorem 1.7, we have
that 𝐺 = 𝐺1 + 𝐺2 with 𝐺𝑖 ( · ) = 𝑓 ′

𝑖
(⟨ · , 𝜉𝑖⟩)𝜉𝑖 for 𝑖 = 1, 2. We introduce Φ1 (𝑧) :=

( |⟨𝑧, 𝜉1⟩| − 2𝐿)2
+, Φ2 (𝑧) := ( |⟨𝑧, 𝜉2⟩| − 2𝐿)2

+ and Φ(𝑧) := Φ1 (𝑧) + Φ2 (𝑧). We also
introduce 𝑓̃ 1 and 𝑓̃ 2 that satisfy

𝑓̃ 𝑖 (𝑡) :=


𝑓𝑖 (−2𝐿) + 𝑓 ′

𝑖
(−2𝐿) (𝑡 + 2𝐿) + (𝑡 + 2𝐿)2 if 𝑡 < −2𝐿

𝑓𝑖 (𝑡) if −2𝐿 ≤ 𝑡 ≤ 2𝐿,
𝑓𝑖 (2𝐿) + 𝑓 ′

𝑖
(2𝐿) (𝑡 − 2𝐿) + (𝑡 − 2𝐿)2 if 𝑡 > 2𝐿.

Hence, we set for every 𝑚 ∈ N, 𝐺𝑚
𝑖
( · ) := ∇[( 𝑓̃ 𝑖 ∗ 𝜌𝑚) (⟨ · , 𝜉𝑖⟩) + 1

𝑚
|⟨ · , 𝜉𝑖⟩|2 +

Φ𝑖 ∗ 𝜌𝑚 ( · )] for 𝑖 = 1, 2. Then we can define 𝐺𝑚 as the sum of these two functions:
𝐺𝑚 := 𝐺𝑚1 + 𝐺𝑚2 . Since we add 1

𝑚
|⟨ · , 𝜉1⟩|2 + 1

𝑚
|⟨ · , 𝜉2⟩|2 in 𝐺𝑚 we have that 𝐷𝐺𝑚 is

invertible everywhere.
It remains to check that around the origin where 𝑓 𝑚2 ( · ) := 𝑓2 ∗ 𝜌𝑚 ( · ) + 1

𝑚
| · |2 +Φ𝑖 ∗

𝜌𝑚 ( · ) this function has a uniform modulus of convexity 𝜔 without any dependence on
𝑚 ∈ N. For every 𝑚 ≥ 2

𝑟
and every 𝑥, 𝑦 ∈ (− 𝑟2 ,

𝑟
2 ) we have that

(( 𝑓 𝑚2 )′ (𝑥) − ( 𝑓 𝑚2 )′ (𝑦)) (𝑥− 𝑦) ≥
∫
𝐵 𝑟

2
(0)

( 𝑓 ′2 (𝑥− 𝑡) − 𝑓
′
2 (𝑦− 𝑡)) ((𝑥− 𝑡) − (𝑦− 𝑡))𝜌𝑚 (𝑡)d𝑡.
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By the uniform convexity assumption made on 𝑓2, we have that ( 𝑓 ′2 (𝑥 − 𝑡) − 𝑓 ′2 (𝑦 − 𝑡))
((𝑥− 𝑡) − (𝑦− 𝑡)) ≥ 𝜔( |𝑥− 𝑦 |) for every 𝑥, 𝑦, 𝑡 ∈ (− 𝑟2 ,

𝑟
2 ). Hence, (( 𝑓 𝑚2 )′ (𝑥) − ( 𝑓 𝑚2 )′ (𝑦))

(𝑥 − 𝑦) ≥ 𝜔( |𝑥 − 𝑦 |) for every 𝑚 ≥ 2
𝑟

and every 𝑥, 𝑦 ∈ (− 𝑟2 ,
𝑟
2 ). □

In the case of Theorem 1.10 we just approximate 𝐺 by (𝐺 ∗ 𝜌𝑚 + ∇Φ𝑚 + 1
𝑚

Id)𝑚∈N
with Φ( · ) := ( | · | − 2𝐿)2

+.

Proposition 2.5. If𝐺 satisfies the assumptions of Theorem 1.10 then there exists a sequence
of smooth functions (𝐺𝑚)𝑚∈N converging to 𝐺 uniformly on 𝐵𝐿 (0) that satisfy (2.1)
uniformly in 𝑚 ∈ N. Moreover, for every 𝑟 > 0 there exists 𝑘𝑟 ∈ N such that for every
𝑚 ≥ 2

𝑟
and every 𝑧 ∈ R𝑁 such that dist(𝑧, 𝐷𝐺) ≥ 𝑟 we have 1

𝑘𝑟
Id < (𝐷𝐺𝑚 (𝑧))𝑠 < 𝑘𝑟 𝐼𝑑

with (𝐷𝐺𝑚)𝑠 := 𝐷𝐺𝑚+(𝐷𝐺𝑚 )𝑇
2 .

Proof. We regularize 𝐺 as in the proof of Proposition 2.2. More precisely, we introduce
Φ( · ) := ( | · | − 2𝐿)2

+, 𝜃 ∈ C∞
0 (𝐵4𝐿 (0)) such that 0 ≤ 𝜃 ≤ 1 on R𝑁 , 𝜃 ≡ 1 on 𝐵3𝐿 (0).

For every 𝑚 ∈ N, we set 𝐺𝑚 := 𝜃 (𝐺 ∗ 𝜌𝑚) + 1
𝑚

Id+𝐾∇Φ ∗ 𝜌𝑚 with 𝐾 > 0 such that 𝐺𝑚

is monotone. Thus, for every 𝑟 > 0 the support of 𝜌𝑚 is inside 𝐵 𝑟
2
(0) for every 𝑚 ≥ 2

𝑟
.

Since {𝑧 ∈ R𝑁 such that dist(𝑧, 𝐷𝐺) ≥ 𝑟
2 } is inside O𝑘′𝑟 for a certain 𝑘 ′𝑟 the conclusion

follows. □

In all the four cases, when 𝑚 → +∞ we have that 𝐺𝑚 → 𝐺 uniformly on 𝐵𝐿 (0) with
𝐿 > 0 selected such that ∥∇𝑢0∥𝐿∞ (Ω) ≤ 𝐿. Hence, up to a modification of 𝐺 outside
𝐵𝐿 (0), we can assume that 𝐺𝑚 → 𝐺 uniformly on every compact sets of R𝑁 when
𝑚 → +∞.

For every 𝑚 ∈ N, we can consider the following equation:{
div𝐺𝑚 (∇𝑣(𝑥)) = 𝑓𝑚 in Ω,

𝑣 = 𝑢0 on 𝜕Ω,
(2.2)

with 𝑓𝑚 := 𝑓 ∗ 𝜌𝑚 and 𝑢0 a globally Lipschitz continuous solution of (1.4).
By [17, Theorem 6.33], the solution 𝑢𝑚 of (2.2) is C3 inside Ω if 𝑞 ≥ 6 in the proof of

Proposition 2.3. We have that (2.1) implies the existence of 𝐶 > 0, 𝐶′ > 0, 𝐷 ∈ R and
𝐷′ > 0 such that

𝐶 |𝑧1 − 𝑧2 |2 + 𝐷 ≤ ⟨𝐺 (𝑧1) − 𝐺 (𝑧2), 𝑧1 − 𝑧2⟩ ≤ 𝐶′ |𝑧1 − 𝑧2 |2 + 𝐷′ (2.3)

for every 𝑧1, 𝑧2 ∈ R𝑁 . By the growth assumptions of 𝐺𝑚, the sequence (𝑢𝑚)𝑚∈N is
uniformly bounded in𝑊1,2 (Ω):

Proposition 2.6. The sequence (𝑢𝑚)𝑚∈N is uniformly bounded in𝑊1,2
𝑢0 (Ω).
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Proof. For every 𝑚 ∈ N, using the fact that 𝑢𝑚 is a solution of (2.2) we obtain:∫
Ω

⟨𝐺𝑚 (∇𝑢𝑚),∇(𝑢𝑚 − 𝑢0)⟩ = −
∫
Ω

𝑓𝑚 (𝑢𝑚 − 𝑢0)

Thanks to the first inequality in (2.3) we get:∫
Ω

⟨𝐺𝑚 (∇𝑢0),∇(𝑢𝑚 − 𝑢0)⟩ + 𝐶 |∇𝑢𝑚 − ∇𝑢0 |2 + 𝐷 ≤ −
∫
Ω

𝑓𝑚 (𝑢𝑚 − 𝑢0).

Hence, since 𝑢0 ∈ 𝑊1,∞ (Ω) and ∥ 𝑓𝑚∥𝐿∞ (Ω) ≤ ∥ 𝑓 ∥𝐿∞ (Ω) we have:∫
Ω

|∇𝑢𝑚 − ∇𝑢0 |2 ≤ 𝐶′
∫
Ω

|∇𝑢𝑚 − ∇𝑢0 | + 𝐷′.

Applying Young’s inequality on the first term of the right-hand side gives that |∇𝑢𝑚−∇𝑢0 |
is bounded in 𝐿2 (Ω). Thus, (𝑢𝑚) is uniformly bounded in𝑊1,2

𝑢0 (Ω). □

By (2.1), we can assume that for everyΩ′ ⋐ Ω there exists 𝐿Ω′ such that ∥∇𝑢𝑚∥𝐿∞ (Ω′ ) ≤
𝐿Ω′ for every 𝑚 ∈ N.

Since the sequence (𝑢𝑚)𝑚∈N is uniformly bounded in 𝑊1,2 (Ω), we can extract a
subsequence that converges weakly to a function 𝑢 ∈ 𝑊1,2

𝑢0 (Ω). Moreover, for every
subset Ω′ ⋐ Ω, we can use the Ascoli theorem to extract a subsequence of (𝑢𝑚)𝑚∈N
that converges uniformly to 𝑢 on Ω′. Up to a diagonal process, we can assume that the
sequence (𝑢𝑚)𝑚∈N converges locally uniformly to 𝑢 on Ω.

We can prove that 𝑢 is a solution of (1.4). To do so, we use the following result on
Young measures:

Lemma 2.7. There exists a family of probability measures (𝜈𝑥)𝑥∈Ω measurable with
respect to 𝑥 such that for a.e. 𝑥 ∈ Ω and for 𝜈𝑥-a.e. 𝑦 ∈ R𝑁 we have:

⟨𝐺 (𝑦) − 𝐺 (∇𝑢(𝑥)), 𝑦 − ∇𝑢(𝑥)⟩ = 0. (2.4)

Moreover, these probability measures satisfy the following property:∫
Ω

𝐻 (𝑥,∇𝑢𝑚 (𝑥))d𝑥 −→
∫
Ω

∫
R𝑁

𝐻 (𝑥, 𝑦)d𝜈𝑥 (𝑦)d𝑥 (2.5)

when 𝑚 → +∞, for every bounded Carathéodory function 𝐻 : Ω × R𝑁 → R.

Proof. Since for every Ω′ ⋐ Ω there exists 𝐿Ω′ independent of 𝑚 ∈ N such that
∥∇𝑢𝑚∥𝐿∞ (Ω′ ) ≤ 𝐿Ω′ , we get:

lim
𝑘→+∞

sup
𝑚∈N

|{𝑥 ∈ Ω, |∇𝑢𝑚 (𝑥)}| > 𝑘 | = 0.
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By [3, Theorem] and [3, Remark 3], the sequence (∇𝑢𝑚)𝑚∈N, up to an extraction,
generates a family of Young measures denoted by (𝜈𝑥)𝑥∈Ω satisfying (2.5). By weak
convergence of (∇𝑢𝑚)𝑚∈N to ∇𝑢, we obtain that

∇𝑢(𝑥) =
∫
R𝑁

𝑦d𝜈𝑥 (𝑦) (2.6)

for a.e. 𝑥 ∈ Ω. Since 𝑢𝑚 is a solution of (2.2), for every 𝜃 ∈ C∞
0 (Ω) we have that∫

Ω

⟨𝐺𝑚 (∇𝑢𝑚),∇𝜃⟩ = −
∫
Ω

𝑓𝑚𝜃.

When 𝑚 → +∞, 𝐺𝑚 → 𝐺 on the compact set 𝐵𝐿 (0) where 𝐿 is the uniform bound
of (∥∇𝑢𝑚∥𝐿∞ (supp 𝜃 ) ). Thus,

lim
𝑚→+∞

∫
Ω

⟨𝐺𝑚 (∇𝑢𝑚) − 𝐺 (∇𝑢𝑚),∇𝜃⟩ = 0.

Hence, by (2.5) and the previous equation we have that

−
∫
Ω

𝑓 𝜃 =

∫
Ω

⟨∇𝜃,
∫
R𝑁
𝐺 (𝑦)d𝜈𝑥 (𝑦)⟩d𝑥.

We introduce 𝑋𝜃 :

𝑋𝜃 := lim
𝑚→+∞

∫
Ω

𝐻 (𝑥,∇𝑢𝑚 (𝑥))d𝑥

with 𝐻 (𝑥, 𝑦) := 𝜃 (𝑥)⟨𝐺 (𝑦), 𝑦 − ∇𝑢(𝑥)⟩. Thus, by (2.5) we obtain:

𝑋𝜃 =

∫
Ω

𝜃 (𝑥)
∫
R𝑁

⟨𝐺 (𝑦), 𝑦 − ∇𝑢(𝑥)⟩d𝜈𝑥 (𝑦)d𝑥.

Since 𝑢𝑚 is solution of a (2.2), we get that 𝑋𝜃 is equal to:

lim
𝑚→+∞

∫
Ω

𝜃⟨𝐺 (∇𝑢𝑚) − 𝐺𝑚 (∇𝑢𝑚),∇𝑢𝑚 − ∇𝑢⟩

− ⟨𝐺𝑚 (∇𝑢𝑚),∇𝜃⟩(𝑢𝑚 − 𝑢) − 𝑓𝑚𝜃 (𝑢𝑚 − 𝑢)d𝑥.

Using the fact that (𝑢𝑚)𝑚∈N converges uniformly to 𝑢 on supp 𝜃 and that (𝐺𝑚)𝑚∈N
converges uniformly to 𝐺 on the compact set 𝐵𝐿 (0) when 𝑚 → +∞ imply that 𝑋𝜃 = 0.
But by (2.6) we get that

0 = 𝑋𝜃 =

∫
Ω

𝜃

∫
R𝑁

⟨𝐺 (𝑦), 𝑦 − ∇𝑢⟩d𝜈𝑥 (𝑦)d𝑥

=

∫
Ω

𝜃

∫
R𝑁

⟨𝐺 (𝑦) − 𝐺 (∇𝑢), 𝑦 − ∇𝑢⟩d𝜈𝑥 (𝑦)d𝑥 (2.7)
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where the last equality comes from (2.6). Since (2.7) is true for every 𝜃 ∈ C∞
0 (Ω), we

obtain that for a.e. 𝑥 ∈ Ω,∫
R𝑁

⟨𝐺 (𝑦) − 𝐺 (∇𝑢(𝑥)), 𝑦 − ∇𝑢(𝑥)⟩d𝜈𝑥 (𝑦) = 0

and the conclusion follows from the fact that ⟨𝐺 (𝑦) − 𝐺 (∇𝑢(𝑥)), 𝑦 − ∇𝑢(𝑥)⟩ ≥ 0. □

We can make the following observation:

Remark 2.8. For a.e. 𝑥 ∈ Ω, if 𝐺 is strictly monotone at ∇𝑢(𝑥), namely

⟨𝐺 (∇𝑢(𝑥)) − 𝐺 (𝑦),∇𝑢(𝑥) − 𝑦⟩ > 0

for every 𝑦 ∈ R𝑁\{∇𝑢(𝑥)}, then 𝜈𝑥 = 𝛿∇𝑢(𝑥 ) thanks to Lemma 2.7.

With this lemma, we can show that:

Proposition 2.9. Under the assumptions of Theorem 1.1, Theorem 1.5 or Theorem 1.7,
we have 𝐺 (∇𝑢𝑚) → 𝐺 (∇𝑢) in 𝐿1 (Ω) when 𝑚 → +∞.

Proof. Thanks to Lemma 2.7 and (2.5), it remains to prove the following result:

supp 𝜈𝑥 ⊂ {𝑦 ∈ R𝑁 such that 𝐺 (𝑦) = 𝐺 (∇𝑢(𝑥))} for a.e. 𝑥 ∈ Ω.

Since 𝐺 is the sum of monotone functions (𝐺𝑖)1≤𝑖≤𝑛, we have that ⟨𝐺 (𝑦) − 𝐺 (∇𝑢(𝑥)),
𝑦−∇𝑢(𝑥)⟩ is the sum of 𝑛 nonnegative terms : ⟨𝐺𝑖 (𝑦) −𝐺𝑖 (∇𝑢(𝑥)), 𝑦−∇𝑢(𝑥)⟩ for every
1 ≤ 𝑖 ≤ 𝑛. For a.e. 𝑥 ∈ Ω and 𝜈𝑥-a.e. 𝑦 ∈ R𝑁 , since ⟨𝐺 (𝑦) − 𝐺 (∇𝑢(𝑥)), 𝑦 − ∇𝑢(𝑥)⟩ = 0
for every 1 ≤ 𝑖 ≤ 𝑛 we get that ⟨𝐺𝑖 (𝑦) −𝐺𝑖 (∇𝑢(𝑥)), 𝑦 − ∇𝑢(𝑥)⟩ = 0. We distinguish two
cases:

(a) If the condition (𝐴1) is satisfied for 𝐺𝑖 , for a.e. 𝑥 ∈ Ω and 𝜈𝑥-a.e. 𝑦 ∈ R𝑁 , we
have that 𝐺𝑖 (𝑦) = 𝐺𝑖 (∇𝑢(𝑥)) at once.

(b) If 𝐺𝑖 is the gradient of a convex function 𝜑𝑖 , we obtain that for a.e. 𝑥 ∈ Ω and
𝜈𝑥-a.e. 𝑦 ∈ R𝑁 , 𝐺𝑖 (𝑦) = 𝐺𝑖 (∇𝑢(𝑥)) and the conclusion follows. □

We can prove that 𝑢 is a solution of (1.4):

Proposition 2.10. Under the assumptions of Theorems 1.1, 1.5 or 1.7, the function 𝑢 is a
solution of {

div𝐺 (∇𝑢(𝑥)) = 𝑓 in Ω,

𝑢 = 𝑢0 on 𝜕Ω.
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Proof. Since (𝑢𝑚)𝑚 converges weakly to 𝑢 ∈ 𝑊
1,2
𝑢0 (Ω), we have that 𝑢 satisfies the

boundary condition. It remains to prove that∫
Ω

⟨𝐺 (∇𝑢),∇𝜃⟩ = −
∫
Ω

𝑓 𝜃

for every 𝜃 ∈ C∞
0 (Ω). Since ∥∇𝑢𝑚∥𝐿∞ (supp 𝜃 ) is uniformly bounded, 𝐺𝑚 (∇𝑢𝑚) −

𝐺 (∇𝑢𝑚) → 0 in 𝐿1 (supp 𝜃) when 𝑚 → +∞. By Remark 2.9, this implies that
𝐺𝑚 (∇𝑢𝑚) → 𝐺 (∇𝑢) in 𝐿1 (supp 𝜃). Since∫

Ω

⟨𝐺𝑚 (∇𝑢𝑚),∇𝜃⟩ = −
∫
Ω

𝑓𝑚𝜃

we have our desired result. □

We conclude this section with a counterpart of Proposition 2.9 in the case of Theo-
rem 1.10:

Proposition 2.11. Under the assumptions of Theorem 1.10, we have that∫
Ω

|dist(∇𝑢𝑚, 𝐷𝐺) − dist(∇𝑢, 𝐷𝐺) | −→ 0

and ∫
Ω

|dist(∇𝑢𝑚, 𝐷𝐺)∇𝑢𝑚 − dist(∇𝑢, 𝐷𝐺)∇𝑢 | −→ 0

when 𝑚 → +∞.

