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Almost bi-Lipschitz embeddings and proper subsets of a Banach
space - An extension of a Theorem by M.I. Ostrovskii

François Netillard

Abstract

Let 𝑋 and𝑌 be two infinite-dimensional Banach spaces. If 𝑋 is crudely finitely representable in every
finite-codimensional subspace of 𝑌 , then any proper subset of 𝑋 almost bi-Lipschitz embeds into 𝑌 , in a
sense quite close to that of F. Baudier and G. Lancien (see [1] and [2]). This is an extension of a result
proved by M.I. Ostrovskii for locally finite subsets [9].

1. Introduction

In order to follow this work, here are some essential definitions to know:

Definition 1.1. Let 𝑋 and 𝑌 be two infinite-dimensional Banach spaces, and 𝐶 > 1.
We say that 𝑋 is 𝐶-crudely finitely representable in 𝑌 (in short 𝐶-c.f.r) if for any

finite-dimensional subspace 𝐸 of 𝑋 , there is a linear isomorphism from 𝐸 to the space
𝑇 (𝐸) ⊂ 𝑌 verifying ∥𝑇 ∥ · ∥𝑇−1∥ < 𝐶.

When the value of 𝐶 does not matter, we will simply say that 𝑋 is crudely finitely
representable in 𝑌 (in short c.f.r).

Definition 1.2. We say that 𝑋 is finitely representable in𝑌 if, for all 𝜀 > 0, 𝑋 is (1+𝜀)-c.f.r
in 𝑌 for all 𝜀 > 0.

Note that the concept of finite representability is due to R.C. James ([6] and [7]).

Definition 1.3. Let 𝑋 and 𝑌 be two infinite-dimensional Banach spaces. We say that 𝑋 is
c.f.r in the finite-codimensional subspaces of 𝑌 if there exists a constant 𝐶 > 1 such that,
for all 𝑍 ∈ cof (𝑌 ), 𝑋 is 𝐶-c.f.r in 𝑍 .

Remark 1.4. Note that in the above definition, the constant 𝐶 is uniform on all finite-
codimensional subspaces. By Proposition 4.1 of [4], c.f.r in 𝑌 does not imply c.f.r in the
finite-codimensional subspaces of 𝑌 .

An important question in nonlinear Banach space theory is: if a Banach space 𝑋 is
crudely finitely representable in a Banach space 𝑌 , what are the similarities between
subsets of 𝑋 and subsets of 𝑌?

Keywords: Almost bi-Lipschitz, Banach space, embeddings, crudely finitely representable.
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The nonlinear maps that we will use to study these similarities here are embeddings. It
should be noted that embeddings of discrete metric spaces into Banach spaces recently
became an important tool in computer science and topology. A familiar class in nonlinear
Banach space theory is constituted by the bi-Lipschitz embeddings which are metric
isomorphisms between the domain space and the range.

It is known that, in such cases a Banach space 𝑋 which is crudely finitely representable
in another Banach space, 𝑌 does not have to admit a bi-Lipschitz embedding into 𝑌 even
if 𝑋 is separable. For example, 𝐿𝑝 [0, 1] is finitely representable in ℓ𝑝 (see, for instance,
Theorem 6.2 and its proof from [3]) but does not admit a bi-Lipschitz embedding into ℓ𝑝 ,
where 1 ≤ 𝑝 < ∞, 𝑝 ≠ 2 (this last statement is a consequence of Theorem 1.3 from [5]).
On the other hand, M.I. Ostrovskii [9] proved that each locally finite subset of 𝑋 (that is
subset metric spaces of 𝑋 in which each ball of finite radius has finite cardinality) whose
finite subsets admit uniformly bi-Lipschitz embeddings admits a bi-Lipschitz embedding
into 𝑌 .