Proof. For every 𝑥 ∈ Ω, such that ∇𝑢(𝑥) ∉ 𝐷𝐺 we have that ⟨𝐷𝐺 (∇𝑢(𝑥))𝐴, 𝐴⟩ > 0 for
every 𝐴 ≠ 0. Hence, ⟨𝐺 (∇𝑢(𝑥)) − 𝐺 (𝐴),∇𝑢(𝑥) − 𝐴⟩ > 0 for every 𝐴 ∈ R𝑁\{∇𝑢(𝑥)}.
Thanks to Remark 2.8, we get that 𝜈𝑥 = 𝛿∇𝑢(𝑥 ) . Since (𝑥, 𝑦) → |dist(𝑦, 𝐷𝐺) −
dist(∇𝑢(𝑥), 𝐷𝐺) | is a Carathéodory function, this implies together with (2.5) that∫

Ω

|dist(∇𝑢𝑚, 𝐷𝐺) − dist(∇𝑢, 𝐷𝐺) |

−→
∫
Ω

∫
R𝑁

|dist(𝑦, 𝐷𝐺) − dist(∇𝑢(𝑥), 𝐷𝐺) |d𝜈𝑥 (𝑦)d𝑥 = 0

and for the same reasons∫
Ω

|∇𝑢𝑚 × dist(∇𝑢𝑚, 𝐷𝐺) − ∇𝑢 × dist(∇𝑢, 𝐷𝐺) | −→ 0

when 𝑚 → +∞. □
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3. Uniform estimates for Theorem 1.1 and Theorem 1.5

In this section, we prove that 𝐺𝑚 (∇𝑢𝑚) is continuous with a modulus of continuity
independent of 𝑚 ∈ N if we are under the assumptions of Theorem 1.1 or Theorem 1.5.

3.1. 𝑊1,2 regularity of 𝐺𝑚(∇𝑢𝑚)

In this subsection, we show that 𝐺𝑚 (∇𝑢𝑚) ∈ 𝑊1,2
loc (Ω) with a norm uniformly bounded

in 𝑚 ∈ N. More precisely, our goal is to prove, in the framework of Theorem 1.1 and
Theorem 1.5, that for every 1 ≤ 𝑖 ≤ 𝑛 the function 𝐺𝑚

𝑖
(∇𝑢𝑚) is in 𝑊1,2

loc (Ω) with a
norm that does not depend on 𝑚 ∈ N. To do this, we use the same method as in [15,
Proposition 2.4] to smooth functions, namely the regularized equations.

Proposition 3.1. Let us consider 𝑢 a C2 solution of (1.4) where 𝐺 ∈ C1 (R𝑁 ) satisfies
the assumptions of Theorem 1.1 with (𝐴1) replaced by (𝐴′

1) or the assumptions of
Theorem 1.5. If we write 𝐺 :=

∑𝑛
𝑖=1𝐺𝑖 as in those theorems, then 𝐺𝑖 (∇𝑢) ∈ 𝑊1,2

loc (Ω) for
every 1 ≤ 𝑖 ≤ 𝑛 and 𝐺 (∇𝑢) ∈ 𝑊1,2

loc (Ω). Moreover, the norms of these quantities depend
only on the Lipschitz constant of 𝑢, the norm of the right-hand side, the Lipschitz constant
of 𝐺 and 𝐶1 from assumption (𝐴′

1).

Proof. Let us consider Ω′′ ⋐ Ω′ ⋐ Ω. By differentiating (1.4), for every 𝑒 ∈ S1, every
𝜃 ∈ C1

0 (Ω
′) we have that∫

Ω

⟨𝐷𝐺 (∇𝑢)∇𝜕𝑒𝑢,∇𝜃⟩ = −
∫
Ω

𝜕𝑒 𝑓 𝜃.

In this last equality, we choose the following test function: 𝜃 = 𝜂2𝜕𝑒𝑢 with 𝜂 ∈ C∞
0 (Ω′)

and 𝜂 ≡ 1 on Ω′′. Hence, we get:∫
Ω

⟨𝐷𝐺 (∇𝑢)∇𝜕𝑒𝑢,∇𝜕𝑒𝑢⟩𝜂2 = −2
∫
Ω

𝜂𝜕𝑒𝑢⟨𝐷𝐺 (∇𝑢)∇𝜕𝑒𝑢,∇𝜂⟩ −
∫
Ω

𝜕𝑒 𝑓 𝜂
2𝜕𝑒𝑢.

Since 𝐺 =
∑𝑛
𝑖=1𝐺𝑖 it can be rewritten as

𝑛∑︁
𝑖=1

∫
Ω

⟨𝐷𝐺𝑖 (∇𝑢)∇𝜕𝑒𝑢,∇𝜕𝑒𝑢⟩𝜂2

= −2
𝑛∑︁
𝑖=1

∫
Ω

𝜂𝜕𝑒𝑢⟨𝐷𝐺𝑖 (∇𝑢)∇𝜕𝑒𝑢,∇𝜂⟩ −
∫
Ω

𝜕𝑒 𝑓 𝜂
2𝜕𝑒𝑢. (3.1)

By Remark 1.2 and Lemma 2.1, each 𝐺𝑖 satisfies the assumption (𝐴′
1). Hence, there exists

𝐶𝑖 := 𝐶𝑖 (𝐿) > 0 with 𝐿 := ∥∇𝑢∥𝐿∞ (Ω′ ) such that

⟨𝐷𝐺𝑖 (∇𝑢)∇𝜕𝑒𝑢,∇𝜕𝑒𝑢⟩ ≥ 𝐶𝑖 |𝐷𝐺𝑖 (∇𝑢)∇𝜕𝑒𝑢 |2.
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We set 𝐾 := min1≤𝑖≤𝑁 {𝐶𝑖}. Thanks to Young’s inequality, each term of the sum in
the right-hand side of (3.1) can be bounded by

𝛼

∫
Ω

|𝐷𝐺𝑖 (∇𝑢)∇𝜕𝑒𝑢 |2𝜂2 + 1
𝛼

∫
Ω

|∇𝜂 |2 |∇𝑢 |2 + |∇ 𝑓 |𝜂2 |∇𝑢 |

with 0 < 𝛼 < 𝐾 .
Thus, since 𝜂 ≡ 1 on Ω′′ we have that

𝑛∑︁
𝑖=1

∫
Ω′′

|𝐷𝐺𝑖 (∇𝑢)∇𝜕𝑒𝑢 |2 ≤
2𝐿 (𝐿 |Ω|𝑛 dist(𝜕Ω′, 𝜕Ω′′)−2 + ∥ 𝑓 ∥𝑊1,1 (Ω) )

𝛼(𝐺, 𝐿, 𝐶1)𝐾 (𝐺, 𝐿, 𝐶1)
. (3.2)

Here, the dependence on 𝐺 in 𝛼 and 𝐾 is just the dependence on ∥𝐷𝐺𝑖 ∥𝐿∞ (𝐵𝐿 (0) ) .
Hence, for every 𝑒 ∈ S1, the function 𝜕𝑒 (𝐺𝑖 (∇𝑢)) = 𝐷𝐺𝑖 (∇𝑢)∇𝜕𝑒𝑢 is in 𝐿2

loc (Ω). Thus,
𝐺𝑖 (∇𝑢) ∈ 𝑊1,2

loc (Ω), and we have an explicit estimate for the norm from (3.2). Moreover,
𝐺 (∇𝑢) is also in𝑊1,2

loc (Ω) as the sum of (𝐺𝑖 (∇𝑢))1≤𝑖≤𝑛. □

We apply this result to 𝐺𝑚 and 𝑢𝑚 to prove a uniform estimate on the Sobolev norm
of 𝐺𝑚

𝑖
(∇𝑢𝑚).

Proposition 3.2. If𝐺 ∈ C0,1 (R𝑁 ) satisfies the assumption of Theorem 1.1 or Theorem 1.5,
then, 𝐺𝑚 (∇𝑢𝑚) ∈ 𝑊1,2

loc (Ω) with a norm independent of 𝑚 ∈ N. Moreover, 𝐺𝑚
𝑖
(∇𝑢𝑚) ∈

𝑊
1,2
loc (Ω) with a norm independent of 𝑚 ∈ N for every 1 ≤ 𝑖 ≤ 𝑛.

Proof. We introduce Ω′′ ⋐ Ω′ ⋐ Ω. In the case of Theorem 1.1 and Theorem 1.5 the
functions (𝐺𝑚)𝑚∈N satisfy uniformly the assumption (𝐴′

1). Since the norm ∥∇𝑢𝑚∥𝐿∞ (Ω′ )
can be bounded uniformly in 𝑚 ∈ N, all the estimates of the previous proposition are
independent of 𝑚 ∈ N if we apply it to 𝐺𝑚 and 𝑢𝑚. Hence, ∥𝐺𝑚

𝑖
(∇𝑢𝑚)∥𝑊1,2 (Ω′′ ) can

be bounded uniformly in 𝑚 ∈ N. That is also the case for their sum: 𝐺𝑚 (∇𝑢𝑚) ∈
𝑊

1,2
loc (Ω). □

3.2. Continuity of 𝐺𝑚(∇𝑢𝑚)

In this subsection, we use the𝑊1,2 regularity obtained earlier to prove the continuity of
𝐺𝑚 (∇𝑢𝑚).

The following proposition is crucial to the proofs of Theorem 1.1 and Theorem 1.5. As
in [15, Lemma 2.1] and [26, Theorem 3.1] our strategy to prove it relies on a maximum
principle that can be found in [19, Theorem 3.1] and a theorem due to Lebesgue stated
in [25, p. 388]:
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Proposition 3.3. Let 𝐻 ∈ 𝑊1,2
loc (Ω). Assume that for every 𝜖 > 0 and every 𝑥0 ∈ Ω there

exists 𝐶 (𝜖, 𝑥0) > 0 such that for every 0 < 𝛿 < dist(𝑥0, 𝜕Ω):

osc𝐵𝛿 (𝑥0 ) 𝐻 ≥ 𝜖 =⇒ osc𝜕𝐵𝛿 (𝑥0 ) 𝐻 ≥ 𝐶 (𝜖, 𝑥0).

Then, H is continuous. Here, osc𝐵𝛿 (𝑥0 ) 𝐻 := sup𝑥,𝑦∈𝐵𝛿 (𝑥0 ) |𝐻 (𝑥) − 𝐻 (𝑦) |.

Proof. We argue by contradiction. Let us assume that there exist 𝜖 > 0 and 𝑥0 ∈ Ω such
that for every 0 < 𝛿 < dist(𝑥0 ,𝜕Ω)

2 there are 𝑥, 𝑦 ∈ 𝐵𝛿 (𝑥0) such that |𝐻 (𝑥) −𝐻 (𝑦) | ≥ 𝜖 . By
assumption, there exist 𝑥1, 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that |𝐻 (𝑥1) − 𝐻 (𝑥2) | ≥ 𝐶 (𝜖, 𝑥0). Hence,
there exists 𝑒 ∈ S1 such that

𝐶 (𝜖, 𝑥0) ≤ ⟨𝐻 (𝑥1), 𝑒⟩ − ⟨𝐻 (𝑥2), 𝑒⟩.

For a.e. 0 < 𝛿 < dist(𝑥0 ,𝜕Ω)
2 , the term in the right-hand side can be bounded from above

by
∫
𝜕𝐵𝛿 (𝑥0 )

|∇𝐻 |dH1. By Cauchy–Schwarz inequality we obtain

𝐶 (𝜖, 𝑥0)2

2𝜋𝛿
≤

∫
𝜕𝐵𝛿 (𝑥0 )

|∇𝐻 |2dH1.

By integrating over 𝛿 between a certain 𝛿𝜖 and dist(𝑥0 ,𝜕Ω)
2 we have

𝐶 (𝜖, 𝑥0)2

2𝜋
ln

dist(𝑥0, 𝜕Ω)
2𝛿𝜖

≤ ∥𝐻∥2
𝑊1,2 (𝐵 dist(𝑥0 ,𝜕Ω)

2
(𝑥0 ) ) .

By taking 𝛿𝜖 > 0 small enough we obtain a contradiction thanks to the fact that
𝐻 ∈ 𝑊1,2

loc (Ω). □

Thanks to Proposition 3.1 we can make the following observation:

Remark 3.4. In Proposition 3.2, we have proved that 𝐺𝑚 (∇𝑢𝑚) is bounded in𝑊1,2
loc (Ω)

uniformly in 𝑚 ∈ N. Hence, the functions (𝐺𝑚 (∇𝑢𝑚))𝑚∈N are uniformly continuous on
any compact subset of Ω with a modulus of continuity independent of 𝑚 ∈ N if they
satisfy the assumptions of Proposition 3.3 with a constant 𝐶 (𝜖, 𝑥0) independent of 𝑚 ∈ N.

It remains to prove that under the assumptions of Theorem 1.1 and Theorem 1.5, the
functions𝐺𝑚 (∇𝑢𝑚) or𝐺𝑚

𝑖
(∇𝑢𝑚) satisfy the maximum principle stated in Proposition 3.3

with 𝐶 that does not depend on 𝑚 ∈ N.
The following lemma, instrumental for the proof of Theorem 1.1 uses the fact that

𝑓 ≡ 0:

Lemma 3.5. Let 𝑢𝑚 be a C2 solution of (2.2) with 𝑓 ≡ 0. We have that det(𝐷2𝑢𝑚) ≤ 0.

Proof. Since 𝑢𝑚 is a solution of (2.2) with 𝑓 ≡ 0, we have that

Tr(𝐷𝐺𝑚 (∇𝑢𝑚)𝐷2𝑢𝑚) = 0. (3.3)
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Thus,
Tr((𝐷𝐺𝑚)𝑠 (∇𝑢𝑚)𝐷2𝑢𝑚) = 0 (3.4)

where (𝐷𝐺𝑚)𝑠 = 𝐷𝐺𝑚+(𝐷𝐺𝑚 )𝑇
2 is the symmetric part of 𝐷𝐺𝑚. Thanks to Proposition 2.2,

(𝐷𝐺𝑚)𝑠 is positive-definite. We work in a basis where (𝐷𝐺𝑚)𝑠 is diagonal, let us say
that

(𝐷𝐺𝑚)𝑠 =
(
𝑎 0
0 𝑏

)
with 𝑎, 𝑏 > 0 and

𝐷2𝑢𝑚 =

(
𝛼 𝛾

𝛾 𝛽

)
.

Then, by (3.4) we have that 𝛼 + 𝛽 is non-positive. Hence, det(𝐷2𝑢𝑚) ≤ 0. □

As a consequence of Lemma 3.5, [22, Theorem 2] implies that:

Proposition 3.6. Let 𝑢𝑚 be a solution of (2.2) with 𝑓 ≡ 0. Then for every Ω′ ⋐ Ω, we
have that 𝜕∇𝑢𝑚 (Ω′) ⊂ ∇𝑢𝑚 (𝜕Ω′).

Remark 3.7. This last result is true in any dimension, provided that the sign of det(𝐷2𝑢𝑚)
does not change. This is the case if 𝑢𝑚 is convex everywhere or concave for instance. This
proposition can be used as an improved version of [15, Lemma 3.2].

With this result we can prove the following lemma:

Lemma 3.8. Let 𝑢𝑚 be a solution of (2.2) with 𝑓 ≡ 0. Then for every Ω′ ⋐ Ω we have
that 𝜕𝜎(Ω′) ⊂ 𝜎(𝜕Ω′) where 𝜎 := 𝐺𝑚 (∇𝑢𝑚).

Proof. We consider 𝑧 ∈ 𝜕𝜎(Ω′), then there exists a sequence (𝑧𝑛)𝑛∈N such that 𝑧𝑛 ∈
𝜎(Ω′) and 𝑧𝑛 → 𝑧 when 𝑛 → +∞. Hence, there exists a sequence (𝑦𝑛)𝑛∈N with
𝑦𝑛 ∈ ∇𝑢𝑚 (Ω′) such that 𝐺𝑚 (𝑦𝑛) = 𝑧𝑛. Since the sequence (𝑦𝑛)𝑛∈N is bounded by
𝐿 := ∥∇𝑢𝑚∥𝐿∞ (Ω′ ) , we can extract a subsequence converging to 𝑦 ∈ ∇𝑢𝑚 (Ω′). By
continuity of 𝐺𝑚, 𝑧𝑛 → 𝑧 = 𝐺𝑚 (𝑦). Since, 𝐷𝐺𝑚 (𝑦) is invertible, by the inverse function
theorem if 𝑦 ∈ Int(∇𝑢𝑚 (Ω′)) then 𝑧 ∈ Int(𝜎(Ω′)). Since this is not the case, we have
that 𝑦 ∈ 𝜕∇𝑢𝑚 (Ω′). Thanks to Proposition 3.6, we obtain that 𝑦 ∈ ∇𝑢𝑚 (𝜕Ω′), thus
𝑧 = 𝐺𝑚 (𝑦) ∈ 𝜎(𝜕Ω′). □

This lemma leads to the proof of Theorem 1.1 in the regularized setting:

Proposition 3.9. Under the assumptions of Theorem 1.1, 𝐺𝑚 (∇𝑢𝑚) is continuous with a
modulus of continuity independent of 𝑚 ∈ N.
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Proof. We just have to prove that 𝐺𝑚 (∇𝑢𝑚) satisfies the assumption of Proposi-
tion 3.3 uniformly in 𝑚 ∈ N. Let us assume that there exist 𝑥1, 𝑥2 ∈ 𝐵𝛿 (𝑥0) such that
|𝐺𝑚 (∇𝑢𝑚 (𝑥1))−𝐺𝑚 (∇𝑢𝑚 (𝑥2)) | ≥ 𝑟 > 0. By Lemma 3.8 withΩ′ = 𝐵𝛿 (𝑥0), the diameter
of 𝐺𝑚 (∇𝑢𝑚 (𝐵𝛿 (𝑥0))) can be bounded from above by the diameter of 𝐺𝑚 (∇𝑢𝑚 (𝜕Ω′)).
Thus, there exist 𝑥3, 𝑥4 ∈ 𝜕𝐵𝛿 (𝑥0) such that |𝐺𝑚 (∇𝑢𝑚 (𝑥4)) − 𝐺𝑚 (∇𝑢𝑚 (𝑥3)) | ≥ 𝑟.
Hence, thanks to Proposition 3.3, 𝐺𝑚 (∇𝑢𝑚) is continuous with a modulus of continuity
independent of the parameter of regularization 𝑚 ∈ N. □

In the remaining part of the section, we proceed to establish continuity estimates for
𝐺𝑚 (∇𝑢𝑚) independent of 𝑚 ∈ N under the assumptions of Theorem 1.5. We prove that
for any 1 ≤ 𝑖 ≤ 𝑛, 𝐺𝑚

𝑖
(∇𝑢𝑚) is continuous.

To do so, we use the fact that ∇𝑢𝑚 satisfies the following classical maximum principle,
see e.g. [19, Theorem 3.1]:

Proposition 3.10. Let 𝑢𝑚 be a solution of (2.2) with 𝑓𝑚 a constant. Then for any 𝑒 ∈ S𝑁−1

and any open set Ω′ ⋐ Ω, we have that

sup
𝑥∈Ω′

𝜕𝑒𝑢𝑚 (𝑥) = sup
𝑥∈𝜕Ω′

𝜕𝑒𝑢𝑚 (𝑥).

We start with the case when𝐺𝑚
𝑖
= ∇𝜑𝑚

𝑖
where 𝜑𝑚

𝑖
( · ) = 𝑓 𝑚

𝑖
(N𝑚

𝑖
( · − 𝜉𝑖)) ∈ C1,1

loc (R
2)

with 𝑓 𝑚
𝑖

a convex function, N𝑚
𝑖

a pseudo-norm and 𝜉𝑖 ∈ R2. The pseudo-norm is
introduced in Definition 1.4. We denote the non-oriented angle between two vectors 𝑧1, 𝑧2
by ∠(𝑧1, 𝑧2) ∈ [0, 𝜋] with the convention that ∠(𝑧, 0) = 0. We can apply the following
lemma to 𝐺𝑚

𝑖
:

Lemma 3.11. Let us assume that𝐺𝑚
𝑖
= ∇𝜑𝑚

𝑖
with 𝜑𝑚

𝑖
( · ) = 𝑓 𝑚

𝑖
(N𝑚

𝑖
( · −𝜉𝑖)) ∈ C1,1

loc (R
2).

• For every 𝑟 > 0 there exists 𝐶 (𝑟) > 0 independent of 𝑚 ∈ N such that if
|∇𝜑𝑚

𝑖
(𝑧) | ≥ 𝑟 then |𝑧 − 𝜉𝑖 | ≥ 𝐶 (𝑟).

• For every 0 < 𝜃 ≤ 𝜋 there exists 0 < 𝐷 (𝜃) ≤ 𝜋 independent of 𝑚 ∈ N
such that if ∠(∇𝜑𝑚

𝑖
(𝑧),∇𝜑𝑚

𝑖
(𝑧′)) ≥ 𝜃 then ∠(𝑧 − 𝜉𝑖 , 𝑧′ − 𝜉𝑖) ≥ 𝐷 (𝜃) for every

𝑧, 𝑧′ ∈ R2\{𝜉𝑖}.

Moreover, 𝐶 (𝑟) → 0 when 𝑟 → 0 and 𝐷 (𝜃) → 0 when 𝜃 → 0.

Proof. For every 𝑟 > 0 we introduce

𝐶 (𝑟) := inf{|𝑧 − 𝜉𝑖 |, 𝑧 ∈ R2 such that |∇𝜑𝑚𝑖 (𝑧) | ≥ 𝑟 for some 𝑚 ∈ N}
and for every 0 < 𝜃 ≤ 𝜋 we introduce

𝐷 (𝜃) := inf

{
∠(𝑧 − 𝜉𝑖 , 𝑧′ − 𝜉𝑖),

𝑧, 𝑧′ ∈ R2\{𝜉𝑖} such that
∠(∇𝜑𝑚𝑖 (𝑧),∇𝜑𝑚𝑖 (𝑧′)) ≥ 𝜃 for some 𝑚 ∈ N

}
.
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In the definition of the constant 𝐷 (𝜃) we can replace R2\{𝜉𝑖} by 𝐵𝑅 (𝜉𝑖)\𝐵𝜌 (𝜉𝑖) with
𝑅 > 𝜌 > 0 since the direction of ∇𝜑𝑚

𝑖
is constant on the half-lines starting at 𝜉𝑖 .

Since for every 𝑚 ∈ N, ∇𝜑𝑚
𝑖
(𝑧) = 0 only when 𝑧 = 𝜉𝑖 , 𝐶 (𝑟) → 0 when 𝑟 → 0. The

fact that for each 𝑚 ∈ N, the range of the gradient of N𝑚
𝑖

is not in a half-line provides
that 𝐷 (𝜃) → 0 when 𝜃 → 0.

It remains to prove that 𝐶 (𝑟) > 0 and 𝐷 (𝜃) > 0. If 𝐶 (𝑟) = 0 then there exist (𝑧𝑛)𝑛∈N
and (𝑚𝑛)𝑛∈N such that 𝑧𝑛 → 𝜉𝑖 when 𝑛 → +∞ and |∇𝜑𝑚𝑛

𝑖
(𝑧𝑛) | ≥ 𝑟 for every 𝑛 ∈ N.

We set 𝑀 := lim sup𝑛→+∞ 𝑚𝑛. If 𝑀 ∈ N then up to an extraction, we can assume that
𝑚𝑛 ≡ 𝑀 for 𝑛 large enough. Thus, |∇𝜑𝑀

𝑖
(𝑧𝑛) | ≥ 𝑟 and 𝑧𝑛 → 𝜉𝑖 when 𝑛→ +∞ which is

a contradiction with the fact that ∇𝜑𝑀
𝑖
(𝜉𝑖) = 0. If 𝑀 = +∞ then we combine the fact that

∇𝜑𝑚
𝑖

converges to ∇𝜑𝑖 uniformly with the fact that ∇𝜑𝑖 (𝜉𝑖) = 0 to obtain a contradiction.
Hence, 𝐶 (𝑟) > 0.

If 𝐷 (𝜃) = 0 then there exist (𝑧𝑛)𝑛∈N, (𝑧′𝑛)𝑛∈N and (𝑚𝑛)𝑛∈N such that ∠(𝑧𝑛 − 𝜉𝑖 , 𝑧′𝑛 −
𝜉𝑖) → 0 when 𝑛 → +∞ and ∠(∇𝜑𝑚𝑛

𝑖
(𝑧𝑛),∇𝜑𝑚𝑛

𝑖
(𝑧′𝑛)) ≥ 𝜃. If 𝑀 := lim sup𝑛→+∞ 𝑚𝑛 <

+∞ we use the continuity of ∇𝜑𝑀
𝑖

to obtain a contradiction. If 𝑀 = +∞ we use the fact
that the sequences (𝑧𝑛)𝑛∈N and (𝑧′𝑛)𝑛∈N are in 𝐵𝑅 (𝜉𝑖)\𝐵𝜌 (𝜉𝑖) to extract two converging
subsequences that tend to 𝑧 ≠ 𝜉𝑖 and 𝑧′ ≠ 𝜉𝑖 . By uniform convergence of ∇𝜑𝑚

𝑖
to ∇𝜑𝑖 we

obtain that ∠(𝑧 − 𝜉𝑖 , 𝑧′ − 𝜉𝑖) = 0 and ∠(∇𝜑𝑖 (𝑧),∇𝜑𝑖 (𝑧′)) ≥ 𝜃. That contradicts the fact
that ∇𝜑𝑖 (𝑧) and ∇𝜑𝑖 (𝑧′) are colinear when 𝑧 and 𝑧′ are colinear. Hence, 𝐷 (𝜃) > 0. □

The converse is also true:

Lemma 3.12. Let us assume that𝐺𝑚
𝑖
= ∇𝜑𝑚

𝑖
with 𝜑𝑚

𝑖
( · ) = 𝑓 𝑚

𝑖
(N𝑚

𝑖
( · −𝜉𝑖)) ∈ C1,1

loc (R
2).

• For every 𝑟 > 0 there exists 𝐶′ (𝑟) > 0 independent of 𝑚 ∈ N such that if
|𝑧 − 𝜉𝑖 | ≥ 𝑟 then |∇𝜑𝑚

𝑖
(𝑧) | ≥ 𝐶′ (𝑟).

• For every 0 < 𝜃 ≤ 𝜋 there exists 0 < 𝐷′ (𝜃) ≤ 𝜋 independent of 𝑚 ∈ N
such that if ∠(𝑧 − 𝜉𝑖 , 𝑧′ − 𝜉𝑖) ≥ 𝜃 then ∠(∇𝜑𝑚

𝑖
(𝑧),∇𝜑𝑚

𝑖
(𝑧′)) ≥ 𝐷′ (𝜃) for every

𝑧, 𝑧′ ∈ R2\{𝜉𝑖}.

Moreover, 𝐶′ (𝑟) → 0 when 𝑟 → 0 and 𝐷′ (𝜃) → 0 when 𝜃 → 0.

Proof. We argue as in the proof of the previous lemma. For every 𝑟 > 0 and every
0 < 𝜃 ≤ 𝜋 we set

𝐶′ (𝑟) := inf{|∇𝜑𝑚𝑖 (𝑧) |, with 𝑚 ∈ N, 𝑧 ∈ R2 such that |𝑧 − 𝜉𝑖 | ≥ 𝑟}

and

𝐷′ (𝜃) := inf

{
∠(∇𝜑𝑚𝑖 (𝑧),∇𝜑𝑚𝑖 (𝑧′)),

with 𝑚 ∈ N, 𝑧, 𝑧′ ∈ R2\{𝜉𝑖}
such that ∠(𝑧 − 𝜉𝑖 , 𝑧′ − 𝜉𝑖) ≥ 𝜃

}
.
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Since the direction of ∇𝜑𝑚
𝑖

is constant on the half-lines starting at 𝜉𝑖 , the quantity
𝐷′ (𝜃) is the same if we replace R2\{𝜉𝑖} by 𝐵𝑅 (𝜉𝑖)\𝐵𝜌 (𝜉𝑖) by 𝑅 > 𝜌 > 0. The continuity
of ∇𝜑𝑚

𝑖
gives that 𝐶′ (𝑟) → 0 when 𝑟 → 0 and 𝐷′ (𝜃) → 0 when 𝜃 → 0.

If we assume that 𝐶′ (𝑟) = 0, then by uniform coercivity of |∇𝜑𝑚
𝑖
| we can find 𝑧 ∈ R2

and 𝑀 ∈ N∪ {+∞} such that ∇𝜑𝑀
𝑖
(𝑧) = 0 and |𝑧 − 𝜉𝑖 | ≥ 𝑟 with the convention 𝜑+∞

𝑖
= 𝜑𝑖 .

Since ∇𝜑𝑀
𝑖
(𝑧) = 0 ⇒ 𝑧 = 𝜉𝑖 this is absurd. Hence, we have that 𝐶′ (𝑟) > 0.

If we assume that 𝐷′ (𝜃) = 0 then once again we can find 𝑧, 𝑧′ ∈ 𝐵𝑅 (𝜉𝑖)\𝐵𝜌 (𝜉𝑖) and
𝑀 ∈ N ∪ {+∞} such that ∠(∇𝜑𝑀

𝑖
(𝑧),∇𝜑𝑀

𝑖
(𝑧′)) = 0 and ∠(𝑧 − 𝜉𝑖 , 𝑧′ − 𝜉𝑖) ≥ 𝜃. Using

the strict convexity of the level sets of 𝜑𝑀
𝑖

we obtain a contradiction. Thus, we have
𝐷′ (𝜃) > 0. □

With these two results, we can prove that:

Proposition 3.13. We set 𝜎𝑖 := 𝐺𝑚
𝑖
(∇𝑢𝑚) with 𝐺𝑚

𝑖
= ∇𝜑𝑚

𝑖
where the convex function

𝜑𝑚
𝑖
( · ) = 𝑓 𝑚

𝑖
(N𝑚

𝑖
( · − 𝜉𝑖)) satisfies (𝐴2). If 𝑥0 ∈ Ω is such that 𝜎𝑖 (𝑥0) = 0 then 𝜎𝑖 is

continuous at 𝑥0 and the modulus of continuity is independent of 𝑚 ∈ N.

Proof. Thanks to Proposition 3.1 and Proposition 3.3, it remains to prove that for every
𝜖 > 0 there exists 𝐶 (𝜖, 𝑥0) > 0 such that for every 𝛿 > 0 if there exists 𝑥 ∈ 𝐵𝛿 (𝑥0) such
that |𝜎𝑖 (𝑥) | ≥ 𝜖 then there exist 𝑥1, 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that |𝜎𝑖 (𝑥1) −𝜎𝑖 (𝑥2) | ≥ 𝐶 (𝜖, 𝑥0).

By the first point of Lemma 3.11, |∇𝑢𝑚 (𝑥) − 𝜉𝑖 | ≥ 𝐶 (𝜖) > 0 with 𝐶 (𝜖) that does
not depend on 𝑚 ∈ N. We set 𝑒 := ∇𝑢𝑚 (𝑥 )−𝜉𝑖

|∇𝑢𝑚 (𝑥 )−𝜉𝑖 | . By the maximum principle from
Proposition 3.10, there exists 𝑥1 ∈ 𝜕𝐵𝛿 (𝑥0) such that

⟨∇𝑢𝑚 (𝑥1) − 𝜉𝑖 , 𝑒⟩ ≥ ⟨∇𝑢𝑚 (𝑥) − 𝜉𝑖 , 𝑒⟩ = |∇𝑢𝑚 (𝑥) − 𝜉𝑖 | ≥ 𝐶 (𝜖).

In particular |∇𝑢𝑚 (𝑥1) − 𝜉𝑖 | ≥ 𝐶 (𝜖) and by Lemma 3.12 we obtain that |𝜎𝑖 (𝑥1) | ≥
𝐶′ (𝐶 (𝜖)). If we set 𝑒1 := ∇𝑢𝑚 (𝑥1 )−𝜉𝑖

|∇𝑢𝑚 (𝑥1 )−𝜉𝑖 | then once again by Proposition 3.10 there exists
𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that

⟨∇𝑢𝑚 (𝑥2) − 𝜉𝑖 , 𝑒1⟩ ≤ ⟨∇𝑢𝑚 (𝑥0) − 𝜉𝑖 , 𝑒1⟩ = ⟨0, 𝑒1⟩ = 0. (3.5)

The last equality comes from the fact that 𝜎𝑖 (𝑥0) = 0 ⇒ ∇𝑢𝑚 (𝑥0) = 𝜉𝑖 . If ∇𝑢𝑚 (𝑥2) = 𝜉𝑖
then |𝜎𝑖 (𝑥1) − 𝜎𝑖 (𝑥2) | = |𝜎𝑖 (𝑥1) | ≥ 𝐶′ (𝐶 (𝜖)) > 0. Otherwise, by (3.5) we get that
∠(∇𝑢𝑚 (𝑥1) − 𝜉𝑖 ,∇𝑢𝑚 (𝑥2) − 𝜉𝑖) ≥ 𝜋

2 . In that case, by the second point of Lemma 3.12
we obtain that

∠(𝜎𝑖 (𝑥1), 𝜎𝑖 (𝑥2)) ≥ 𝐷′
( 𝜋
2

)
.

Since |𝜎𝑖 (𝑥1) | ≥ 𝐶′ (𝐶 (𝜖)) there exists 𝐶 (𝜖) > 0 such that |𝜎𝑖 (𝑥1) − 𝜎𝑖 (𝑥2) | ≥ 𝐶 (𝜖).
By taking𝐶 (𝜖) := min{𝐶 (𝜖), 𝐶′ (𝐶 (𝜖))} we can apply Proposition 3.3. The conclusion

follows. □

In the case where 𝜎𝑖 (𝑥0) ≠ 0, we have the following lemma:
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Lemma 3.14. We set 𝜎𝑖 := 𝐺𝑚
𝑖
(∇𝑢𝑚) with 𝐺𝑚

𝑖
= ∇𝜑𝑚

𝑖
where the convex function

𝜑𝑚
𝑖
( · ) = 𝑓 𝑚

𝑖
(N𝑚

𝑖
( · − 𝜉𝑖)) satisfies (𝐴2). If 𝜎𝑖 (𝑥0) ≠ 0 then for every 𝑟 > 0, 𝜃 > 0 there

exists 0 < 𝛿(𝑟, 𝜃) < dist(𝑥0 ,𝜕Ω)
2 independent of 𝑚 ∈ N such that for every 𝑥 ∈ 𝐵𝛿 (𝑥0),

either |𝜎𝑖 (𝑥) | ≤ 𝑟 or the angle between 𝜎𝑖 (𝑥) and 𝜎𝑖 (𝑥0) is smaller than 𝜃.

Proof. Given 0 < 𝛿 < dist(𝑥0 ,𝜕Ω)
2 , let us assume that there exists 𝑥 ∈ 𝐵𝛿 (𝑥0) such that

|𝜎𝑖 (𝑥) | > 𝑟 and ∠(𝜎𝑖 (𝑥), 𝜎𝑖 (𝑥0)) ≥ 𝜃. By Lemma 3.11 we have that

|∇𝑢𝑚 (𝑥) − 𝜉𝑖 | > 𝐶 (𝑟) and ∠(∇𝑢𝑚 (𝑥) − 𝜉𝑖 ,∇𝑢𝑚 (𝑥0) − 𝜉𝑖) ≥ 𝐷 (𝜃). (3.6)

If ⟨∇𝑢𝑚 (𝑥) − 𝜉𝑖 , ∇𝑢𝑚 (𝑥0 )−𝜉𝑖
|∇𝑢𝑚 (𝑥0 )−𝜉𝑖 | ⟩ ≤ −𝐶 (𝑟 )

2 then by Proposition 3.10 there exist 𝑥1 ∈
𝜕𝐵𝛿 (𝑥0) such that ⟨∇𝑢𝑚 (𝑥1) − 𝜉𝑖 , ∇𝑢𝑚 (𝑥0 )−𝜉𝑖

|∇𝑢𝑚 (𝑥0 )−𝜉𝑖 | ⟩ ≤ −𝐶 (𝑟 )
2 and 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that〈

∇𝑢𝑚 (𝑥2) − 𝜉𝑖 ,
∇𝑢𝑚 (𝑥0) − 𝜉𝑖
|∇𝑢𝑚 (𝑥0) − 𝜉𝑖 |

〉
≥

〈
∇𝑢𝑚 (𝑥0) − 𝜉𝑖 ,

∇𝑢𝑚 (𝑥0) − 𝜉𝑖
|∇𝑢𝑚 (𝑥0) − 𝜉𝑖 |

〉
> 0.

The last inequality comes from the assumption 𝜎𝑖 (𝑥0) ≠ 0. In that case, the angle between
∇𝑢𝑚 (𝑥1) − 𝜉𝑖 and ∇𝑢𝑚 (𝑥2) − 𝜉𝑖 is bounded from below by a constant 0 < 𝜃′ ≤ 𝜋

depending only on 𝐶 (𝑟) and a Lipschitz constant of 𝑢𝑚 on 𝐵 dist(𝑥0 ,𝜕Ω)
2

(𝑥0) independent
of 𝑚 ∈ N. By the second point of Lemma 3.12 the angle between 𝜎𝑖 (𝑥1) and 𝜎𝑖 (𝑥2)
is bounded from below by 𝐷′ (𝜃′) > 0. Since |∇𝑢𝑚 (𝑥1) − 𝜉𝑖 | ≥ 𝐶 (𝑟 )

2 by the first point
of Lemma 3.12 we obtain that |𝜎𝑖 (𝑥1) | is larger than 𝐶′ (𝐶 (𝑟 )

2 ). Hence, there exists a
constant 𝐹 (𝑟) > 0 such that |𝜎𝑖 (𝑥1) − 𝜎𝑖 (𝑥2) | ≥ 𝐹 (𝑟).

If ⟨∇𝑢𝑚 (𝑥) − 𝜉𝑖 , ∇𝑢𝑚 (𝑥0 )−𝜉𝑖
|∇𝑢𝑚 (𝑥0 )−𝜉𝑖 | ⟩ > −𝐶 (𝑟 )

2 then by (3.6) there exists 𝑒 a unit vector
orthogonal to ∇𝑢𝑚 (𝑥0) − 𝜉𝑖 and 𝐹′ (𝑟, 𝜃) > 0 such that ⟨∇𝑢𝑚 (𝑥) − 𝜉𝑖 , 𝑒⟩ ≥ 𝐹′ (𝑟, 𝜃). Once
again by Proposition 3.10 there exist 𝑥1, 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that

⟨∇𝑢𝑚 (𝑥1) − 𝜉𝑖 , 𝑒⟩ ≥ ⟨∇𝑢𝑚 (𝑥) − 𝜉𝑖 , 𝑒⟩
≥ 𝐹′ (𝑟, 𝜃) > 0 = ⟨∇𝑢𝑚 (𝑥0) − 𝜉𝑖 , 𝑒⟩ ≥ ⟨∇𝑢𝑚 (𝑥2) − 𝜉𝑖 , 𝑒⟩.

If ∇𝑢𝑚 (𝑥2) = 𝜉𝑖 then by Lemma 3.12, |𝜎𝑖 (𝑥1) − 𝜎𝑖 (𝑥2) | ≥ 𝐶′ (𝐹′ (𝑟, 𝜃)). Otherwise, the
angle between ∇𝑢𝑚 (𝑥1) − 𝜉𝑖 and ∇𝑢𝑚 (𝑥2) − 𝜉𝑖 is bounded from below by a constant
0 < 𝜃′ ≤ 𝜋 depending only on 𝑟 > 0, 𝜃 > 0 and the Lipschitz constant of 𝑢𝑚 on
𝐵 dist(𝑥0 ,𝜕Ω)

2
(𝑥0) independent of 𝑚 ∈ N. We conclude as in the first case.

Hence, we have proved that for every 0 < 𝛿 < dist(𝑥0 ,𝜕Ω)
2 if there exists 𝑥 ∈ 𝐵𝛿 (𝑥0)

such that |𝜎𝑖 (𝑥) | > 𝑟 and the angle between 𝜎𝑖 (𝑥) and 𝜎𝑖 (𝑥0) is larger than 𝜃, then there
exist 𝑥1, 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) and 𝐹 (𝑟, 𝜃) > 0 such that |𝜎𝑖 (𝑥1) − 𝜎𝑖 (𝑥2) | ≥ 𝐹 (𝑟, 𝜃). We can
conclude as in the proof of Proposition 3.3:

𝐹 (𝑟, 𝜃) ≤ |𝜎𝑖 (𝑥1) − 𝜎𝑖 (𝑥2) | ≤
∫
𝜕𝐵𝛿 (𝑥0 )

|∇𝜎𝑖 |dH1.

110



Regularity of the stress field

Using the Cauchy–Schwarz inequality and integrating over 𝛿 between 𝛿′ > 0 and
dist(𝑥0 ,𝜕Ω)

2 we obtain

𝐹 (𝑟, 𝜃)2

2𝜋
ln

dist(𝑥0, 𝜕Ω)
2𝛿′

≤ ∥𝜎𝑖 ∥2
𝑊1,2 (𝐵 dist(𝑥0 ,𝜕Ω)

2
(𝑥0 ) ) .

The conclusion follows from the fact that 𝜎𝑖 ∈ 𝑊1,2
loc (Ω) with a norm independent of

𝑚 ∈ N by Proposition 3.1. □

The following lemma asserts that the component of 𝜎𝑖 is continuous in the direction
of 𝜎𝑖 (𝑥0).

Lemma 3.15. We set 𝜎𝑖 := 𝐺𝑚
𝑖
(∇𝑢𝑚) with 𝐺𝑚

𝑖
= ∇𝜑𝑚

𝑖
where the convex function

𝜑𝑚
𝑖
( · ) = 𝑓 𝑚

𝑖
(N𝑚

𝑖
( · − 𝜉𝑖)) satisfies (𝐴2). If 𝜎𝑖 (𝑥0) ≠ 0 then for every 𝜖 > 0 there exists

𝛿 > 0 independent of 𝑚 ∈ N such that

|𝜎𝑖 (𝑥0) | − 𝜖 ≤ ⟨𝜎𝑖 (𝑥), 𝜎
𝑖 (𝑥0)

|𝜎𝑖 (𝑥0) |
⟩ ≤ |𝜎𝑖 (𝑥0) | + 𝜖

for every 𝑥 ∈ 𝐵𝛿 (𝑥0).