Our interest is in “thicker” subsets, and more precisely in proper subsets of 𝑋 , i.e.
metric subspaces of 𝑋 whose closed balls are compact. For them, we cannot expect to
get bi-Lipschitz embeddings due to a technical net argument which requires separation
parameters, inspired by the work of F. Baudier and G. Lancien [2]. Along these lines
then the condition of almost bi-Lipschitz embeddability (introduced in [2]) happens to be
useful. The definition given here will be slightly different from that of [2] but, in both
cases, the notion of almost bi-Lipschitz embeddability expresses the fact that one can
construct an embedding that is as close as one wishes to a bi-Lipschitz embedding.

Two theorems (from [2] and [9]) lie in the background of our main result.
First of all, we recall the theorem of M.I. Ostrovskii, already mentioned above [9] (see

also [10]).

Theorem 1.5. Let 𝐴 be a locally finite metric space whose finite subsets admit uniformly
bi-Lipschitz embeddings into a Banach space 𝑋 . Then 𝐴 admits a bi-Lipschitz embedding
into 𝑋 .

This theorem is quite close to the following result [2], where the notion of crude finite
representability shows up.

Theorem 1.6. Let 𝑋 and 𝑌 be two Banach spaces such that 𝑋 is crudely finitely
representable in 𝑌 . Let 𝐴 ⊂ 𝑋 such that 𝐴 is locally finite. Then 𝐴 admits a bi-Lipschitz
embedding into 𝑌 .

Theorem 1.6 yields to the conjecture that any proper subset of a Banach space 𝑋
almost bi-Lipschitz embeds into another Banach space 𝑌 as soon as 𝑋 is crudely finitely
representable in 𝑌 . This motivated our work (which is an improvement of Theorem 4.2.3
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from [8]). In connection with it, F. Baudier et G. Lancien proved in [2], among other
results, that, for 𝑝 ∈ [1, +∞] and𝑌 a Banach space which contains uniformly the ℓ𝑛𝑝 spaces,
every proper subset 𝑀 of 𝐿𝑝 almost bi-Lipschitzly embeds into 𝑌 . Baudier–Lancien’s
proof of this theorem provides a pattern for the proof of Theorem 1.8 below, which is the
main result of this paper.

For this Theorem, we give the following definition of an almost bi-Lipschitz embedding:

Definition 1.7. Let (𝑀, 𝑑) and (𝑁, 𝛿) be two metric spaces. 𝑀 is almost bi-Lipschitz
embeddable into 𝑁 if for any 𝐴 ∈ (0,∞), there exist a scaling factor 𝑟 ∈ (0,∞) and
a constant 𝐷 ∈ [1,∞) such that for any continuous function 𝜑 : [0,∞) → [0, 1) with
𝜑(0) = 0 and 𝜑(𝑡) > 0 ∀ 𝑡 > 0, there exists a map 𝑓𝜑 : 𝑀 → 𝑁 such that:

∀ 𝑥, 𝑦 ∈ 𝑀, 𝜑(𝑑 (𝑥, 𝑦))𝑟𝑑 (𝑥, 𝑦) ≤ 𝛿( 𝑓𝜑 (𝑥), 𝑓𝜑 (𝑦)) ≤ 𝐷𝑟𝑑 (𝑥, 𝑦) + 𝐴.

Theorem 1.8. Let 𝑋 and 𝑌 be two Banach spaces. Assume that 𝑋 is crudely finitely
representable in the finite-codimensional subspaces of 𝑌 . Let 𝑀 be a proper subset of 𝑋 .
Then 𝑀 almost bi-Lipschitz embeds into 𝑌 .

2. Banach spaces containing the ℓ𝑛𝑝’s uniformly

The definitions below are classical items from the local theory of Banach spaces.