Proof. Thanks to Lemma 3.14, for every 𝑟 > 0 and 𝜃 > 0 there exists 𝛿(𝑟, 𝜃) > 0 such
that for every 𝑥 ∈ 𝐵𝛿 (𝑥0), |𝜎𝑖 (𝑥) | ≤ 𝑟 or ∠(𝜎𝑖 (𝑥), 𝜎𝑖 (𝑥0)) ≤ 𝜃. By the contrapositive
statement of Lemma 3.12, there exist 𝐶 (𝑟) > 0 and 𝐷 (𝜃) > 0 such that |∇𝑢𝑚 (𝑥) − 𝜉𝑖 | ≤
𝐶 (𝑟) or ∠(∇𝑢𝑚 (𝑥) − 𝜉𝑖 ,∇𝑢𝑚 (𝑥0) − 𝜉𝑖) ≤ 𝐷 (𝜃) for every 𝑥 ∈ 𝐵𝛿 (𝑥0). Moreover, we can
choose them in such a way that 𝐶 (𝑟) → 0 when 𝑟 → 0 and 𝐷 (𝜃) → 0 when 𝜃 → 0.

For 𝜖 > 0, we introduce 𝜂 > 0 independent of 𝑚 ∈ N such that the oscillations of 𝐺𝑚
𝑖

on the square of center 𝜉𝑖 and sides of length 2𝜂 are smaller than 𝜖
2 . Since 𝐶 (𝑟) goes to

0 when 𝑟 goes to 0 and 𝐷 (𝜃) goes to 0 when 𝜃 goes to 0, we can choose 𝛿 > 0 small
enough such that for every 𝑥 ∈ 𝐵𝛿 (𝑥0) we have

|∇𝑢𝑚 (𝑥) − 𝜉𝑖 | ≤ 𝜂 or ∠(∇𝑢𝑚 (𝑥) − 𝜉𝑖 ,∇𝑢𝑚 (𝑥0) − 𝜉𝑖) is as small as we want. (3.7)

We introduce 𝑝𝑥 the projection of ∇𝑢𝑚 (𝑥) on R+ (∇𝑢𝑚 (𝑥0) − 𝜉𝑖) + 𝜉𝑖 . Hence, for every
𝑑 > 0, we can choose 𝛿0 such that for every 𝑥 ∈ 𝐵𝛿0 (𝑥0) the distance between ∇𝑢𝑚 (𝑥)
and 𝑝𝑥 is smaller than 𝑑. By uniform continuity of𝐺𝑚

𝑖
in 𝑚 ∈ N, there exists 𝜔 a modulus
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of continuity independent of 𝑚 ∈ N such that |𝐺𝑚
𝑖
(𝑝𝑥) − 𝐺𝑚𝑖 (∇𝑢𝑚 (𝑥)) | ≤ 𝜔(𝑑).

×
𝜉𝑖

×
∇𝑢𝑚 (𝑥0)

≤ 𝑑 ≤ 𝑑
× 𝐿

Let us argue by contradiction. We assume that for every 0 < 𝛿 < 𝛿0 there exists
𝑥 ∈ 𝐵𝛿 (𝑥0) such that |𝜎𝑖 (𝑥0) | + 𝜖 < ⟨𝜎𝑖 (𝑥), 𝑒⟩ or ⟨𝜎𝑖 (𝑥), 𝑒⟩ < |𝜎𝑖 (𝑥0) | − 𝜖 with
𝑒 := 𝜎𝑖 (𝑥0 )

|𝜎𝑖 (𝑥0 ) | .

Case 1. We begin with the case where ⟨𝜎𝑖 (𝑥), 𝑒⟩ > |𝜎𝑖 (𝑥0) | + 𝜖 . Since |𝐺𝑚
𝑖
(𝑝𝑥) −

𝜎𝑖 (𝑥) | ≤ 𝜔(𝑑) and ⟨𝜎𝑖 (𝑥), 𝑒⟩ ≥ |𝜎𝑖 (𝑥0) | + 𝜖 we obtain that

⟨𝐺𝑚𝑖 (𝑝𝑥), 𝑒⟩ ≥ |𝜎𝑖 (𝑥0) | = ⟨𝜎𝑖 (𝑥0), 𝑒⟩

when 𝑑 is small enough such that 𝜔(𝑑) ≤ 𝜖 without any dependence on 𝑚 ∈ N.
By definition of 𝜑𝑚

𝑖
, we have that 𝐺𝑚

𝑖
(𝑝𝑥) = ( 𝑓 𝑚

𝑖
)′ (N𝑚

𝑖
(𝑝𝑥 − 𝜉𝑖))∇N𝑚

𝑖
(𝑝𝑥 − 𝜉𝑖) and

𝜎𝑖 (𝑥0) = ( 𝑓 𝑚
𝑖
)′ (N𝑚

𝑖
(∇𝑢𝑚 (𝑥0) − 𝜉𝑖))∇N𝑚

𝑖
(∇𝑢𝑚 (𝑥0) − 𝜉𝑖). Thus, these two vectors are

positively colinear to 𝑒. This means that ( 𝑓 𝑚
𝑖
)′ (N𝑚

𝑖
(𝑝𝑥 − 𝜉𝑖)) ≥ ( 𝑓 𝑚

𝑖
)′ (N𝑚

𝑖
(∇𝑢𝑚 (𝑥0) −

𝜉𝑖)). Thus, by strict convexity of 𝑓 𝑚
𝑖

we have that

⟨∇𝑢𝑚 (𝑥) − ∇𝑢𝑚 (𝑥0),∇𝑢𝑚 (𝑥0) − 𝜉𝑖⟩ = ⟨𝑝𝑥 − ∇𝑢𝑚 (𝑥0),∇𝑢𝑚 (𝑥0) − 𝜉𝑖⟩ ≥ 0.

Hence, by Proposition 3.10 there exists 𝑥1, 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that

⟨∇𝑢𝑚 (𝑥1) − 𝜉𝑖 , 𝑒′⟩ ≤ ⟨∇𝑢𝑚 (𝑥0) − 𝜉𝑖 , 𝑒′⟩ ≤ ⟨∇𝑢𝑚 (𝑥) − 𝜉𝑖 , 𝑒′⟩ ≤ ⟨∇𝑢𝑚 (𝑥2) − 𝜉𝑖 , 𝑒′⟩

with 𝑒′ := ∇𝑢𝑚 (𝑥0 )−𝜉𝑖
|∇𝑢𝑚 (𝑥0 )−𝜉𝑖 | . We introduce 𝑝1 and 𝑝2 the projection of ∇𝑢𝑚 (𝑥1) and ∇𝑢𝑚 (𝑥2)

on R+ (∇𝑢𝑚 (𝑥0) − 𝜉𝑖) + 𝜉𝑖 . Since ⟨𝑝1, 𝑒
′⟩ ≤ ⟨∇𝑢𝑚 (𝑥0), 𝑒′⟩ the convexity of 𝑓 𝑚

𝑖
gives

that ⟨𝐺𝑚
𝑖
(𝑝1), 𝑒⟩ ≤ ⟨𝜎𝑖 (𝑥0), 𝑒⟩. For the same reasons, ⟨𝐺𝑚

𝑖
(𝑝2), 𝑒⟩ ≥ ⟨𝐺𝑚

𝑖
(𝑝𝑥), 𝑒⟩ ≥

⟨𝜎𝑖 (𝑥), 𝑒⟩ −𝜔(𝑑) where the last inequality comes from the fact that |𝐺𝑚
𝑖
(𝑝𝑥) −𝜎𝑖 (𝑥) | ≤

𝜔(𝑑).
We also have that |∇𝑢𝑚 (𝑥1) − 𝑝1 | and |∇𝑢𝑚 (𝑥2) − 𝑝2 | are smaller than 𝑑. Thus,

⟨𝜎𝑖 (𝑥1), 𝑒⟩ ≤ ⟨𝐺𝑚
𝑖
(𝑝1), 𝑒⟩ + 𝜔(𝑑) and ⟨𝜎𝑖 (𝑥2), 𝑒⟩ ≥ ⟨𝐺𝑚

𝑖
(𝑝2), 𝑒⟩ − 𝜔(𝑑). Hence,

⟨𝜎𝑖 (𝑥1), 𝑒⟩ ≤ ⟨𝜎𝑖 (𝑥0), 𝑒⟩ + 𝜔(𝑑) (3.8)

and ⟨𝜎𝑖 (𝑥2), 𝑒⟩ ≥ ⟨𝜎𝑖 (𝑥), 𝑒⟩ − 2𝜔(𝑑). When 𝑑 is sufficiently small with respect to 𝜖 we
have that |𝜎𝑖 (𝑥2) − 𝜎𝑖 (𝑥1) | ≥ 𝜖

2 .
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Case 2. Let us assume that there exists 𝑥 ∈𝐵𝛿 (𝑥0) such that |𝜎𝑖 (𝑥0) |−𝜖 >
〈
𝜎𝑖 (𝑥), 𝜎

𝑖 (𝑥0 )
|𝜎𝑖 (𝑥0 ) |

〉
.

Hence, if we apply Proposition 3.10 to ⟨∇𝑢𝑚 ( · )−𝜉𝑖 ,∇𝑢𝑚 (𝑥0)−𝜉𝑖⟩ we can show that there
exists 𝑥1 ∈ 𝜕𝐵𝛿 (𝑥0) such that ⟨∇𝑢𝑚 (𝑥1) −𝜉𝑖 ,∇𝑢𝑚 (𝑥0) −𝜉𝑖⟩ ≥ ⟨∇𝑢𝑚 (𝑥0) −𝜉𝑖 ,∇𝑢𝑚 (𝑥0) −
𝜉𝑖⟩. As in the previous case we can show that ⟨𝜎𝑖 (𝑥1), 𝑒⟩ ≥ |𝜎𝑖 (𝑥0) | − 𝜔(𝑑) that is an
analogous result to (3.8) (up to interchanging ≤ in ≥).

It remains to find a point 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that ⟨∇𝑢𝑚 (𝑥2) − 𝜉𝑖 ,∇𝑢𝑚 (𝑥0) − 𝜉𝑖⟩ is
sufficiently small. We distinguish two subcases. We start by assuming that ∇𝑢𝑚 (𝑥) ∈
𝐵𝜂 (𝜉𝑖). By Proposition 3.10 there exists 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that

⟨∇𝑢𝑚 (𝑥2) − 𝜉𝑖 ,∇𝑢𝑚 (𝑥0) − 𝜉𝑖⟩ ≤ ⟨∇𝑢𝑚 (𝑥) − 𝜉𝑖 ,∇𝑢𝑚 (𝑥0) − 𝜉𝑖⟩.
By (3.7) we have that ∇𝑢𝑚 (𝑥2) ∈ 𝐵𝜂 (𝜉𝑖). Since the oscillations of 𝐺𝑚

𝑖
are smaller than

𝜖
2 on that set we get that ⟨𝜎𝑖 (𝑥2), 𝑒⟩ ≤ ⟨𝜎𝑖 (𝑥), 𝑒⟩ + 𝜖

2 . In that case we obtain

⟨𝜎𝑖 (𝑥2), 𝑒⟩ ≤ ⟨𝜎𝑖 (𝑥), 𝑒⟩ + 𝜖
2
≤ ⟨𝜎𝑖 (𝑥0), 𝑒⟩ −

𝜖

2
≤ ⟨𝜎𝑖 (𝑥1), 𝑒⟩ −

𝜖

2
+ 𝜔(𝑑).

Thus, by taking 𝑑 small enough |𝜎𝑖 (𝑥1) − 𝜎𝑖 (𝑥2) | ≥ 𝜖
4 .

If ∇𝑢𝑚 (𝑥) ∉ 𝐵𝜂 (𝜉𝑖) then ⟨𝑝𝑥 − 𝜉𝑖 ,∇𝑢𝑚 (𝑥0) − 𝜉𝑖⟩ > 0 with 𝑝𝑥 the projection
of ∇𝑢𝑚 (𝑥) on R+ (∇𝑢𝑚 (𝑥0) − 𝜉𝑖) + 𝜉𝑖 . Hence, there exists 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that
⟨∇𝑢𝑚 (𝑥2), 𝑒′⟩ ≤ ⟨∇𝑢𝑚 (𝑥), 𝑒′⟩ which implies that ⟨𝑝𝑥 − 𝑝2,∇𝑢𝑚 (𝑥0) − 𝜉𝑖⟩ ≥ 0. Hence,
by convexity of 𝑓 𝑚

𝑖
we have that ⟨𝐺𝑚

𝑖
(𝑝2), 𝑒⟩ ≤ ⟨𝐺𝑚

𝑖
(𝑝𝑥), 𝑒⟩. Thus,

⟨𝜎𝑖 (𝑥2), 𝑒⟩ ≤ ⟨𝜎𝑖 (𝑥), 𝑒⟩ + 2𝜔(𝑑) ≤ ⟨𝜎𝑖 (𝑥0), 𝑒⟩ − 𝜖 + 2𝜔(𝑑).
Once again, by taking 𝑑 small enough |𝜎𝑖 (𝑥1) − 𝜎𝑖 (𝑥2) | ≥ 𝜖

4 .
In any case, for every 0 < 𝛿 < 𝛿0, if there exists 𝑥 ∈ 𝐵𝛿 (𝑥0) such that |𝜎𝑖 (𝑥0) | +

𝜖 < ⟨𝜎𝑖 (𝑥), 𝑒⟩ or ⟨𝜎𝑖 (𝑥), 𝑒⟩ < |𝜎𝑖 (𝑥0) | − 𝜖 we can find 𝑥1, 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) satisfying
|𝜎𝑖 (𝑥1) − 𝜎𝑖 (𝑥2) | ≥ 𝜖

4 . The conclusion follows Proposition 3.3. □

The combination of the last three results gives the following proposition:

Proposition 3.16. Under the assumptions of Theorem 1.5, in the case where 𝐺𝑚
𝑖
= ∇𝜑𝑚

𝑖

with 𝜑𝑚
𝑖
( · ) = 𝑓 𝑚

𝑖
(N𝑚

𝑖
( · − 𝜉𝑖)), we have that 𝐺𝑚

𝑖
(∇𝑢𝑚) is continuous on Ω with a

modulus of continuity that does not depend on 𝑚 ∈ N.

Now, let us focus on the case where 𝐺𝑖 satisfies the assumption (𝐴3).

Proposition 3.17. Let us assume that 𝐺𝑚
𝑖
= ∇𝜑𝑚

𝑖
with 𝜑𝑚

𝑖
( · ) = 𝑓 𝑚

𝑖
(⟨ · , 𝜉𝑖⟩) and 𝜉𝑖 ≠ 0.

Then if 𝐺𝑚
𝑖
(∇𝑢𝑚) ∈ 𝑊1,2

loc (Ω) we have that 𝜎𝑖 := 𝐺𝑚
𝑖
(∇𝑢𝑚) is continuous on Ω with a

modulus of continuity that does not depend on 𝑚 ∈ N.

Proof. For every 𝜖 > 0 we have

|𝐺𝑚𝑖 (𝑧1) − 𝐺𝑚𝑖 (𝑧2) | ≥ 𝜖 ⇔ |( 𝑓 𝑚𝑖 )′ (⟨𝑧1, 𝜉𝑖⟩) − ( 𝑓 𝑚𝑖 )′ (⟨𝑧2, 𝜉𝑖⟩) | ≥
𝜖

|𝜉𝑖 |
(3.9)
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for every 𝑧1, 𝑧2 ∈ R2.
Thus, for 𝛿 > 0, if we assume that there exists 𝑥 ∈ 𝐵𝛿 (𝑥0) such that

|𝐺𝑚𝑖 (∇𝑢𝑚 (𝑥)) − 𝐺𝑚𝑖 (∇𝑢𝑚 (𝑥0)) | ≥ 𝜖

then
| ( 𝑓 𝑚𝑖 )′ (⟨∇𝑢𝑚 (𝑥), 𝜉𝑖⟩) − ( 𝑓 𝑚𝑖 )′ (⟨∇𝑢𝑚 (𝑥0), 𝜉𝑖⟩) | ≥

𝜖

|𝜉𝑖 |
. (3.10)

Up to a change of sign of 𝜉𝑖 we can assume that ⟨∇𝑢𝑚 (𝑥0), 𝜉𝑖⟩ ≤ ⟨∇𝑢𝑚 (𝑥), 𝜉𝑖⟩.
By the maximum principle from Proposition 3.10 applied to 𝑦 → ⟨∇𝑢𝑚 (𝑦), 𝜉𝑖⟩, there
exist 𝑥1, 𝑥2 ∈ 𝜕𝐵𝛿 (𝑥0) such that ⟨∇𝑢𝑚 (𝑥1), 𝜉𝑖⟩ ≤ ⟨∇𝑢𝑚 (𝑥0), 𝜉𝑖⟩ and ⟨∇𝑢𝑚 (𝑥), 𝜉𝑖⟩ ≤
⟨∇𝑢𝑚 (𝑥2), 𝜉𝑖⟩.

We use the fact that ( 𝑓 𝑚
𝑖
)′ is increasing with (3.10) to obtain that

| ( 𝑓 𝑚𝑖 )′ (⟨∇𝑢𝑚 (𝑥1), 𝜉𝑖⟩) − ( 𝑓 𝑚𝑖 )′ (⟨∇𝑢𝑚 (𝑥2), 𝜉𝑖⟩) | ≥
𝜖

|𝜉𝑖 |
.

Thus, by (3.9), we get that |𝐺𝑚
𝑖
(∇𝑢𝑚 (𝑥1)) − 𝐺𝑚𝑖 (∇𝑢𝑚 (𝑥2)) | ≥ 𝜖 . Once again, we can

conclude thanks to Proposition 3.3. □

Hence, we have proved the following result:

Proposition 3.18. Under the assumptions of Theorem 1.5, the functions (𝐺𝑚 (∇𝑢𝑚))𝑚∈N
are continuous with the same modulus of continuity on each compact subset of Ω.

Proof. For every 𝑚 ∈ N we have proved in Proposition 3.16 or in Proposition 3.17 that
for every 1 ≤ 𝑖 ≤ 𝑛 the function 𝐺𝑚

𝑖
(∇𝑢𝑚) is continuous with a modulus of continuity

independent of 𝑚 ∈ N. Hence, that is the case for their sum, namely 𝐺𝑚 (∇𝑢𝑚). □

4. Uniform estimates for Theorem 1.7

In this section, we study the case when 𝐺 = 𝐺1 + 𝐺2 where 𝐺𝑖 (𝑧) := 𝑓 ′
𝑖
(⟨𝑧, 𝜉𝑖⟩)𝜉𝑖

with 𝑓1 ∈ C1,1
loc (R) and 𝑓2 ∈ C1 (R) ∩ C1,1

loc (R\{0}) two convex functions. Moreover, the
right-hand side of (1.4) is a constant 𝜆 ∈ R.

We begin by the following observation on 𝜉1 and 𝜉2:

Proposition 4.1. Under the assumptions of Theorem 1.7 we can assume that 𝜉1 = 𝑒1 and
𝜉2 = 𝑒2 are the two standard vectors of the canonical basis.

Proof. Let us assume that 𝐴 is an invertible linear matrix. We introduce the convex
function 𝜑(𝑧) := 𝑓1 (⟨𝑧, 𝜉1⟩) + 𝑓2 (⟨𝑧, 𝜉2⟩). Let us consider 𝑢 a solution of (2.2), then 𝑢 is
a minimizer of

min
𝑤∈𝑊1,2

𝑢 (Ω)

∫
Ω

𝜑(∇𝑤(𝑥)) + 𝜆𝑤(𝑥)d𝑥. (4.1)
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For every 𝑤 ∈ 𝑊1,2 (Ω), we have:∫
Ω

𝜑(∇𝑤(𝑥)) + 𝜆𝑤(𝑥)d𝑥 = |det 𝐴|
∫
𝐴−1 (Ω)

𝜑(∇𝑤(𝐴𝑦)) + 𝜆𝑤(𝐴𝑦)d𝑦.

If we set 𝑣(𝑦) := 𝑤(𝐴𝑦) then:∫
Ω

𝜑(∇𝑤(𝑥)) + 𝜆𝑤(𝑥)d𝑥 = |det 𝐴|
∫
𝐴−1 (Ω)

𝜑((𝐴𝑇 )−1∇𝑣(𝑦)) + 𝜆𝑣(𝑦)d𝑦.