Definition 2.1. Let 𝜆 ∈ [1,∞) and 𝑝 ∈ [1,∞]. We say that a Banach space contains
𝜆-uniformly the ℓ𝑛𝑝’s if there exists a sequence of subspaces (𝐸𝑛)∞𝑛=1 of 𝑋 such that dim
𝐸𝑛 = 𝑛 and

𝑑𝐵𝑀 (𝐸𝑛, ℓ
𝑛
𝑝) ≤ 𝜆,

where 𝑑𝐵𝑀 is the Banach–Mazur distance between Banach spaces.

Definition 2.2. Let 𝑝 ∈ [1,∞]. We say that 𝑋 contains the ℓ𝑛𝑝’s uniformly if it contains
𝜆-uniformly the ℓ𝑛𝑝’s for some value 𝜆 ∈ [1,∞).

3. Main results

The following lemma is shown in [2].

Lemma 3.1. For any continuous function 𝜑 : [0, +∞) → [0, 1) such that 𝜑(0) = 0
and 𝜑(𝑡) > 0 for all 𝑡 > 0, there exists a continuous non-decreasing surjective function
𝜇 : (0, +∞) → (−∞, 0), so that 𝜑(𝑡) ≤ 2𝜇 (𝑡 ) for all 𝑡 > 0.
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We will need the next lemma, inspired by Lemma 2.6 from [2], to establish Theorem 1.8.
For this lemma and what follows, 𝑑𝐵𝑀 denotes the Banach–Mazur distance, FDD is an
abbreviation for finite-dimensional decomposition, and Span is a notation for linear span.

Lemma 3.2. Let 𝑋 and 𝑌 be two Banach spaces. We assume that 𝑋 is f.c.r in the
finite-codimensional subspaces of 𝑌 . Let 𝛾 > 0, (𝐹𝑗 )∞𝑗=1 be a family of finite dimensional
subspaces of 𝑋 . Then there exists a family (𝐻 𝑗 )∞𝑗=1 of finite dimensional subspaces of 𝑌
such that, for all 𝑗 , 𝑑𝐵𝑀 (𝐻 𝑗 , 𝐹𝑗 ) ≤ 𝐶 and (𝐻 𝑗 )∞𝑗=1 is an FDD of 𝑍 = Span(⋃∞

𝑗=1 𝐻 𝑗 ) ⊆ 𝑌
with ∥𝑃 𝑗 ∥ ≤ 1 + 𝛾 where 𝑃 𝑗 is the projection of 𝑍 onto 𝐻1 ⊕ · · · ⊕ 𝐻 𝑗 whose kernel is
Span(⋃∞

𝑖= 𝑗+1 𝐻𝑖).

Proof. Pick a sequence (𝛾 𝑗 )∞𝑗=1 with 𝛾 𝑗 > 0 and
∏∞

𝑗=1 (1 + 𝛾 𝑗 ) ≤ 1 + 𝛾. We proceed
by induction on 𝑗 ∈ N. Since 𝑋 is 𝐶-crudely finitely representable in 𝑌 , there exists a
finite-dimensional subspace 𝐻1 of 𝑌 so that 𝑑𝐵𝑀 (𝐻1, 𝐹1) ≤ 𝐶. Using the standard Mazur
technique, we can find a finite-codimensional subspace 𝑍 of 𝑌 so that

𝐻1 + 𝑍1 = 𝐻1 ⊕ 𝑍1,

and a projection 𝑃1 : 𝐻1 ⊕ 𝑍1 → 𝐻1 whose kernel is 𝑍1 and which satisfies

∥𝑃1∥ ≤ 1 + 𝛾1.