Hence, since 𝑢 is a minimizer of (4.1), we obtain that 𝑢(𝐴·) is a minimizer of∫
𝐴−1 (Ω)

𝜑((𝐴𝑇 )−1∇𝑣(𝑦)) + 𝜆𝑣(𝑦)d𝑦

on𝑊1,2
𝑢(𝐴· ) (𝐴

−1 (Ω)). It remains to choose 𝐴 such that (𝐴−1)𝜉1 = 𝑒1 and (𝐴−1)𝜉2 = 𝑒2.
Since proving that ∇𝜑(∇𝑢) ∈ C0 (Ω) is equivalent to proving that ∇𝜑(∇𝑢(𝐴·)) ∈

C0 (𝐴−1 (Ω)), we can assume that 𝜉1 = 𝑒1 and 𝜉2 = 𝑒2. □

Remark 4.2. This previous proposition is important because, in this section, we will
consider partial derivatives in orthogonal directions 𝑒1 and 𝑒2 instead of differentiating
our functions in any direction. By doing so, we can use the properties of 𝑓𝑖 while
differentiating with respect to 𝑒𝑖 where 𝑖 = 1, 2.

We want to establish continuity estimates for 𝐺𝑚 (∇𝑢𝑚) independent of 𝑚 ∈ N
with 𝑢𝑚 solution of (2.2). We start by proving the following lemma inspired by [15,
Proposition 2.3]:

Lemma 4.3. Let 𝑓1 and 𝑓2 be two smooth convex functions. Let 𝑢 be a smooth solution
of (2.2) with 𝐺 (𝑧) := 𝑓 ′1 (⟨𝑧, 𝑒1⟩)𝑒1 + 𝑓 ′2 (⟨𝑧, 𝑒2⟩)𝑒2. Then the function 𝑓 ′1 (𝜕1𝑢) belongs
to𝑊1,2

loc (Ω). Moreover, for every Ω′′ ⋐ Ω′ ⋐ Ω and every 𝐿Ω′ ≥ ∥∇𝑢∥𝐿∞ (Ω′ ) we have

∥ 𝑓 ′1 (𝜕1𝑢)∥𝑊1,2 (Ω′′ )

≤ 𝐶 (𝐿′Ω, ∥ 𝑓
′
1 ∥𝐿∞ (−𝐿Ω′ ,𝐿Ω′ ) , ∥ 𝑓

′
2 ∥𝐿∞ (−𝐿Ω′ ,𝐿Ω′ ) , ∥ 𝑓

′′
1 ∥𝐿∞ (𝐿Ω′ ,𝐿Ω′ ) , dist(𝜕Ω′, 𝜕Ω′′)).

Proof. By local Lipschitz regularity of 𝑢, we already know that 𝑓 ′1 (𝜕1𝑢) ∈ 𝐿2
loc (Ω). Since

𝑢 is a solution of (2.2) we have that:∫
Ω

⟨∇𝜑(∇𝑢),∇𝜃⟩ = −
∫
Ω

𝜆𝜃

for every 𝜃 ∈ C∞
0 (Ω). If we differentiate the Euler–Lagrange equation in the first direction,

the fact that 𝜆 ∈ R gives that ∫
Ω

⟨∇2𝜑(∇𝑢)∇𝜕1𝑢,∇𝜃⟩ = 0 (4.2)
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for every 𝜃 ∈ C∞
0 (Ω). If we replace 𝜃 by 𝜉2 𝑓 ′1 (𝜕1𝑢) with 𝜉 ∈ C∞

0 (Ω′) and Ω′ ⋐ Ω we
obtain∑︁

𝑖=1,2

∫
Ω

𝑓 ′′𝑖 (𝜕𝑖𝑢)𝜕1𝑖𝑢𝜉
2 𝑓 ′′1 (𝜕1𝑢)𝜕1𝑖𝑢 = −2

∑︁
𝑖=1,2

∫
Ω

𝑓 ′′𝑖 (𝜕𝑖𝑢)𝜕1𝑖𝑢𝜉𝜕𝑖𝜉 𝑓
′
1 (𝜕1𝑢).

Since the terms in the left-hand side are nonnegative, we have that∫
Ω

( 𝑓 ′′1 (𝜕1𝑢)𝜕11𝑢𝜉)2 ≤ −2
∑︁
𝑖=1,2

∫
Ω

𝑓 ′′𝑖 (𝜕𝑖𝑢)𝜕1𝑖𝑢𝜉𝜕𝑖𝜉 𝑓
′
1 (𝜕1𝑢).

With an integration by parts on the right-hand side we get∫
Ω

(𝜕1 [ 𝑓 ′1 (𝜕1𝑢)])2𝜉2 ≤ 2
∑︁
𝑖=1,2

∫
Ω

𝑓 ′𝑖 (𝜕𝑖𝑢)𝜕1 (𝜉𝜕𝑖𝜉) 𝑓 ′1 (𝜕1𝑢) + 𝑓 ′𝑖 (𝜕𝑖𝑢)𝜉𝜕𝑖𝜉𝜕1 [ 𝑓 ′1 (𝜕1𝑢)] .

With the Young and Hölder inequalities and the fact that ∥∇𝑢∥𝐿∞ (Ω′ ) ≤ 𝐿Ω′ we obtain
that∫

Ω

(𝜕1 [ 𝑓 ′1 (𝜕1𝑢)])2𝜉2 ≤ 𝐶 (𝐿Ω′ , ∥ 𝑓 ′1 ∥𝐿∞ (−𝐿Ω′ ,𝐿Ω′ ) , ∥ 𝑓
′
2 ∥𝐿∞ (−𝐿Ω′ ,𝐿Ω′ ) , ∥𝜉∥𝑊1,∞ (Ω).

Hence, if we take 𝜉 ∈ C∞
0 (Ω′) such that 𝜉 ≡ 1 on Ω′′ with Ω′′ ⋐ Ω′, then we get that

𝜕1 [ 𝑓 ′1 (𝜕1𝑢)] belongs to 𝐿2 (Ω′′) and

∥𝜕1 [ 𝑓 ′1 (𝜕1𝑢)] ∥𝐿2 (Ω′′ ) ≤ 𝐶 (𝐿Ω′ , ∥ 𝑓 ′1 ∥𝐿∞ (−𝐿Ω′ ,𝐿Ω′ ) , ∥ 𝑓
′
2 ∥𝐿∞ (−𝐿Ω′ ,𝐿Ω′ ) , dist(Ω′,Ω′′)).

With the same strategy, we can also prove that 𝜕2
[
𝑓 ′2 (𝜕2𝑢)

]
∈ 𝐿2 (Ω′′) with the same

estimate.
It remains to prove that 𝜕2

[
𝑓 ′1 (𝜕1𝑢)

]
∈ 𝐿2

loc (Ω). We proceed as in the proof of [8,
Theorem 2.1]. For 0 < ℎ < 1

4 and 𝑥 ∈ Ω′′, we introduce 𝜏(𝑥) = 𝜎 (𝑥+ℎ𝑒2 )−𝜎 (𝑥 )
ℎ

where
𝜎(𝑥) = 𝐺 (∇𝑢(𝑥)). We set 𝜏1 (𝑥) := 𝑓 ′1 (𝜕1𝑢(𝑥+ℎ𝑒2 ) )− 𝑓 ′1 (𝜕1𝑢(𝑥 ) )

ℎ
, we want to prove that

∥𝜏1∥𝐿2
loc (Ω′′ ) is bounded uniformly in ℎ.

Since 𝑓 ′1 is Lipschitz continuous and increasing there exists 𝐾 > 1 such that

𝜏1 (𝑥)2 ≤ 𝐾𝜏1 (𝑥) ×
𝜕1𝑢(𝑥 + ℎ𝑒2) − 𝜕1𝑢(𝑥)

ℎ
.

Using the fact that 𝑓2 is convex we have that:

𝜏1 (𝑥)2 ≤ 𝐾

〈
𝜏(𝑥), ∇𝑢(𝑥 + ℎ𝑒2) − ∇𝑢(𝑥)

ℎ

〉
.

With 𝜉 ∈ C∞
0 (Ω′′′) where Ω′′′ ⋐ Ω′′ and 0 < ℎ < dist(𝜕Ω′′′, 𝜕Ω′′) we have

∥𝜉𝜏1∥2
𝐿2 (Ω′′′ ) ≤ 𝐾

∫
Ω′′′

𝜉2
〈
𝜏(𝑥), ∇𝑢(𝑥 + ℎ𝑒2) − ∇𝑢(𝑥)

ℎ

〉
.
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Since div 𝜏 = 0, an integration by parts gives that

∥𝜉𝜏1∥2
𝐿2 (Ω′′′ ) ≤ 2𝐾

∫
Ω′′′

����𝜉 (𝑥) 𝑢(𝑥 + ℎ𝑒2) − 𝑢(𝑥)
ℎ

⟨∇𝜉 (𝑥), 𝜏(𝑥)⟩
����.

Thus,
∥𝜉𝜏1∥2

𝐿2 (Ω′′′ ) ≤ 𝐶
(
𝐿Ω′ , 𝐾, ∥𝜉∥𝑊1,∞ (Ω′′ )

)
∥𝜉𝜏∥𝐿2 (Ω′′′ ) .

We already know that ∥𝜏2∥𝐿2 (Ω′′′ ) is bounded uniformly in ℎ thanks to the fact that
𝜕2

[
𝑓 ′2 (𝜕2𝑢)

]
∈ 𝐿2 (Ω′′). Hence, ∥𝜉𝜏1∥𝐿2 (Ω′′′ ) is bounded uniformly in ℎ. Thus, if we

take 𝜉 ≡ 1 on a subset of Ω′′′, we obtain that 𝜕2
[
𝑓 ′1 (𝜕1𝑢)

]
belongs to 𝐿2

loc (Ω
′′′) with an

explicit estimate. □

If we apply this lemma with 𝑓 𝑚1 and 𝑓 𝑚2 we obtain an estimate on the Sobolev norm of
( 𝑓 𝑚1 )′ (𝜕1𝑢𝑚) independent of 𝑚 ∈ N. Hence, we can apply Proposition 3.17 to prove that
( 𝑓 𝑚1 )′ (𝜕1𝑢𝑚) is continuous with a modulus of continuity that does not depend on 𝑚 ∈ N.
It remains to do the same for ( 𝑓 𝑚2 )′ (𝜕2𝑢𝑚). For every 𝑟 > 0, we have the following result
coming from [15, Proposition 2.4]:

Proposition 4.4. Let 𝑓1 and 𝑓2 be two smooth convex functions. Let 𝑢 be a smooth solution
of (2.2) with 𝐺 (𝑧) := 𝑓 ′1 (⟨𝑧, 𝑒1⟩)𝑒1 + 𝑓 ′2 (⟨𝑧, 𝑒2⟩)𝑒2 and 𝑓 ≡ 𝜆 ∈ R. For every 𝑟 > 0 and
every 𝑥0 ∈ Ω′ ⋐ Ω, we have∫

Ω′∩𝑈𝑟

| 𝑓 ′′2 (𝜕2𝑢)𝜕22𝑢 |2 ≤ 𝐶 (𝑟, 𝛼𝑟 , ∥ 𝑓 ′′1 ∥𝐿∞ (𝐵𝐿Ω′ ) )

with𝑈𝑟 := {𝑥 ∈ Ω, |𝜕2𝑢(𝑥) | ≥ 𝑟}, 𝐿Ω′ := ∥∇𝑢∥𝐿∞ (Ω′ ) and 𝛼𝑟 := sup𝑟≤𝑡≤𝐿Ω′ 𝑓
′′
2 (𝑡).

Proof. Since 𝜆 is a constant, the right-hand side of (2.2) vanishes when we differentiate
the equation. By [15, Proposition 2.4], we have that∫

Ω′∩𝑈𝑟

| 𝑓 ′′1 (𝜕1𝑢)𝜕11𝑢 |2 + | 𝑓 ′′2 (𝜕2𝑢)𝜕22𝑢 |2 ≤ 𝐶 (𝑟, 𝛼𝑟 , ∥ 𝑓 ′′1 ∥𝐿∞ (𝐵𝐿Ω′ ) )

and the conclusion follows. □

Since this proposition allows avoiding the values of 𝑓 ′′2 around the origin, we can
apply it with 𝑓 𝑚1 and 𝑓 𝑚2 . In that case, the constant 𝐶 (𝑟, 𝛼𝑟 , ∥( 𝑓 𝑚1 )′′∥𝐿∞ (𝐵𝐿Ω′ ) ) can be
taken independent of 𝑚 ∈ N.

Let us use this estimate in order to prove the continuity of ( 𝑓 𝑚2 )′ (𝜕2𝑢𝑚) uniformly
in 𝑚 ∈ N. Thanks to Proposition 2.4 there exist 𝑟 > 0, 𝜔 : R+ → R+ a continuous
function that satisfies 𝜔(𝑡) = 0 ⇔ 𝑡 = 0 and 𝑀𝑟 ∈ N such that for every 𝑚 ≥ 𝑀𝑟 , every
𝑥, 𝑦 ∈ (− 𝑟2 ,

𝑟
2 ) we have that

(( 𝑓 𝑚2 )′ (𝑥) − ( 𝑓 𝑚2 )′ (𝑦)) (𝑥 − 𝑦) ≥ 𝜔( |𝑥 − 𝑦 |). (4.3)

We prove the following alternative:
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Lemma 4.5. For every 𝑡 > 0 there exist 0 < 𝑑𝑡 < 𝑡 and 𝛿0 > 0 such that for every
𝑚 ≥ 𝑀𝑟 , 𝜕2𝑢𝑚 (𝑥) > 𝑑𝑡 for every 𝑥 ∈ 𝐵𝛿0 (𝑥0) or 𝜕2𝑢𝑚 (𝑥) < 𝑡 for every 𝑥 ∈ 𝐵𝛿0 (𝑥0).

Proof. By (4.3), for every 𝑡 > 0 there exist 0 < 𝑑 < 𝑡 and 𝐶 independent of 𝑚 ≥ 𝑀𝑟

such that 0 < 𝐶 ≤ ( 𝑓 𝑚2 )′ (𝑡) − ( 𝑓 𝑚2 )′ (𝑑). We introduce 𝐹 : R→ R a smooth increasing
function such that 𝐹 (𝑠) = 0 for every 𝑠 < ( 𝑓 𝑚2 )′ (𝑑) and 𝐹 (𝑠) = 𝐶 for every 𝑠 > ( 𝑓 𝑚2 )′ (𝑡).
We assume that for every 0 < 𝛿 < dist(𝑥0 ,𝜕Ω)

2 there exist 𝑥1 and 𝑥2 in 𝐵𝛿 (𝑥0) such that
𝜕2𝑢𝑚 (𝑥1) < 𝑑 < 𝑡 < 𝜕2𝑢𝑚 (𝑥2). Once again, thanks to the maximum principle from
Proposition 3.10, there exist 𝑥′1 and 𝑥′2 on 𝜕𝐵𝛿 (𝑥0) such that 𝜕2𝑢𝑚 (𝑥′1) < 𝑑 < 𝑡 <

𝜕2𝑢𝑚 (𝑥′2). Hence,

𝐶 = 𝐹 (( 𝑓 𝑚2 )′ (𝜕2𝑢𝑚 (𝑥′2))) − 𝐹 (( 𝑓
𝑚
2 )′ (𝜕2𝑢𝑚 (𝑥′1)))

≤
∫
𝜕𝐵𝛿 (𝑥0 )

|∇[𝐹 (( 𝑓 𝑚2 )′ (𝜕2𝑢𝑚))] |dH1

≤ ∥∇𝐹∥𝐿∞ (R)

∫
𝜕𝐵𝛿 (𝑥0 )∩𝑈𝑑

| ( 𝑓 𝑚2 )′′ (𝜕2𝑢𝑚)∇𝜕2𝑢𝑚 |dH1

with𝑈𝑑 = {𝑥 ∈ Ω, |𝜕2𝑢𝑚 | ≥ 𝑑}. Thus, as in the proof of Proposition 3.3, if we integrate
between 𝛿0 and dist(𝑥0 ,𝜕Ω)

2 we obtain that:

𝐶2

2𝜋∥∇𝐹∥2
𝐿∞ (R)

ln
dist(𝑥0, 𝜕Ω)

2𝛿0
≤

∫
𝐵 dist(𝑥0 ,𝜕Ω)

2
(𝑥0 )∩𝑈𝑑

| ( 𝑓 𝑚2 )′′ (𝜕2𝑢𝑚)∇𝜕2𝑢𝑚 |2dH1.

Hence, using Proposition 4.4 there exists 𝛿0 > 0 such that 𝜕2𝑢𝑚 (𝑥) ≥ 𝑑 for every
𝑥 ∈ 𝐵𝛿0 (𝑥0) or 𝜕2𝑢𝑚 (𝑥) ≤ 𝑡 for every 𝑥 ∈ 𝐵𝛿0 (𝑥0). □

We have the same result with 𝑡 < 0:

Lemma 4.6. For every 𝑡 < 0 there exist 𝑡 < 𝑑′𝑡 < 0 and 𝛿0 > 0 such that 𝜕2𝑢𝑚 (𝑥) < 𝑑′𝑡
for every 𝑥 ∈ 𝐵𝛿0 (𝑥0) or 𝜕2𝑢𝑚 (𝑥) > 𝑡 for every 𝑥 ∈ 𝐵𝛿0 (𝑥0).

Proof. The proof is the same as the proof of Proposition 4.5 replacing 𝜕2𝑢 by −𝜕2𝑢. □

Hence, we have proved:

Proposition 4.7. For every 𝑡 > 0 there exist 𝑑𝑡 > 0 and 𝛿0 > 0 such that for every𝑚 ≥ 𝑀𝑟

we have that −𝑡 < 𝜕2𝑢𝑚 (𝑥) < 𝑡 for every 𝑥 ∈ 𝐵𝛿0 (𝑥0) or 𝜕2𝑢𝑚 (𝑥) ∈ (−∞, 𝑑′−𝑡 ) ∪ (𝑑𝑡 ,∞)
for every 𝑥 ∈ 𝐵𝛿0 (𝑥0).

With this result, we are ready to prove the continuity of ( 𝑓 𝑚2 )′ (𝜕2𝑢𝑚).

Proposition 4.8. Under the assumptions of Theorem 1.7, ( 𝑓 𝑚2 )′ (𝜕2𝑢𝑚) is continuous
with a modulus of continuity independent of 𝑚 ∈ N.
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Proof. For every 𝜖 > 0, we want to find 𝛿 > 0 such that

( 𝑓 𝑚2 )′ (𝜕2𝑢𝑚 (𝐵𝛿 (𝑥0))) ⊂ 𝐵𝜖 (( 𝑓 𝑚2 )′ (𝜕2 (𝑢𝑚 (𝑥0)))).

We introduce 𝐶 (𝜖) > 0 such that if −𝐶 (𝜖) ≤ 𝑡 ≤ 𝐶 (𝜖) then

| ( 𝑓 𝑚2 )′ (𝑡) − ( 𝑓 𝑚2 )′ (0) | ≤ 𝜖

2
(4.4)

for every 𝑚 ≥ 𝑀𝑟 . Then, thanks to Proposition 4.7, we have two options.
If 𝜕2𝑢𝑚 (𝑥) ∈ (−∞, 𝑑′−𝐶 (𝜖 ) ) ∪ (𝑑𝐶 (𝜖 ) ,∞) for every 𝑥 ∈ 𝐵𝛿0 (𝑥0), then we can assume

that 𝑓1 and 𝑓2 are in C1,1
loc and apply Theorem 1.5.

Otherwise, −𝐶 (𝜖) ≤ 𝜕2𝑢𝑚 (𝑥) ≤ 𝐶 (𝜖) for every 𝑥 ∈ 𝐵𝛿0 (𝑥0). In that case we conclude
thanks to (4.4). □

If we combine the results of this section, we have proved:

Proposition 4.9. Under the assumptions of Theorem 1.7, the functions (𝐺𝑚 (∇𝑢𝑚))𝑚∈N
are continuous with the same modulus of continuity on each compact subset of Ω.

5. Uniform estimate for Theorem 1.10

This section is devoted to the proof of Theorem 1.10. We assume that there exists a
compact set 𝐷𝐺 such that 𝐺 ∈ C1 (R𝑁\𝐷𝐺) and 𝐷𝐺 = R𝑁\⋃

𝑘∈N O𝑘 with

O𝑘 :=
{
𝑧 ∈ R𝑁 , 1

𝑘
|𝑣 |2 < ⟨𝐷𝐺𝑠 (𝑧)𝑣, 𝑣⟩ < 𝑘 |𝑣 |2 for every 𝑣 ∈ R𝑁

}
where 𝐷𝐺𝑠 := 𝐷𝐺+𝐷𝐺𝑇

2 . For every 𝑟 > 0, we introduce the closed 𝑟−neighborhood of a
set𝑈:

𝑁𝑟 (𝑈) := {𝑦 ∈ R𝑁 , dist(𝑦,𝑈) ≤ 𝑟}.
We assume that there exists 𝑡0 > 0 such that for every 0 ≤ 𝑡 ≤ 𝑡0 the connected components
of 𝑁 𝑡 (𝐷𝐺) are simply connected.