Assume now that, for some integer 𝑗 ∈ N, there exists 𝐻1, . . . , 𝐻 𝑗 so that

𝑑𝐵𝑀 (𝐻𝑖 , 𝐹𝑖) ≤ 𝐶 for any 𝑖 ∈ {1, . . . , 𝑗},
𝐻1 + · · · + 𝐻 𝑗 = 𝐻1 ⊕ · · · ⊕ 𝐻 𝑗 ,

and (𝐻1 + · · · + 𝐻 𝑗 ) + 𝑍 𝑗 = (𝐻1 + · · · + 𝐻 𝑗 ) ⊕ 𝑍 𝑗 ,

with 𝑃 𝑗 : (𝐻1 + · · · + 𝐻 𝑗 ) ⊕ 𝑍 𝑗 → 𝐻1 + · · · + 𝐻 𝑗 a projection whose kernel is 𝑍 𝑗 and
which satisfies

∥𝑃 𝑗 ∥ ≤
𝑗∏

𝑖=1
(1 + 𝛾𝑖).

Then, using the standard Mazur technique, we can find a subspace 𝑍 𝑗+1 of 𝑍 𝑗 which is a
finite-codimensional subspace of 𝑌 , and

∀ 𝑦 ∈ 𝐻1 + · · · + 𝐻 𝑗 ∀ 𝑧 ∈ 𝑍 𝑗+1, ∥𝑦∥ ≤ (1 + 𝛾 𝑗+1)∥𝑦 + 𝑧∥.

Since 𝑋 is 𝐶-crudely finitely representable in 𝑍 𝑗 , there exists a finite-codimensional
subspace 𝐻 𝑗+1 of 𝑍 𝑗+1 so that 𝑑𝐵𝑀 (𝐻 𝑗+1, 𝐹𝑗+1) ≤ 𝐶.

It is then immediate to conclude that the sequence (𝐻 𝑗 )∞𝑗=1 satisfies the desired
property. □

We can now prove our main result, Theorem 1.8.
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Proof. Let 𝐴 ∈ (0,∞). We adapt the proof of the Theorem 2.7 of [2]. Let 𝐵𝑘 = {𝑥 ∈
𝑀, ∥𝑥∥ ≤ 2𝑘+1} for 𝑘 ∈ Z. Since 𝑀 is a proper subset of 𝑋 , 𝐵𝑘 is a compact subset of 𝑋 .
Let 𝐺𝑘,𝑛 be a 𝜀𝑘,𝑛-net of 𝐵𝑘 containing 0 (we will specify 𝜀𝑘,𝑛 later), where 𝑛 ∈ N. Let
𝜑𝑘,𝑛 be a map from 𝐵𝑘 to 𝐺𝑘,𝑛 such that

∀ 𝑥 ∈ 𝐵𝑘 , ∥𝑥 − 𝜑𝑘,𝑛 (𝑥)∥ = 𝑑 (𝑥, 𝐺𝑘,𝑛).

Thereby:

∀ 𝑥, 𝑦 ∈ 𝐵𝑘 , ∥𝑥 − 𝑦∥ − 2𝜀𝑘,𝑛 ≤ ∥𝜑𝑘,𝑛 (𝑥) − 𝜑𝑘,𝑛 (𝑦)∥ ≤ ∥𝑥 − 𝑦∥ + 2𝜀𝑘,𝑛.

By the previous lemma, we can construct a family of finite dimensional subspaces (𝐻 𝑗 )∞𝑗=1
of 𝑌 and linear isomorphisms 𝑅𝑘, 𝑗 : Span(𝐺𝑘, 𝑗 ) → 𝐻 𝑗 such that ∥𝑅𝑘, 𝑗 ∥ ≤ 1 and
∥𝑅−1

𝑘, 𝑗
∥ ≤ 𝐶, with (𝐻 𝑗 )∞𝑗=1 FDD of 𝑍 = Span(⋃∞

𝑗=1 𝐻 𝑗 ).
Let 𝛾 > 0. We will specify later the choice of 𝛾. We denote 𝑃𝑛 the projection of 𝑍 on

𝐻1 ⊕ · · · ⊕ 𝐻𝑛, and using the previous lemma, we can assume that ∥𝑃𝑛∥ ≤ 1 + 𝛾 for any
𝑛 ∈ N. We put, for 𝑛 ∈ N, 𝑓𝑘,𝑛 = 𝑅𝑘,𝑛 ◦ 𝜑𝑘,𝑛. So:

∀ 𝑥, 𝑦 ∈ 𝐵𝑘 ,
1
𝐶
(∥𝑥 − 𝑦∥ − 2𝜀𝑘,𝑛) ≤ ∥ 𝑓𝑘,𝑛 (𝑥) − 𝑓𝑘,𝑛 (𝑦)∥ ≤ ∥𝑥 − 𝑦∥ + 2𝜀𝑘,𝑛.

We define:

𝑓𝑘 : 𝐵𝑘 −→
∑︁
𝑛≥1

𝐻𝑛

𝑥 ↦−→
∞∑︁
𝑛=1

2−𝑛 𝑓𝑘,𝑛 (𝑥)

Let 𝜇 : (0, +∞) → (−∞, 0) be an increasing surjective continuous function, and
𝜎 : (−∞, 0) → (0, +∞) the function defined by 𝜎(𝑦) = inf{𝑥 ∈ (0, +∞) : 𝜇(𝑥) ≥ 𝑦}.

There exists 𝐵 ∈ [1,∞) such that 1
𝐵
≤ 𝐴.

We put 𝜀𝑘,𝑛 = 1
2𝐵 min(2−𝑘 , 2𝑘) × min

(
𝜎 (−𝑛)

𝜂
, 1

)
where 𝜂 > 2 will be determined

later. So:




 ∞∑︁
𝑛=1

2−𝑛 ( 𝑓𝑘,𝑛 (𝑥) − 𝑓𝑘,𝑛 (𝑦))







≤
( ∞∑︁
𝑛=1

2−𝑛

)
∥𝑥 − 𝑦∥ + 1

𝐵
min(2−𝑘 , 2𝑘)

∞∑︁
𝑛=1

[
2−𝑛 min

(
𝜎(−𝑛)
𝜂

, 1
)]

≤ ∥𝑥 − 𝑦∥ + 1
𝐵

min(2−𝑘 , 2𝑘).

Thus: ∥ 𝑓𝑘 (𝑥) − 𝑓𝑘 (𝑦)∥ ≤ ∥𝑥 − 𝑦∥ + 1
𝐵

min(2−𝑘 , 2𝑘).
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We define:

𝑓 : 𝑀 −→ 𝑌

𝑥 ↦−→ 𝜆𝑥 𝑓𝑘 (𝑥) + (1 − 𝜆𝑥) 𝑓𝑘+1 (𝑥),

if 2𝑘 ≤ ∥𝑥∥ ≤ 2𝑘+1 where 𝑘 ∈ Z, with 𝜆𝑥 =
2𝑘+1−∥𝑥 ∥

2𝑘 .

The rest of the proof will be divided into two parts.
In the first part, we estimate ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ from above. The proof requires the

inequality obtained for 𝑓𝑘 , the definition of 𝑓 in terms of the dyadic slicing and the
triangle inequality.

In the second part, an estimate of the compression function of 𝑓 is given.

Part 1. Upper bound. Let 𝑥, 𝑦 ∈ 𝑀 . Assume that ∥𝑥∥ ≤ ∥𝑦∥. Note that 𝑓 (0) = 0.

Case 1: ∥𝑥∥ ≤ 1
2 ∥𝑦∥ and 2𝑘 ≤ ∥𝑦∥ < 2𝑘+1, where 𝑘 ∈ Z.

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≤ ∥ 𝑓 (𝑥) − 𝑓 (0)∥ + ∥ 𝑓 (𝑦) − 𝑓 (0)∥

≤ ∥𝑥∥ + ∥𝑦∥ + 2 · 2𝑘+1

≤ 3
2
∥𝑦∥ + 4∥𝑦∥

≤ 11(∥𝑦∥ − ∥𝑥∥)
≤ 11∥𝑥 − 𝑦∥.