As in the previous sections, we want to obtain uniform estimates for smooth approxi-
mations of the original problem. Therefore, we work with the smooth function 𝐺𝑚 from
Proposition 2.5 and the smooth solution 𝑢𝑚 of (2.2). Let 𝑟0 be the smallest distance
between two connected components of 𝐷𝐺 . We introduce 𝜌0 < min{ 𝑟08 , 𝑡0}. In this
section, we prove that:

Proposition 5.1. For every 0 < 𝑡 < 𝜌0
2 and for every subset Ω′ ⋐ Ω, the functions

dist(∇𝑢𝑚, 𝑁 𝑡 (𝐷𝐺)) and dist(∇𝑢𝑚, 𝑁 𝑡 (𝐷𝐺))∇𝑢𝑚
are continuous with a uniform modulus of continuity in 𝑚 ≥ 2

𝑡
. Moreover, for every

𝑥0 ∈ Ω′, there exists 𝑟 > 0 independent of 𝑚 ∈ N such that ∇𝑢𝑚 (𝐵𝑟 (𝑥0)) encounters at
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most one connected component 𝐷0
𝐺

of 𝐷𝐺 . Furthermore, if ∇𝑢𝑚 (𝐵𝑟 (𝑥0)) ∩ 𝐷0
𝐺

is not
empty then ∇𝑢𝑚 (𝐵𝑟 (𝑥0)) ⊂ 𝑁3𝜌0 (𝐷0

𝐺
).

We define

Õ𝑡𝑘 :=

( ⋂
𝑚≥ 2

𝑡

{
1
𝑘

Id < (𝐷𝐺𝑚)𝑠 < 𝑘 Id
})
\𝑁 𝑡 (𝐷𝐺).

Hence the sets Õ𝑡
𝑘

are independent of 𝑚 when 𝑚 ≥ 2
𝑡
.

Since every estimate of this section is independent of 𝑚 ≥ 2
𝑡

we can drop the subscript
𝑚 ∈ N in order to simplify the notations. Moreover, since we want to prove continuity
results for every 𝑥0 ∈ Ω′, we can replace Ω′ by 𝐵dist(𝑥0 ,𝜕Ω) (𝑥0). By replacing 𝑢( · ) by
𝑢(dist(𝑥0, 𝜕Ω) · +𝑥0), we can assume that Ω′ = 𝐵1 (0). We introduce the constant 𝐿 > 0
that is a Lipschitz constant of 𝑢𝑚 on 𝐵1 (0) uniform in 𝑚 ∈ N. In the remaining of the
section 0 < 𝑡 < 𝜌0

2 is fixed. Hence, we do not state the dependence on 𝑡 in the constants
of the following results.

5.1. Preliminary results

In this section, we introduce two results that are adaptations of [28, Proposition 3.1,
Lemma 3.2] in the case where 𝑓 ≠ 0.

We introduce the following operator:

𝐿𝑢𝐺 : 𝑣 ↦−→ div(𝐷𝐺 (∇𝑢)∇𝑣).

Remark 5.2. We have that 𝐿𝑢
𝐺
(𝜕𝑒𝑢) = 𝜕𝑒 𝑓 for every 𝑒 ∈ S𝑁−1.

We prove the following result:

Proposition 5.3. Let 𝐾 ≥ 0 and 𝑞 > 𝑁 . We assume that 𝑣 is in𝑊1,2 (𝐵1 (0)) ∩𝐿∞ (𝐵1 (0)),
𝑣 ≥ 0 and solves 𝐿𝑢

𝐺
(𝑣) ≥ 𝑔 in the weak sense with {𝑣 > 0} ⊂ Õ𝑡

𝑘
for some 𝑘 ∈ N and

𝑔 ∈ 𝐿𝑞 (𝐵1 (0)). Then for all 0 < 𝜇 ≤ 1, there exists 𝜈 := 𝜈(𝜇, 𝑁, 𝑘) such that if

|{𝑣 > 0 ∩ 𝐵 1
2
(0)}|

|𝐵 1
2
(0) | ≤ 1 − 𝜇

and
∥𝑔∥𝐿𝑞 (𝐵1 (0) ) ≤

𝜈

2
max

{
sup
𝐵1 (0)

𝑣, 𝐾

}
then

sup
𝐵 1

4
(0)
𝑣 ≤ (1 − 𝜈) max

{
sup
𝐵1 (0)

𝑣, 𝐾

}
.
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Proof. Let us introduce 𝑚 := sup𝐵1 (0) 𝑣, then 𝑚 − 𝑣 ≥ 0 and 𝐿𝑢
𝐺
(𝑚 − 𝑣) ≤ −𝑔. If we

replace 𝐷𝐺 (∇𝑢) by the identity matrix on the set where 𝑣 = 0, then by [19, Theorem 8.18],
there exists 𝐶0 := 𝐶0 (𝑁, 𝑘) > |𝐵1 (0) | such that

2𝑁
∫
𝐵 1

2
(0)
𝑚 − 𝑣 ≤ 𝐶0

(
inf{𝑚 − 𝑣(𝑥), 𝑥 ∈ 𝐵 1

4
(0)} + 𝑘 ∥𝑔∥𝐿𝑞 (𝐵1 (0) )

)
.

We estimate the left-hand side from below by integrating over the set [𝑣 = 0]. Thus,

2𝑁 𝜇𝑚 |𝐵 1
2
(0) | ≤ 𝐶0

(
𝑚 − sup

𝐵 1
4 (0)

𝑣 + 𝑘 ∥𝑔∥𝐿𝑞 (𝐵1 (0) )

)
.

Hence,

sup
𝐵 1

4
(0)
𝑣 ≤

(
1 −

2𝑁 𝜇 |𝐵 1
2
(0) |

𝐶0

)
𝑚 + 𝑘 ∥𝑔∥𝐿𝑞 (𝐵1 (0) ) .

Since ∥𝑔∥𝐿𝑞 (𝐵1 (0) ) ≤ 𝜈
2 max{sup𝐵1 (0) 𝑣, 𝐾}, if we take 𝜈 = (1 + 𝑘

2 )
−1

( 2𝑁 𝜇 |𝐵 1
2
(0) |

𝐶0

)
, we

have:

sup
𝐵 1

4
(0)
𝑣 ≤ (1 − 𝜈) max{ sup

𝐵1 (0)
𝑣, 𝐾}. □

In the rest of the paper we are going to apply this proposition to functions of ∇𝑢 that
are concave in one direction. To do so, we prove the following result:

Lemma 5.4. Let 𝑓̃ ∈ C1 (𝐵1 (0)) and 𝑣 a smooth solution in 𝐵1 (0) of

div(𝐺 (∇𝑣)) = 𝑓̃ . (5.1)

Let 𝜂 be a smooth function in a neighborhood of ∇𝑣(𝐵1 (0)). We assume that

∇𝑣(𝐵1 (0)) ∩ {𝜂 > 0} ⊂ Õ𝑡𝑘 .

Then there exists 𝜆 := 𝜆(𝑘, 𝑁) > 0 such that if in ∇𝑣(𝐵1 (0)) ∩ {𝜂 > 0} the eigenvalues
𝛾1 ≤ 𝛾2 ≤ · · · ≤ 𝛾𝑁 of 𝐷2𝜂 satisfy 𝛾2 > 0 and 0 ≥ 𝛾1 ≥ −𝜆𝛾2 then

𝐿𝑣𝐺 (𝜂+ (∇𝑣)) ≥
(
⟨∇ 𝑓̃ ,∇𝜂(∇𝑣)⟩ − 𝜆𝛾2𝑘

3 𝑓̃ 2
)
1{𝜂 (∇𝑣)>0}

in the weak sense.

Here, 𝜂+ := max{𝜂, 0}.
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Proof. Since 𝑣 is a solution of (5.1) we have that

𝐿𝑣𝐺 (𝜂(∇𝑣)) = div(𝐷𝐺 (∇𝑣)∇[𝜂(∇𝑣)])

=
∑︁
𝑖, 𝑗 ,𝑠,𝑙

𝐷𝑖𝐺 𝑗 (∇𝑣)𝑣 𝑗𝑠𝜂𝑠𝑙 (∇𝑣)𝑣𝑙𝑖 + ⟨∇ 𝑓̃ ,∇𝜂(∇𝑣)⟩.

As in [28, Lemma 3.2], for 𝑥0 ∈ {𝜂(∇𝑣) > 0} we can choose coordinates such that
𝜂𝑠𝑙 (∇𝑣(𝑥0)) = 𝛾𝑠𝛿𝑠𝑙 . Hence,

𝐿𝑣𝐺 (𝜂(∇𝑣)) (𝑥0) =
∑︁
𝑠

𝛾𝑠

∑︁
𝑖, 𝑗

𝐷𝑖𝐺 𝑗 (∇𝑣)𝑣 𝑗𝑠𝑣𝑠𝑖 + ⟨∇ 𝑓̃ ,∇𝜂(∇𝑣)⟩.

Since ∇𝑣(𝐵1 (0)) ∩ {𝜂 > 0} ⊂ Õ𝑡
𝑘

we obtain that

𝐿𝑣𝐺 (𝜂(∇𝑣)) (𝑥0) ≥ 𝛾1𝑘 |∇𝑣1 |2 +
𝑁∑︁
𝑛=2

𝛾𝑛
1
𝑘
|∇𝑣𝑛 |2 + ⟨∇ 𝑓̃ ,∇𝜂(∇𝑣)⟩.

This last inequality combined with the fact that 𝛾1 ≥ −𝜆𝛾2 on {𝜂(∇𝑣) > 0} provides that

𝛾−1
2 𝐿𝑣𝐺 (𝜂(∇𝑣)) (𝑥0) ≥ 𝑘−1

𝑁∑︁
𝑛=2

|∇𝑣𝑛 (𝑥0) |2 − 𝑘𝜆 |∇𝑣1 (𝑥0) |2 + 𝛾−1
2 ⟨∇ 𝑓̃ ,∇𝜂(∇𝑣)⟩.

If 𝐿𝑣
𝐺
(𝜂(∇𝑣)) (𝑥0) < ⟨∇ 𝑓̃ ,∇𝜂(∇𝑣)⟩ − 𝜆𝛾2𝑘

3 𝑓̃ 2 then

𝑘−1
𝑁∑︁
𝑛=2

|∇𝑣𝑛 (𝑥0) |2 − 𝑘𝜆 |∇𝑣1 (𝑥0) |2 < −𝜆𝑘3 𝑓̃ 2.

Since
∑𝑁
𝑛=2 |∇𝑣𝑛 (𝑥0) |2 ≥ 1

2
∑

(𝑖, 𝑗 )≠(1,1) 𝑣
2
𝑖 𝑗
(𝑥0) we have that(

𝜆−1𝑘−2

2
− 1

) ∑︁
(𝑖, 𝑗 )≠(1,1)

𝑣2
𝑖 𝑗 (𝑥0) + 𝑘2 𝑓̃ 2 < 𝑣2

11 (𝑥0). (5.2)

We introduce 𝐷𝑠𝐺 = 𝐷𝐺+𝐷𝐺𝑇

2 . Since Tr(𝐷𝐺𝑠 (∇𝑣)𝐷2𝑣) = Tr(𝐷𝐺 (∇𝑣)𝐷2𝑣) = 𝑓̃ , we
obtain that

𝐷1𝐺
𝑠
1 (∇𝑣)𝑣11 = −

∑︁
(𝑖, 𝑗 )≠(1,1)

𝐷𝑖𝐺
𝑠
𝑗𝑣𝑖 𝑗 + 𝑓̃ .

Thus, since 𝑥0 ∈ {𝜂(∇𝑣) > 0} and {𝜂 > 0} ⊂ Õ𝑡
𝑘

we have

𝑣2
11 (𝑥0) ≤ 𝐶 (𝑁, 𝑘)

∑︁
(𝑖, 𝑗 )≠(1,1)

𝑣2
𝑖 𝑗 (𝑥0) + 𝑘2 𝑓̃ 2.

We get a contradiction with (5.2) when 𝜆 ≤ 𝑘−2

2(𝐶 (𝑁,𝑘 )+1) . □
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5.2. When ∇𝑢 is close to the convex hull of 𝐷𝐺
Let 𝐶𝐺 be the convex hull of 𝐷𝐺 . In this section, we study the behavior of ∇𝑢(𝐵𝛿 (0))
when ∇𝑢(𝐵𝛿 (0)) is close to 𝐶𝐺 . By [14, Proposition 4.3], we have the following result:

Proposition 5.5. We assume that 𝜖 > 0 and that

div(𝐺 (∇𝑣)) = 𝑓̃

in 𝐵1 (0) with 𝑓̃ ∈ 𝐿𝑞 (𝐵1 (0)) and 𝑞 > 𝑁 . We consider 𝑝 such that 𝐵𝜖 (𝑝) ∩ 𝑁 𝑡 (𝐷𝐺) = ∅.
Let 𝑘 ∈ N such that 𝐵𝜖 (𝑝) ⊂ Õ𝑡

𝑘
. Then there exist 𝛿0 > 0 and 𝜇0 > 0 depending on the

modulus of continuity of 𝐷𝐺 in 𝐵𝜖 + 𝑡
2
(𝑝), 𝑘 and 𝜖 such that if ∥𝑣 − 𝑙𝑝 ∥𝐿∞ (𝐵1 (0) ) ≤ 𝛿0 for

some affine function 𝑙𝑝 with ∇𝑙𝑝 = 𝑝 and ∥ 𝑓̃ ∥𝐿𝑞 (𝐵1 (0) ) ≤ 𝛿0𝜇0, then

∇𝑣(𝐵 1
2
(0)) ⊂ 𝐵𝜖 (𝑝).

We can use this result to show that:

Lemma 5.6. For every 𝜖 > 0 there exist 𝛼 := 𝛼(𝜌0, 𝐷𝐺, ∥ 𝑓 ∥𝐿𝑞 (Ω) , 𝐿, 𝑁, 𝜖), 𝜅 :=
𝜅(𝐷𝐺, 𝐿, 𝑁, 𝜖) ≤ 𝜖 and 𝜇1 := 𝜇1 (𝐷𝐺, 𝐿, 𝑁, 𝜖) with 𝐿 the Lipschitz constant of 𝑢 on
𝐵1 (0) such that if

|{∇𝑢 ∈ 𝐵𝜅 (𝑝)} ∩ 𝐵𝑟 (0) |
|𝐵𝑟 (0) |

≥ 1 − 𝜇1

for some 𝑝 ∉ 𝑁 𝑡+𝜖 (𝐷𝐺) and 𝑟 ≤ 𝛼 then

∇𝑢(𝐵 𝑟
2
(0)) ⊂ 𝐵𝜖 (𝑝).

Remark 5.7. When a dependence in 𝐷𝐺 appears in a constant it means that the constant
depends only on the sets of ellipticity Õ𝑡

𝑘
and the modulus of continuity of 𝐷𝐺𝑚 outside

𝑁 𝑡 (𝐷𝐺) with 𝑚 ≥ 2
𝑡

the parameter of regularization. Since all those quantities are
independent of 𝑚 ≥ 2

𝑡
, we can just denote this dependence by 𝐷𝐺.

Proof. For 𝑟 > 0, we introduce 𝑣(𝑥) := 1
𝑟
𝑢(𝑟𝑥) in 𝐵1 (0). Then

div(𝐺 (∇𝑣(𝑥))) = 𝑟 𝑓 (𝑟𝑥)

in 𝐵1 (0). Since 𝑞 > 𝑁 by taking 𝑟 small enough, we can assume that ∥𝑟 𝑓 (𝑟 ·)∥𝐿𝑞 (𝐵1 (0) )
is as small as we want. Hence, there exists 𝛼 := 𝛼(𝜌0, 𝐷𝐺, ∥ 𝑓 ∥𝐿𝑞 (Ω) , 𝐿, 𝑁) > 0 such
that ∥𝑟 𝑓 (𝑟 ·)∥𝐿𝑞 (𝐵1 (0) ) ≤ 𝛿0𝜇0 for every 𝑟 ≤ 𝛼.

We show as in [14, Lemma 4.1] that there exists an affine function 𝑙𝑝 such that
∥𝑣 − 𝑙𝑝 ∥𝐿∞ (𝐵1 (0) ) ≤ 𝛿0. By Morrey’s inequality, there exists a constant 𝐶0 depending
only on 𝑁 such that for every 𝑥 ∈ 𝐵𝑟 (0) and every 𝑤 ∈ 𝑊1,2𝑁 (𝐵1 (0)) we have����𝑤(𝑥) − 1

|𝐵1 (0) |

∫
𝐵1 (0)

𝑤(𝑦)d𝑦
���� ≤ 𝐶0

(
1

|𝐵1 (0) |

∫
𝐵1 (0)

|∇𝑤(𝑦) |2𝑁d𝑦
) 1

2𝑁

.
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We set 𝑙𝑝 (𝑥) := ⟨𝑝, 𝑥⟩ + 1
|𝐵1 (0) |

∫
𝐵1 (0)

𝑣(𝑦)d𝑦. In that case, we obtain

|𝑣(𝑥) − 𝑙𝑝 (𝑥) | ≤ 𝐶0

(
1

|𝐵1 (0) |

∫
𝐵1 (0)

|∇𝑣(𝑦) − 𝑝 |2𝑁d𝑦
) 1

2𝑁

.

We estimate the right-hand side by splitting the integral in two sets. The first one is
𝑋 := {𝑥 ∈ 𝐵1 (0),∇𝑣(𝑥) ∈ 𝐵𝜅 (𝑝)}. A direct computation gives that∫

𝐵1 (0)∩𝑋
|∇𝑣(𝑦) − 𝑝 |2𝑁d𝑦 ≤ 𝜅2𝑁 |𝐵1 (0) |.

Since the complement of 𝑋 has a measure less than 𝜇 |𝐵1 (0) |, we have that∫
𝐵1 (0)\𝑋

|∇𝑣(𝑦) − 𝑝 |2𝑁d𝑦 ≤ 𝜇 |𝐵1 (0) | (2𝐿)2𝑁

with 𝐿 the Lipschitz constant of 𝑢 on 𝐵1 (0). Thus,

|𝑣(𝑥) − 𝑙𝑝 (𝑥) | ≤ 𝐶0 (𝜅2𝑁 + 𝜇(2𝐿)2𝑁 ) 1
2𝑁 .

Hence, it remains to take 𝜅 and 𝜇 small enough such that 𝐶0 (𝜅2𝑁 + 𝜇(2𝐿)2𝑁 ) 1
2𝑁 ≤ 𝛿0 in

order to apply Proposition 5.5 to 𝑣. The conclusion follows for 𝑢. □

In the rest of the section, we write the vectors 𝑧 ∈ R𝑁 in the following way: 𝑧 = (𝑝, 𝑝′)
with 𝑝 ∈ R2 and 𝑝′ ∈ R𝑁−2 and we assume that 𝐷𝐺 ⊂ {𝑝′ = 0}. Now we present the
main result of this subsection, which has the same conclusion as [28, Proposition 3.7].

Proposition 5.8. For every 𝜖 > 0, there exist 𝛽 := 𝛽(∥ 𝑓 ∥𝑊1,𝑞 (Ω) , 𝜅, 𝜇1, 𝑁, 𝐷𝐺, 𝜖) > 0,
𝑠0 := 𝑠0 (𝜅, 𝜇1, 𝐿, 𝐷𝐺, 𝜖) > 0 and 𝜎0 := 𝜎0 (𝜅, 𝜇1, 𝑁, 𝐷𝐺, 𝜖) > 0 with 𝜅 and 𝜇1
from Lemma 5.6 such that if ∇𝑢(𝐵𝑟 (0)) ⊂ {|𝑝′ | < 𝜎0} with 𝑟 ≤ 𝛽, then either
∇𝑢(𝐵𝑠0𝑟 (0)) ⊂ 𝐵𝜖 (𝑝) for some 𝑝 ∉ 𝑁 𝜖 +𝑡 (𝐷𝐺) or ∇𝑢(𝐵𝑠0𝑟 (0)) ⊂ 𝑁 𝜖 +𝑡 (𝐷𝐺).