Case 2: 1
2 ∥𝑦∥ < ∥𝑥∥ ≤ ∥𝑦∥. We consider two sub-cases.

Case 2a: 2𝑘 ≤ ∥𝑥∥ ≤ ∥𝑦∥ < 2𝑘+1, where 𝑘 ∈ Z.

For 𝜆𝑥 =
2𝑘+1−∥𝑥 ∥

2𝑘 and 𝜆𝑦 =
2𝑘+1−∥𝑦 ∥

2𝑘 , we have |𝜆𝑥 − 𝜆𝑦 | = ∥𝑦 ∥−∥𝑥 ∥
2𝑘 ≤ ∥𝑥−𝑦 ∥

2𝑘 . Therefore

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥
= ∥𝜆𝑥 𝑓𝑘 (𝑥) − 𝜆𝑦 𝑓𝑘 (𝑦) + (1 − 𝜆𝑥) 𝑓𝑘+1 (𝑥) − (1 − 𝜆𝑦) 𝑓𝑘+1 (𝑦)∥

≤ 𝜆𝑥 ∥ 𝑓𝑘 (𝑥) − 𝑓𝑘 (𝑦)∥ + (1 − 𝜆𝑥)∥ 𝑓𝑘+1 (𝑥) − 𝑓𝑘+1 (𝑦)∥ + 2|𝜆𝑥 − 𝜆𝑦 | (∥𝑦∥ + 2𝑘+1)

≤ 𝜆𝑥
(
∥𝑥 − 𝑦∥ + 1

𝐵

)
+ (1 − 𝜆𝑥)

(
∥𝑥 − 𝑦∥ + 1

𝐵

)
+ (2𝑘+2 + 2𝑘+2) ∥𝑥 − 𝑦∥

2𝑘

≤ 9∥𝑥 − 𝑦∥ + 1
𝐵

≤ 9∥𝑥 − 𝑦∥ + 𝐴.
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Case 2b: 2𝑘 ≤ ∥𝑥∥ < 2𝑘+1 ≤ ∥𝑦∥ < 2𝑘+2, where 𝑘 ∈ Z.

Let 𝜆𝑥 =
2𝑘+1−∥𝑥 ∥

2𝑘 and 𝜆𝑦 =
2𝑘+2−∥𝑦 ∥

2𝑘+1 . We have 𝜆𝑥 ≤ ∥𝑥−𝑦 ∥
2𝑘 , and so 𝜆𝑥 ∥𝑥∥ ≤ 2∥𝑥 − 𝑦∥. In

the same way: 1 − 𝜆𝑦 =
∥𝑦 ∥−2𝑘+1

2𝑘+1 ≤ ∥𝑥−𝑦 ∥
2𝑘+1 , and (1 − 𝜆𝑦)∥𝑦∥ ≤ 2∥𝑥 − 𝑦∥. It follows that:

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥
= ∥𝜆𝑥 𝑓𝑘 (𝑥) + (1 − 𝜆𝑥) 𝑓𝑘+1 (𝑥) − 𝜆𝑦 𝑓𝑘+1 (𝑦) − (1 − 𝜆𝑦) 𝑓𝑘+2 (𝑦)∥
≤ 𝜆𝑥 (∥ 𝑓𝑘 (𝑥)∥ + ∥ 𝑓𝑘+1 (𝑥)∥) + (1 − 𝜆𝑦) (∥ 𝑓𝑘+1 (𝑦)∥ + ∥ 𝑓𝑘+2 (𝑦)∥) + ∥ 𝑓𝑘+1 (𝑥) − 𝑓𝑘+1 (𝑦)∥

≤ 𝜆𝑥 (2∥𝑥∥ + 2𝑘+2) + (1 − 𝜆𝑦) (2∥𝑦∥ + 2𝑘+3) + ∥𝑥 − 𝑦∥ + 1
𝐵

min(2−(𝑘+1) , 2𝑘+1)

≤ 6𝜆𝑥 ∥𝑥∥ + 6(1 − 𝜆𝑦)∥𝑦∥ + ∥𝑥 − 𝑦∥ + 1
𝐵

≤ 12∥𝑥 − 𝑦∥ + 12∥𝑥 − 𝑦∥ + ∥𝑥 − 𝑦∥ + 1
𝐵

≤ 25∥𝑥 − 𝑦∥ + 𝐴.