As in [28], we need the following preliminary lemma:

Lemma 5.9. Let (𝑝0, 0) ∉ 𝑁 𝜖 +𝑡 (𝐷𝐺). There exist 𝜎0 := 𝜎0 (𝜅, 𝜇1, 𝑁, 𝐷𝐺, 𝜖) > 0,
𝛽 := 𝛽(∥ 𝑓 ∥𝑊1,𝑞 (Ω) , 𝜅, 𝜇1, 𝑁, 𝐷𝐺, 𝜖) > 0 and 𝐶0 := 𝐶0 (𝜅, 𝜇1, 𝑁, 𝐷𝐺, 𝜖) > 0 such that if

∇𝑢(𝐵𝑟 (0)) ⊂ {|𝑝′ | < 𝜎0} ∩
{
|𝑝 − 𝑝0 | ≥

𝜅

4

}
and

|{∇𝑢 ∈ 𝐵𝜅 (𝑝0, 0)} ∩ 𝐵 𝑟
2
(0) |

|𝐵 𝑟
2
(0) | < 1 − 𝜇1,

for 𝑟 ≤ 𝛽, then

∇𝑢(𝐵 𝑟
4
(0)) ⊂

{
|𝑝 − 𝑝0 | ≥

𝜅

4
+ 𝐶0

}
.
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Proof. There exists 𝑘 ∈ N such that 𝐵𝜖 (𝑝0, 0) ⊂ Õ𝑡
𝑘
. We follow the proof of [28,

Lemma 3.8]. We set 𝑣(𝑥) = 1
𝑟
𝑢(𝑟𝑥) on 𝐵1 (0) and we replace 𝑓 (𝑥) by 𝑟 𝑓 (𝑟𝑥). We define

𝜂𝐴(𝑝, 𝑝′) := exp
(
𝐴2

2
|𝑝′ |2 − 𝐴|𝑝 |

)
, 𝜂𝐴,𝑝0 := 𝜂𝐴(𝑝 − 𝑝0, 𝑝

′) − exp
(
−𝐴 𝜅

2

)
.

In the basis ( 𝑝
⊥

| 𝑝 | ,
𝑝

| 𝑝 | , 𝑒3, . . . , 𝑒𝑁 ), on the set {|𝑝′ | < 𝐴−3}, we have

(𝐴2𝜂𝐴)−1𝐷2𝜂𝐴 = diag(−(𝐴|𝑝 |)−1, 1, . . . , 1) +𝑂 (𝐴−2)

and {𝜂𝐴 > exp(−𝐴 𝜅2 )} ⊂ {|𝑝 | < 𝜅
2 + 𝐴−5}. Since ∇𝑢(𝐵𝑟 (0)) ⊂ {|𝑝′ | < 𝜎0}, for 𝐴

large enough, depending only on 𝜅, if 𝜎0 < 𝐴−3 then ∇𝑣(𝐵1 (0)) ∩ {𝜂𝐴,𝑝0 > 0} ⊂ 𝐵𝐿 ∩
𝐵𝜅 (𝑝0, 0). Since (𝑝0, 0) ∉ 𝑁 𝜖 +𝑡 (𝐷𝐺) we also have 𝐵𝐿 (0) ∩ 𝐵𝜅 (𝑝0, 0) ⊂ 𝐵𝐿\𝑁 𝑡 (𝐷𝐺).
Hence, we obtain that ∇𝑣(𝐵1 (0)) ∩ {𝜂𝐴,𝑝0 > 0} ⊂ 𝐵𝐿 ∩ 𝐵𝜅 (𝑝0, 0) ⊂ 𝐵𝐿\𝑁 𝑡 (𝐷𝐺).

Once again if 𝐴 is large enough depending only on 𝜆(𝑘, 𝑁) from Lemma 5.4 and
𝜅 then the eigenvalues 𝛾1 ≤ · · · ≤ 𝛾𝑛 of 𝐷2𝜂𝐴,𝑝0 satisfy 𝛾2 > 0 and 𝛾1 > −𝜆𝛾2 in
∇𝑣(𝐵1 (0)) ∩ {𝜂𝐴,𝑝0 > 0}. Thanks to Lemma 5.4, the function 𝑣𝑝0 := (𝜂𝐴,𝑝0 )+ (∇𝑣)
satisfies

𝐿𝐺 (𝑣𝑝0 ) ≥
(
⟨𝑟2∇ 𝑓 (𝑟 ·),∇𝜂𝐴,𝑝0 (∇𝑢(𝑟 ·))⟩ − 𝑟2𝜆𝛾2𝑘

3 𝑓 (𝑟 ·)2)1{𝜂𝐴,𝑝0 (∇𝑣)>0} . (5.3)

Let denote by 𝜈1 the constant 𝜈(𝜇1, 𝑁, 𝑘) from Proposition 5.3. We select 𝜎0 (𝜅, 𝜈1, 𝐴)
small in such a way that

exp
(
−𝐴

(
𝜅

4

)
− exp

(
−𝐴 𝜅

2

)
> (1 − 𝜈1)

(
exp

(
𝐴2

2
𝜎2

0 − 𝐴 𝜅
4

)
− exp

(
−𝐴 𝜅

2

))
.

Then, if we look at the right-hand side of (5.3) there exists a positive constant
𝛽(∥ 𝑓 ∥𝑊1,𝑞 (Ω) , 𝜅, 𝜇1, 𝐿, 𝑁, 𝐷𝐺, 𝜖) such that when 𝑟 ≤ 𝛽, we can apply Proposition 5.3 to
𝑣𝑝0 with 𝐾 = exp( 𝐴2

2 𝜎
2
0 − 𝐴 𝜅4 ) − exp(−𝐴 𝜅2 ). Hence, we have that

∇𝑣(𝐵 1
4
(0)) ⊂

{
𝜂𝐴,𝑝0 < (1 − 𝜈1)

(
exp

(
𝐴2

2
𝜎2

0 − 𝐴 𝜅
4

)
− exp

(
−𝐴 𝜅

2

))}
.

Thus,

∇𝑣(𝐵 1
4
(0)) ⊂

{
exp(−𝐴|𝑝 − 𝑝0 |) − exp

(
−𝐴 𝜅

2

)
< exp

(
−𝐴 𝜅

4

)
− exp

(
−𝐴 𝜅

2

)}
.

Hence, ∇𝑣(𝐵 1
4
(0)) ⊂ {|𝑝 − 𝑝0 | ≥ 𝜅

4 + 𝐶0} for some 𝐶0 := 𝐶0 (𝜅, 𝜇1, 𝑁, 𝐷𝐺, 𝜖) > 0.
The conclusion follows. □

We prove Proposition 5.8:
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Proof of Proposition 5.8. We follow the proof of [28, Proposition 3.7]. We introduce 𝛼,
𝜅 and 𝜇1 from Lemma 5.6 and 𝛽 from Lemma 5.9. Taking 𝑟 ≤ min{𝛼, 𝛽}, we use the
following strategy: if there exist (𝑝0, 0) ∈ 𝐵2𝐿 (0)\𝑁 𝜖 +𝑡 (𝐷𝐺) and 𝑛 ∈ N such that

|{∇𝑢 ∈ 𝐵𝜅 (𝑝0, 0)} ∩ 𝐵2−2𝑛𝑟 |
|𝐵2−2𝑛𝑟 |

≥ 1 − 𝜇1 (5.4)

then we can apply Lemma 5.6 in order to obtain that ∇𝑢(𝐵2−2𝑛−1𝑟 ) ⊂ 𝐵𝜖 (𝑝0, 0) and the
conclusion follows.

If that is not the case, then by Lemma 5.9 we obtain that for every (𝑝0, 0) ∈
𝐵2𝐿 (0)\𝑁 𝜖 +𝑡 (𝐷𝐺) if

∇𝑢(𝐵2−2𝑛+1𝑟 (0)) ⊂
{
|𝑝′ | < 𝜎0} ∩ {|𝑝 − 𝑝0 | ≥

𝜅

4

}
then

∇𝑢(𝐵2−2𝑛−1𝑟 (0)) ⊂
{
|𝑝 − 𝑝0 | ≥

𝜅

4
+ 𝐶0

}
. (5.5)

The idea in [28, Proposition 3.7] is to use a covering argument with neighborhoods of
lines. Unfortunately, we can not cover the set 𝐵2𝐿 (0)\𝑁 𝜖 +𝑡 (𝐷𝐺) with 𝜅

4 neighborhoods
of lines since 𝑁 𝜖 +𝑡 (𝐷𝐺) is not a finite union of small balls.

Instead, since the connected components of 𝑁 𝜖 +𝑡 (𝐷𝐺) are simply connected, we
can consider a finite family of points (𝑥𝑖)𝑖∈𝐼 in (𝐵2𝐿 (0)\𝑁 𝜖 +𝑡 (𝐷𝐺)) ∩ {𝑝′ = 0} with
𝐼 := [1, 𝐼𝐺] ⊂ N such that 𝐵𝜅 (𝑥1) ∩ 𝐵𝐿 (0) = ∅, |𝑥𝑖 − 𝑥𝑖+1 | ≤ 𝐶0 for every 𝑖 ∈ 𝐼\{𝐼𝐺}
with 𝐶0 from Lemma 5.9. Moreover, we assume that (𝐵2𝐿 (0)\𝑁 𝜖 +𝑡 (𝐷𝐺)) ∩ {𝑝′ = 0} ⊂⋃
𝑖∈𝐼 𝐵 𝜅

4
(𝑥𝑖). By definition of 𝐿, 𝐵𝜅 (𝑥1) ∩ ∇𝑢(𝐵𝑟 (0)) = ∅.

Thus, we can initiate the algorithm. By Lemma 5.9 we obtain that

∇𝑢(𝐵2−2𝑟 (0)) ⊂
{
|𝑝 − 𝑥1 | ≥

𝜅

4
+ 𝐶0

}
.

Hence, ∇𝑢(𝐵2−2𝑟 (0)) ⊂ {|𝑞 | < 𝜎0}∩{|𝑝−𝑥2 | ≥ 𝜅
4 }. If (5.4) is satisfied with (𝑝0, 0) = 𝑥2

and 𝑛 = 3 then we can conclude, otherwise ∇𝑢(𝐵2−4𝑟 (0)) ⊂ {|𝑝′ | < 𝜎0}∩ {|𝑝−𝑥3 | ≥ 𝜅
4 }.

The algorithm terminates after at most 𝐼𝐺 steps with two potential conclusions. The first
one is that ∇𝑢(𝐵2−2𝑛0−1𝑟 ) ⊂ 𝐵𝜖 (𝑥𝑛0 ) for a certain 𝑛0 ∈ [1, 𝐼𝐺]. The second one is that
∇𝑢(𝐵2−2𝐼𝐺−1𝑟 ) ⊂ 𝐵2𝐿 (0)\

⋃
𝑖∈𝐼 𝐵 𝜅

4
(𝑥𝑖) which is a subset of 𝑁 𝜖 +𝑡 (𝐷𝐺). □

5.3. Reduction to the convex hull of 𝐷𝐺
In this subsection, we present a result that states that either ∇𝑢𝑚 (𝐵𝑟 (0)) is outside 𝐶𝐺
the convex hull of 𝐷𝐺 or is close to it. By [14, Theorem 1.1] we have the following
proposition:
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Proposition 5.10. For every 𝑠 > 0, there exists 𝛿𝑠 := 𝛿𝑠 (𝐿, 𝐷𝐺, 𝑠) > 0 such that either
∇𝑢𝑚 (𝐵𝛿𝑠 ) ⊂ 𝐵𝑠 (∇𝑢𝑚 (0)) or ∇𝑢𝑚 (𝐵𝛿𝑠 ) ⊂ 𝑁4𝑠 (𝐶𝐺) for every 𝑚 ∈ N.

Proof. By [14, Theorem 1.1], if 𝐻 is a continuous function on R𝑁 such that 𝐻 ≡ 0 on
𝑁𝑠 (𝐶𝐺) then 𝐻 (∇𝑢𝑚) has a modulus of continuity depending on 𝐿 and 𝐷𝐺 that does
not depend on the parameter of regularity 𝑚 ∈ N. We can take 𝐻 ( · ) := dist( · , 𝑁𝑠 (𝐶𝐺)).
In that case if ∇𝑢𝑚 (0) ∈ 𝑁3𝑠 (𝐶𝐺) then there exists 𝛿𝑠 := 𝛿𝑠 (𝑀,𝐺, 𝑟) > 0 such
that ∇𝑢𝑚 (𝐵𝛿𝑠 ) ⊂ 𝑁4𝑠 (𝐶𝐺). If we assume that ∇𝑢𝑚 (0) ∉ 𝑁3𝑠 (𝐶𝐺) then there exists
𝛿′𝑠 := 𝛿′𝑠 (𝑀,𝐺, 𝑠) > 0 such that ∇𝑢𝑚 (𝐵𝛿′𝑠 ) ∩ 𝑁2𝑠 (𝐶𝐺) = ∅. By classical results on
uniform elliptic equation, there exists 𝛿𝑠 := 𝛿𝑠 (𝐿, 𝐺, 𝑠) > 0 such that ∇𝑢𝑚 (𝐵𝛿𝑠 ) ⊂
𝐵𝑠 (∇𝑢(0)). □

5.4. Proof of Proposition 5.1

To finish this section, we reintroduce the subscript 𝑚 ∈ N. We can prove that for every
0 < 𝑡 < 𝜌0

2 , dist(∇𝑢𝑚, 𝑁 𝑡 (𝐷𝐺)) and dist(∇𝑢𝑚, 𝑁 𝑡 (𝐷𝐺))∇𝑢𝑚 are uniformly continuous
in 𝑚 ≥ 2

𝑡
with a similar strategy as in [28].

Proof of Proposition 5.1. We take 𝑥0 ∈ Ω′ and 0 < 𝜖 < 𝑟0, we consider 𝜎0 from
Lemma 5.9. We apply Proposition 5.10 with 𝑠 = 𝜎0

4 . Hence, there exists 𝛿𝑠 > 0 such that
either ∇𝑢𝑚 (𝐵𝛿𝑠 (𝑥0)) ⊂ 𝐵 𝜎0

4
(∇𝑢𝑚 (𝑥0)) or ∇𝑢𝑚 (𝐵𝛿𝑠 (𝑥0)) ⊂ N𝜎0 (𝐶𝐺).

In the first case for every 0 < 𝜖1 <
𝜎0
4 , we can find 𝛿 := 𝛿(𝐿, 𝐷𝐺, 𝜖1) such that

∇𝑢𝑚 (𝐵𝛿 (𝑥0)) ⊂ 𝐵𝜖1 (∇𝑢𝑚 (𝑥0)) thanks to Proposition 5.10.
In the second case, we apply Proposition 5.8 with 𝑟 = min{𝛽, 𝛿𝑠}. Hence, in this case,

we either have ∇𝑢𝑚 (𝐵𝑠0𝑟 (𝑥0)) ⊂ 𝐵𝜖 (𝑝) for some 𝑝 ∉ 𝑁 𝜖 +𝑡 (𝐷𝐺) or ∇𝑢𝑚 (𝐵𝑠0𝑟 (𝑥0)) ⊂
𝑁 𝜖 +𝑡 (𝐷𝐺). Since ∇𝑢𝑚 (𝐵𝑠0𝑟 ) is connected, by definition of 𝜌0 the set ∇𝑢𝑚 (𝐵𝑠0𝑟 ) encoun-
ters at most one connected component 𝐷𝐺 .

Hence, for every 𝜖 > 0 and every 𝑡 > 0 there exists

𝛿𝜖 (𝐿, 𝐷𝐺, 𝑁, 𝜖, 𝑡, ∥ 𝑓 ∥𝑊1,𝑞 (Ω) ) > 0

such that either ∇𝑢𝑚 (𝐵𝛿𝜖 ) ⊂ 𝐵𝜖 (∇𝑢𝑚 (𝑥0)) or ∇𝑢𝑚 (𝐵𝛿𝜖 ) ⊂ 𝑁 𝜖 +𝑡 ((𝐷𝐺)) for every
𝑚 ≥ 2

𝑡
.

Thus, we have that dist(∇𝑢𝑚, 𝑁 𝑡 (𝐷𝐺)) and ∇𝑢𝑚×dist(∇𝑢𝑚, 𝑁 𝑡 (𝐷𝐺)) are continuous
uniformly in 𝑚 ∈ N with 𝑚 ≥ 2

𝑡
. □

6. Main proofs

We assume that 𝐺 satisfies the assumptions of Theorem 1.1, Theorem 1.5 or Theorem 1.7.
Before proving these three theorems, we show the following result:
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Proposition 6.1. If 𝐺 satisfies the assumptions of Theorem 1.1, Theorem 1.5 or Theo-
rem 1.7 then 𝐺 (∇𝑢) does not depend on the choice of the solution 𝑢 of (1.4) when the
Dirichlet boundary condition is fixed.

Proof. Let us assume that 𝑢 and 𝑣 are two solutions of the same equation (1.4) such that
𝑢 = 𝑣 on 𝜕Ω. Then we have:∫

Ω

⟨𝐺 (∇𝑢) − 𝐺 (∇𝑣),∇𝑢 − ∇𝑣⟩ = 0.

Since ⟨𝐺 (𝐴)−𝐺 (𝐵), 𝐴−𝐵⟩ ≥ 0, we get that ⟨𝐺 (∇𝑢(𝑥))−𝐺 (∇𝑣(𝑥)),∇𝑢(𝑥)−∇𝑣(𝑥)⟩ = 0
for a.e. 𝑥 ∈ Ω. The condition (𝐴1) gives that 𝐺 (∇𝑢(𝑥)) = 𝐺 (∇𝑣(𝑥)) for a.e. 𝑥 ∈ Ω. In
the other cases, we use the convexity of 𝜑 to get the same result. □

With this proposition, we just have to show that 𝐺 (∇𝑢) is continuous for 𝑢 the solution
of (1.4) obtained as the limit of (𝑢𝑚)𝑚∈N when 𝑚 → +∞:

Proof of Theorem 1.1, Theorem 1.5 and Theorem 1.7. Thanks to Proposition 3.9, Propo-
sition 3.18 and Proposition 4.9, we have that for every compact Ω′ ⋐ Ω, the family
(𝐺𝑚 (∇𝑢𝑚))𝑚∈N is equicontinuous. Hence, by the Arzelà–Ascoli Theorem, 𝐺𝑚 (∇𝑢𝑚)
converges to 𝑣 uniformly on Ω′, up to a subsequence. Since ∥∇𝑢𝑚∥𝐿∞ (Ω′ ) is bounded
uniformly in 𝑚 ∈ N, we have that |𝐺𝑚 (∇𝑢𝑚) − 𝐺 (∇𝑢𝑚) | → 0 in 𝐿1 (Ω′). Thanks to
Remark 2.9, we get that 𝐺𝑚 (∇𝑢𝑚) converges to 𝐺 (∇𝑢) in 𝐿1 (Ω′). Thus, 𝑣 = 𝐺 (∇𝑢) is
continuous for any solution of (1.4) thanks to Proposition 6.1. □

We are ready to prove Proposition 1.8.

Proof of Proposition 1.8. On the set 𝜎−1 (𝑉) we define 𝐹 (𝑥) as 𝐺−1 (𝜎(𝑥)). Thus, the
function 𝐹 is continuous and 𝐹 = ∇𝑢0 a.e. on 𝜎−1 (𝑉). Hence, ∇𝑢0 has a continuous
representative on 𝜎−1 (𝑉). □

Let us prove Proposition 1.9.

Proof of Proposition 1.9. We know that𝐺 (∇𝑢0) has a continuous representative 𝜎 where
𝐺 = ∇𝜑 with 𝜑 a convex function that depends only on the Euclidean norm | · |.

For every 𝑡 ∈ R, we introduce the super level set 𝐸𝑡 = [𝑢0 > 𝑡]. By the co-area formula
we obtain that for a.e. 𝑡 ∈ R, 𝐷1𝐸𝑡

=
∇𝑢0
|∇𝑢0 |H

𝑁−1 𝜕𝑒𝐸𝑡 where 𝜕𝑒𝐸𝑡 is the support of
the measure 𝐷1𝐸𝑡

. Since 𝜑 is radial 𝜎
|𝜎 | =

∇𝑢0
|∇𝑢0 | a.e. on Ω ∩ [∇𝑢0 ≠ 0]. Thus, by the

co-area formula we get that 𝐷1𝐸𝑡
= 𝜎

|𝜎 |H
𝑁−1 𝜕𝑒𝐸𝑡 for a.e. 𝑡 ∈ R.

Hence, we get

lim
𝑟→0

∫
𝐵𝑟 (𝑥 )

𝐷1𝐸𝑡∫
𝐵𝑟 (𝑥 )

|𝐷1𝐸𝑡
|
=
𝜎(𝑥)
|𝜎(𝑥) |
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for every 𝑥 ∈ 𝜕𝑒𝐸𝑡 ∩ [𝜎 ≠ 0]. By [20, Theorem 4.11] we obtain that the connected
components of 𝜕𝑒𝐸𝑡 ∩ [𝜎 ≠ 0] are C1 curves.

Let 𝑥0 ∈ [𝜎 ≠ 0]. By continuity of 𝜎 this set is open. Hence, there exist 𝑟 > 0 and
𝐶 > 0 such that for every 𝑥 ∈ 𝐵𝑟 (𝑥0) we have that ⟨𝜎(𝑥), 𝑒⟩ ≥ 𝐶 with 𝑒 := 𝜎 (𝑥0 )

|𝜎 (𝑥0 ) | . Since,
𝜎(𝑥) = ∇𝜑(∇𝑢0 (𝑥)) for a.e. 𝑥 ∈ Ω the continuity of ∇𝜑 gives that |∇𝑢0 (𝑥) | ≥ 𝐶 > 0 for
a.e. 𝑥 ∈ 𝐵𝑟 (𝑥0). Since 𝜎

|𝜎 | =
∇𝑢0
|∇𝑢0 | a.e. on Ω∩ [∇𝑢0 ≠ 0], there exists 𝐶′ such that for a.e.

𝑥 ∈ 𝐵𝑟 (𝑥0), ⟨∇𝑢0 (𝑥), 𝑒⟩ ≥ 𝐶′ > 0. By Lipschitz continuity of 𝑢0 for a.e. 𝑥 ∈ 𝐵 𝑟
2
(𝑥0) and

every 0 < 𝑡 < 𝑟
2 we have that

𝑢0 (𝑥 + 𝑡𝑒) − 𝑢0 (𝑥) =
∫ 𝑡

0
⟨∇𝑢0 (𝑥 + 𝑠𝑒), 𝑒⟩d𝑠 ≥ 𝐶′𝑡 > 0.

By continuity of 𝑢0, for every 𝑥 ∈ 𝐵 𝑟
2
(𝑥0) and every 0 < 𝑡 < 𝑟

2 we obtain that
𝑢0 (𝑥 + 𝑡𝑒) − 𝑢0 (𝑥) ≥ 𝐶′𝑡 > 0. Hence, by continuity of 𝑢0, for every 𝜌 > 0 we have that
0 < |𝐵𝜌 (𝑥0) ∩ [𝑢0 > 𝑢0 (𝑥0)] | < 𝐵𝜌 (𝑥0). This means that 𝑥0 ∈ 𝜕𝑒 [𝑢 > 𝑢(𝑥0)].

Finally, let 𝑡 ∈ R such that 𝜕𝑒𝐸𝑡 ∩ [𝜎 ≠ 0] is a C1 curve. By continuity of 𝑢0, for
every 𝑥 ∈ 𝜕𝑒𝐸𝑡 ∩ [𝜎 ≠ 0] we have that 𝑢0 (𝑥) = 𝑡. Moreover, for every 𝑥 ∈ [𝜎 ≠ 0]
such that 𝑢0 (𝑥) = 𝑡 we have that 𝑥 ∈ 𝜕𝑒𝐸𝑡 . Hence, for a.e. 𝑡 ∈ R, [𝑢0 = 𝑡] ∩ [𝜎 ≠ 0] =
𝜕𝑒𝐸𝑡 ∩ [𝜎 ≠ 0]. Hence, the connected components of [𝑢0 = 𝑡] ∩ [𝜎 ≠ 0] are C1 curves
for a.e. 𝑡 ∈ R. □

To prove Theorem 1.10, we use the following proposition instead of Proposition 6.1:

Proposition 6.2. Let us assume that 𝐺 satisfies the assumptions of Theorem 1.10. We
consider two solutions 𝑢 and 𝑣 of (1.4) such that 𝑢 = 𝑣 on 𝜕Ω. Then ∇𝑢(𝑥) = ∇𝑣(𝑥) for
a.e. 𝑥 ∈ Ω such that ∇𝑢(𝑥) ∉ 𝐷𝐺 .

Proof. As in the proof of Proposition 6.1, for a.e. 𝑥 ∈ Ω we have that

⟨𝐺 (∇𝑢(𝑥)) − 𝐺 (∇𝑣(𝑥)),∇𝑢(𝑥) − ∇𝑣(𝑥)⟩ = 0.

If for some 𝑥 ∈ Ω we have that ∇𝑢(𝑥) ∉ 𝐷𝐺 , then there exists 𝑘 ∈ N such that
∇𝑢(𝑥) ∈ O𝑘 := { 1

𝑘
𝐼𝑑 < 𝐷𝐺 < 𝑘𝐼𝑑}. Hence, for every 𝐴 ∈ R𝑁\{∇𝑢(𝑥)}, we have that

⟨𝐺 (𝐴) − 𝐺 (∇𝑣(𝑥)), 𝐴 − ∇𝑣(𝑥)⟩ > 0. Thus, ∇𝑣(𝑥) = ∇𝑢(𝑥) for a.e. 𝑥 ∈ Ω such that
∇𝑢(𝑥) ∉ 𝐷𝐺 . □

Remark 6.3. Thanks to this proposition, dist(∇𝑢, 𝐷𝐺) and ∇𝑢 × dist(∇𝑢, 𝐷𝐺) do not
depend on the choice of a solution of (1.4).

Finally, we prove Theorem 1.10:

Proof of Theorem 1.10. By Remark 2.9 and Remark 2.8, for every Ω′ ⋐ Ω and every
𝑡 > 0 we have:(

dist(∇𝑢𝑚, 𝑁 𝑡 (𝐷𝐺)) − dist(∇𝑢, 𝑁 𝑡 (𝐷𝐺))
)
−→ 0 in 𝐿1 (Ω′)
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and (
∇𝑢𝑚 × dist(∇𝑢𝑚, 𝑁 𝑡 (𝐷𝐺)) − ∇𝑢 × dist(∇𝑢, 𝑁 𝑡 (𝐷𝐺))

)
−→ 0 in 𝐿1 (Ω′)

when 𝑚 → +∞. Thus, thanks to Proposition 5.1, the functions dist(∇𝑢, 𝑁 𝑡 (𝐷𝐺)) and
∇𝑢 × dist(∇𝑢, 𝑁 𝑡 (𝐷𝐺)) have a continuous representative 𝜎𝑡 and Σ𝑡 respectively for every
𝑡 > 0.

We introduce the following open subset of Ω, Ω0 :=
⋃
𝑡>0 [𝜎𝑡 > 0]. Let us consider

𝑥0 ∈ Ω0. Then there exist 𝑡 > 0 and 𝜖 > 0 such that 𝜎𝑡 (𝑥0) > 𝜖 . By continuity of 𝜎𝑡 ,
there exists a neighborhood 𝑈 of 𝑥0 such that 𝜎𝑡 ≥ 𝜖

2 on 𝑈. The continuity of Σ𝑡 on
𝑈 and the fact that 𝜎𝑡 ≥ 𝜖

2 on 𝑈 give that ∇𝑢 has a continuous representative on 𝑈.
Hence, dist(∇𝑢, 𝐷𝐺) has a continuous representative on𝑈. Thus, ∇𝑢 and dist(∇𝑢, 𝐷𝐺)
have continuous representatives 𝐹0 and 𝜎0 respectively on Ω0. Let us extend 𝜎0 by 0 on
Ω\Ω0. We claim that this function 𝜎 is continuous and coincides a.e. with dist(∇𝑢, 𝐷𝐺).
To prove the continuity, we assume that there exists 𝑥 ∈ Ω\Ω0 and (𝑥𝑛)𝑛∈N in Ω0 a
sequence converging to 𝑥 such that (𝜎(𝑥𝑛))𝑛∈N does not converge to 0. This means
that we can extract a subsequence from (𝜎(𝑥𝑛))𝑛∈N, still denoted (𝜎(𝑥𝑛))𝑛∈N such that
𝜎(𝑥𝑛) ≥ 𝑙 > 0 when 𝑛 is large enough. Thus, 𝜎 𝑙

2
(𝑥𝑛) ≥ 𝑙

2 for every 𝑛 large enough. By
continuity of 𝜎 𝑙

4
, we obtain that 𝑥 ∈ Ω0 which is a contradiction. Hence, 𝜎 is continuous.

Moreover, for a.e. 𝑥 ∈ Ω0, 𝜎(𝑥) := dist(∇𝑢(𝑥), 𝐷𝐺) and for a.e 𝑥 ∈ Ω such that 𝜎(𝑥) = 0
we have that 𝑥 ∈ 𝐷𝐺 . Thus, 𝜎 is a representative of dist(∇𝑢, 𝐷𝐺) and 𝐹0 × 𝜎 is a
continuous representative of ∇𝑢 × dist(∇𝑢, 𝐷𝐺).

To conclude, we assume that 𝐺 is constant on each connected components of 𝐷𝐺 . By
Remark 2.8, there exists a subsequence of (∇𝑢𝑚)𝑚∈N still denoted (∇𝑢𝑚)𝑚∈N such that
∇𝑢𝑚 → ∇𝑢 a.e. on Ω0 when 𝑚 → +∞.

Let us assume that (𝑥𝑛)𝑛∈N is a sequence in Ω0 converging to 𝑥0 ∈ Ω\Ω0 when
𝑛→ +∞. By Proposition 5.1, there exists 𝑟 > 0 such that for every𝑚 ∈ N,∇𝑢𝑚 (𝐵𝑟 (𝑥0)) ⊂
𝑁3𝜌0 (𝐷𝑚𝐺) with 𝐷𝑚

𝐺
a connected component of 𝐷𝐺 . By convergence a.e. on Ω0 of ∇𝑢𝑚,

we have that 𝐷𝑚
𝐺

is independent of 𝑚 for 𝑚 large enough. Let us call 𝐷0
𝐺

this connected
component, by continuity of dist(∇𝑢, 𝐷𝐺) we obtain that dist(∇𝑢(𝑥𝑛), 𝐷0

𝐺
) → 0 when

𝑛→ +∞. Since 𝐺 is continuous on R𝑁 and constant on 𝐷0
𝐺

, we have that 𝐺 (∇𝑢(𝑥𝑛)) →
𝐺 (∇𝑢(𝑥0)) when 𝑛→ +∞. □

Appendix A. Regularity of the gauge function

This section is dedicated to the convex gauge, or Minkowski functional. Most of the results
presented here are classical, and the reader can find parts of the proofs in [24, Section 13]
for instance. Let 𝐶 be a bounded convex set of R𝑁 such that its interior contains 0. We
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define the gauge associated to 𝐶 as the following function:

𝛾𝐶 (𝑧) := inf
{
𝑡 > 0 such that

𝑧

𝑡
∈ 𝐶

}
.

We have the following result about the regularity of 𝛾𝐶 :

Proposition A.1. Let 𝑘 ∈ N and 0 ≤ 𝛼 ≤ 1. If 𝐶 is a strictly convex bounded set of R𝑁

of regularity 𝐶𝑘,𝛼 such that its interior contains the origin, then the gauge 𝛾𝐶 associated
to 𝐶 is in C𝑘,𝛼loc (R𝑁\{0}).

Proof. The function 𝛾𝐶 is convex on R𝑁 . For every 𝑧 ∈ R𝑁 we compute the convex
subdifferential 𝜕𝛾𝐶 (𝑧) of 𝛾𝐶 at the point 𝑧. By definition of the subdifferential we have

𝜕𝛾𝐶 (𝑧) := {𝑦 ∈ R𝑁 such that 𝛾𝐶 (𝑧′) ≥ 𝛾𝐶 (𝑧) + ⟨𝑦, 𝑧′ − 𝑧⟩ for every 𝑧′ ∈ R𝑁 }.

By homogeneity of 𝛾𝐶 , for every 𝑦 ∈ 𝜕𝛾𝐶 (𝑧) we get that 𝛾𝐶 (𝑧′) ≥ ⟨𝑦, 𝑧′⟩ for every
𝑧′ ∈ R𝑁 . By taking 𝑧′ = 0 we get that 𝛾𝐶 (𝑧) ≤ ⟨𝑦, 𝑧⟩. Hence, we have that 𝛾𝐶 (𝑧) = ⟨𝑦, 𝑧⟩
for every 𝑦 ∈ 𝜕𝛾𝐶 (𝑧). Thus, for every 𝑧 ∈ R𝑁 , we obtain that

𝜕𝛾𝐶 (𝑧) =
{
𝑦 ∈ R𝑁 such that 𝛾𝐶 (𝑧) = ⟨𝑦, 𝑧⟩ and 𝛾𝐶 (𝑧′) ≥ ⟨𝑦, 𝑧′⟩ for every 𝑧′ ∈ R𝑁

}
.

(A.1)
This convex set is not empty since 𝛾𝐶 is a convex continuous function. We claim that
when 𝑧 ≠ 0, 𝜕𝛾𝐶 (𝑧) is reduced to a singleton. In fact, if there exist 𝑦1 and 𝑦2 two
different points of 𝜕𝛾𝐶 (𝑧) then ⟨𝑦1, 𝑧⟩ = ⟨𝑦2, 𝑧⟩ = 𝛾𝐶 (𝑧) and ⟨𝑦1, 𝑧

′⟩ ≤ 1, ⟨𝑦2, 𝑧
′⟩ ≤ 1

for every 𝑧′ ∈ 𝜕𝐶. Hence, 𝐶 is on one side of the hyperplane ⟨𝜉, 𝑦1⟩ = 1, on one
side of another hyperplane ⟨𝜉, 𝑦2⟩ = 1 and 𝑧

𝛾𝐶 (𝑧) ∈ 𝜕𝐶 is in their intersection. This
contradicts the fact that 𝐶 is at least C1. Thus, for every 𝑧 ≠ 0, 𝜕𝛾𝐶 (𝑧) contains only
one vector. Hence, 𝛾𝐶 is differentiable at every 𝑧 ≠ 0. By homogeneity of 𝛾𝐶 we have
that ∇𝛾𝐶 (𝑧) is positively colinear to 𝜈𝐶 (𝑃𝐶 (𝑧)) where 𝜈𝐶 is the unit outward normal
vector to 𝐶 and 𝑃𝐶 (𝑧) := 𝑧

𝛾𝐶 (𝑧) . By (A.1) we have that ⟨𝑧,∇𝛾𝐶 (𝑧)⟩ = 𝛾𝐶 (𝑧). Hence,
|∇𝛾𝐶 (𝑧) |⟨𝑧, 𝜈𝐶 (𝑃𝐶 (𝑧))⟩ = 𝛾𝐶 (𝑧) for every 𝑧 ≠ 0. Again by homogeneity of 𝛾𝐶 , for every
𝑧 ≠ 0 we obtain that

∇𝛾𝐶 (𝑧) =
𝜈𝐶 (𝑃𝐶 (𝑧))

⟨𝜈𝐶 (𝑃𝐶 (𝑧)), 𝑃𝐶 (𝑧)⟩
. (A.2)

This scalar product in the denominator is not 0 because 𝐶 contains a small ball centered
at 0, thus for every 𝑧′ ∈ 𝜕𝐶 the normal vector 𝜈𝐶 (𝑧′) cannot be orthogonal to 𝑧′.

With this expression of the gradient of 𝛾𝐶 we can find the regularity of 𝛾𝐶 . In fact, we
know that 𝜈𝐶 is C𝑘−1,𝛼 continuous with 𝑘 ≥ 1. Since 𝛾𝐶 is Lipschitz continuous, the
map 𝑃𝐶 is locally Lipschitz continuous on R𝑁\{0}. Hence, ∇𝛾𝐶 is C0,𝛼

loc continuous on
R𝑁\{0}. Thus, 𝑃𝐶 is C1,𝛼

loc continuous on R𝑁\{0}. By a bootstrap argument, we get that
𝛾𝐶 is C𝑘,𝛼loc on R𝑁\{0}. □
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We also prove a convexity result for the lower level sets of the convolution product
of 𝛾𝐶 :

Proposition A.2. Let 𝐶 be a strictly convex bounded set of R𝑁 such that its interior
contains 0. If (𝜌𝑚)𝑚∈N is a standard mollifying sequence, then the lower level sets of
𝛾𝑚
𝐶

:= 𝛾𝐶 ∗ 𝜌𝑚 are strictly convex for every 𝑚 ∈ N.

Proof. Let us consider 𝑧1 ≠ 𝑧2 on the boundary of a lower level set of 𝛾𝑚
𝐶

. By continuity
of 𝛾𝑚

𝐶
, 𝛾𝑚
𝐶
(𝑧1) = 𝛾𝑚𝐶 (𝑧2) =: 𝑠. Then for every 0 < 𝑡 < 1 we have:

𝛾𝑚𝐶 (𝑡𝑧1 + (1 − 𝑡)𝑧2) =
∫
𝐵 1

𝑚
(0)
𝛾𝐶 (𝑡 (𝑧1 − 𝑦) + (1 − 𝑡) (𝑧2 − 𝑦))𝜌𝑚 (𝑦)𝑑𝑦.

By convexity of 𝛾𝐶 , we have

𝛾𝐶 (𝑡 (𝑧1 − 𝑦) + (1 − 𝑡) (𝑧2 − 𝑦)) ≤ 𝛾𝐶 (𝑧1 − 𝑦) + (1 − 𝑡)𝛾𝐶 (𝑧2 − 𝑦). (A.3)

If 𝛾𝐶 (𝑧1 − 𝑦) = 𝛾𝐶 (𝑧2 − 𝑦) by strict convexity of 𝐶 we get that

𝛾𝐶 (𝑡 (𝑧1 − 𝑦) + (1 − 𝑡) (𝑧2 − 𝑦)) < 𝑡𝛾𝐶 (𝑧1 − 𝑦) + (1 − 𝑡)𝛾𝐶 (𝑧2 − 𝑦).

Hence, if we have equality in (A.3) this means that 𝑧1 − 𝑦 and 𝑧2 − 𝑦 are colinear. Since
𝑧1 ≠ 𝑧2, for a.e. 𝑦 ∈ 𝐵 1

𝑚
(0) 𝑧1−𝑦 and 𝑧2−𝑦 are not colinear. Thus, 𝛾𝑚

𝐶
(𝑡 (𝑧1)+(1−𝑡) (𝑧2)) <

𝑡𝛾𝑚
𝐶
(𝑧1) + (1 − 𝑡)𝛾𝑚

𝐶
(𝑧2). This provides the strict convexity of the lower level sets of 𝛾𝑚

𝐶

for every 𝑚 ∈ N. □

We prove that the approximations of a C1,1 strictly convex set through convolutions of
𝛾𝐶 are also C1,1 with a uniform norm.

Proposition A.3. Let 𝐶 be a C1,1 strictly convex bounded set of R𝑁 such that its interior
contains 0. We consider 𝛾𝑚

𝐶
:= 𝛾𝐶 ∗ 𝜌𝑚 with (𝜌𝑚)𝑚∈N a standard mollifying sequence

and 𝑟𝑚 → 1 when 𝑚 → +∞ such that 𝐶𝑚 := (𝛾𝑚
𝐶
)−1 ({[0, 𝑟𝑚)}) is a smooth convex set

containing 0. Then 𝐶𝑚 is a C1,1 strictly convex set of R𝑁 and the Lipschitz constant of its
outward normal vector can be bounded uniformly in 𝑚 ∈ N.

Proof. By Proposition A.2 the set 𝐶𝑚 is strictly convex. Since (𝑟𝑚)𝑚∈N converges
to 1 and (𝛾𝑚

𝐶
)𝑚∈N converges uniformly to 𝛾𝐶 on R𝑁 when 𝑚 → +∞ we have that

lim𝑚→+∞ dist(𝜕𝐶𝑚, 𝜕𝐶) = 0. Thanks to this last result and the fact that 0 is in the interior
of 𝐶 we can find 𝑟 > 0 such that 𝐵𝑟 (0) is in 𝐶𝑚 for every 𝑚 large enough. Since 𝐶𝑚 is a
level set of 𝛾𝑚

𝐶
for every 𝑧 ∈ 𝜕𝐶𝑚 we have that 𝜈𝐶𝑚

(𝑧) = ∇𝛾𝑚
𝐶
(𝑧)

|∇𝛾𝑚
𝐶
(𝑧) | . By Proposition A.1

and (A.2) the function ∇𝛾𝑚
𝐶

:= ∇𝛾𝐶 ∗ 𝜌𝑚 is uniformly Lipschitz continuous on R𝑁\𝐵𝑟 (0).
Moreover, there exists 𝜅 > 0 such that |∇𝛾𝑚

𝐶
(𝑧) | ≥ 𝜅 for every 𝑚 ∈ N large enough

according to 𝑟 > 0 and 𝐶.
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Hence, 𝜈𝐶𝑚
is Lipschitz continuous for every 𝑚 ∈ N with a Lipschitz constant

independent of 𝑚 ∈ N. □
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