Part 2. Lower bound. Let 𝑥, 𝑦 ∈ 𝑀. Assume that ∥𝑥∥ ≤ ∥𝑦∥. We put, for 𝑘 ∈ Z and
𝑛 ∈ N, 𝑄𝑘,𝑛 = 𝑅−1

𝑘,𝑛
◦ Π𝑛, where Π1 = 𝑃1, and Π𝑛 = 𝑃𝑛 − 𝑃𝑛−1 when 𝑛 ≥ 2. For the

sequel, we also assume that 2𝑘 ≤ ∥𝑥∥ < 2𝑘+1 and 2𝑙 ≤ ∥𝑦∥ < 2𝑙+1, where (𝑘, 𝑙) ∈ Z2.
Assume first that ∥𝑥 − 𝑦∥ < 𝜎(−1).
Let then 𝑛 ∈ N such

𝜎(−(𝑛 + 1)) ≤ ∥𝑥 − 𝑦∥ < 𝜎(−𝑛),

in other words
−(𝑛 + 1) ≤ 𝜇(∥𝑥 − 𝑦∥) < −𝑛.

Then:

𝑄𝑘,𝑛+1 ( 𝑓 (𝑥)) = 2−(𝑛+1)𝜆𝑥𝜑𝑘,𝑛+1 (𝑥),

𝑄𝑘+1,𝑛+1 ( 𝑓 (𝑥)) = 2−(𝑛+1) (1 − 𝜆𝑥)𝜑𝑘+1,𝑛+1 (𝑥),

𝑄𝑙,𝑛+1 ( 𝑓 (𝑦)) = 2−(𝑛+1)𝜆𝑦𝜑𝑙,𝑛+1 (𝑦),

𝑄𝑙+1,𝑛+1 ( 𝑓 (𝑦)) = 2−(𝑛+1) (1 − 𝜆𝑦)𝜑𝑙+1,𝑛+1 (𝑦),
and 𝑄𝑟 ,𝑛+1 ( 𝑓 (𝑥)) = 𝑄𝑠,𝑛+1 ( 𝑓 (𝑦)) = 0 for 𝑟 ∉ {𝑘, 𝑘 + 1}, 𝑠 ∉ {𝑙, 𝑙 + 1}.

Therefore:

(𝑄𝑟1 ,𝑛+1 + · · · +𝑄𝑟𝑠 ,𝑛+1) ( 𝑓 (𝑥) − 𝑓 (𝑦))

= 2−(𝑛+1) [𝜆𝑥𝜑𝑘,𝑛+1 (𝑥) + (1 − 𝜆𝑥)𝜑𝑘+1,𝑛+1 (𝑥) − 𝜆𝑦𝜑𝑙,𝑛+1 (𝑦) − (1 − 𝜆𝑦)𝜑𝑙+1,𝑛+1 (𝑦)]

with 𝑠 ∈ {2, 3, 4} and 𝑟1, · · · , 𝑟𝑠 ∈ {𝑘, 𝑘 + 1, 𝑙, 𝑙 + 1}.
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We will now use the following inequality:

max
𝑟∈{𝑘,𝑘+1,𝑙,𝑙+1}

∥𝜑𝑟 ,𝑛+1 (𝑥) − 𝑥∥ ≤ 𝜎(−(𝑛 + 1))
𝜂

.

This allows us to get:

∥(𝑄𝑟1 ,𝑛+1 + · · · +𝑄𝑟𝑠 ,𝑛+1) ( 𝑓 (𝑥) − 𝑓 (𝑦))∥ ≥ 2−(𝑛+1)
(
∥𝑥 − 𝑦∥ − 2𝜎(−(𝑛 + 1))

𝜂

)
≥ 2−(𝑛+1) 𝜂 − 2

𝜂
∥𝑥 − 𝑦∥.

As ∥𝑄𝑟1 ,𝑛+1 + · · · +𝑄𝑟𝑠 ,𝑛+1∥ ≤ 8𝐶 (1 + 𝛾), we deduce

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≥ 2−(𝑛+1) (𝜂 − 2)∥𝑥 − 𝑦∥
8𝜂𝐶 (1 + 𝛾) ≥ 2𝜇 ( ∥𝑥−𝑦 ∥ ) (𝜂 − 2)∥𝑥 − 𝑦∥

16𝜂𝐶 (1 + 𝛾) .

Assume now that ∥𝑥 − 𝑦∥ ≥ 𝜎(−1) or equivalently that −1 ≤ 𝜇(∥𝑥 − 𝑦∥).
So, using the maps 𝑄𝑘,1, 𝑄𝑘+1,1, 𝑄𝑙,1 and 𝑄𝑙+1,1 instead of 𝑄𝑘,𝑛+1, 𝑄𝑘+1,𝑛+1, 𝑄𝑙,𝑛+1,

and 𝑄𝑙+1,𝑛+1, we obtain that

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≥ (𝜂 − 2)∥𝑥 − 𝑦∥
16𝜂𝐶 (1 + 𝛾) .

Since 𝜇 ≤ 0, it follows that

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≥ 2𝜇 ( ∥𝑥−𝑦 ∥ ) (𝜂 − 2)∥𝑥 − 𝑦∥
16𝜂𝐶 (1 + 𝛾) .

Since 𝛾 can be chosen as small and 𝜂 as large as desired, thanks to Lemma 3.1, this
concludes our proof. □

Corollary 3.3. Let 𝑋 and 𝑌 be two Banach spaces.
If 𝑋 is c.f.r in the finite-codimensional subspaces of 𝑌 , then for any 𝑍 ∈ cof (𝑌 ), for

any proper subset 𝑀 of 𝑋 , 𝑀 almost bi-Lipschitz embeds into 𝑍 .

Remark 3.4. Corollary 2.8 from [2] is a special case of this last result. This corollary
says that, for 𝑀 a proper subset of 𝐿𝑝 (𝑝 ∈ [1,∞]), and 𝑋 a Banach space containing
uniformly the ℓ𝑛𝑝’s, 𝑀 almost bi-Lipschitz embeds into 𝑋 . Indeed, the following assertions
are equivalent, for an infinite-dimensional Banach space 𝑋 and 𝑝 ∈ [1,∞]:

(i) 𝑋 contains the ℓ𝑛𝑝’s uniformly.

(ii) 𝐿𝑝 is finitely representable in 𝑋 .

(iii) 𝐿𝑝 is c.f.r in the finite-codimensional subspaces of 𝑋 .

A proof is given in [8].
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Definition 3.5. A Banach space 𝑋 is said to be locally minimal if there exists a constant
𝐾 > 1 such that 𝑋 is 𝐾-c.f.r in each of its infinite-dimensional subspaces.

Examples 3.6. 𝑐0, ℓ𝑝 for 1 ≤ 𝑝 < ∞, and the Tsirelson space 𝑇∗ are such spaces.

With this last definition, the following corollary is an obvious consequence of Theo-
rem 1.8:

Corollary 3.7. Let 𝑋 and 𝑌 be two Banach spaces such that 𝑌 is locally minimal, and 𝑋
is finitely representable in 𝑌 . Let 𝑀 be a proper subset of 𝑋 . Then 𝑀 almost bi-Lipschitz
embeds into 𝑌 .
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