Quartic points on the Fermat quintic

Alain Kraus

Abstract

We study the algebraic points of degree 4 over \(\mathbb{Q} \) on the Fermat curve \(F_5 / \mathbb{Q} \) of equation \(x^5 + y^5 + z^5 = 0 \). A geometrical description of these points has been given in 1997 by Klassen and Tzermias. Using their result, as well as Bruin’s work about diophantine equations of signature \((5, 5, 2)\), we give here an algebraic description of these points. In particular, we prove there is only one Galois extension of \(\mathbb{Q} \) of degree 4 that arises as the field of definition of a non-trivial point of \(F_5 \).

Points quartiques sur la quintique de Fermat

Résumé

Nous étudions les points algébriques de degré 4 sur \(\mathbb{Q} \) de la courbe de Fermat \(F_5 / \mathbb{Q} \) d’équation \(x^5 + y^5 + z^5 = 0 \). Klassen et Tzermias ont donné en 1997 une description géométrique de ces points. En utilisant leur résultat et le travail de Bruin portant sur les équations diophantiennes de signature \((5, 5, 2)\), nous donnons une description algébrique de ces points. Nous prouvons en particulier qu’il existe une unique extension galoisienne de \(\mathbb{Q} \) de degré 4 qui apparaît comme le corps de définition d’un point non trivial de \(F_5 \).

1. Introduction

Let us denote by \(F_5 \) the quintic Fermat curve over \(\mathbb{Q} \) given by the equation

\[
x^5 + y^5 + z^5 = 0.
\]

Let \(P \) be a point in \(F_5(\overline{\mathbb{Q}}) \). The degree of \(P \) is the degree of its field of definition over \(\mathbb{Q} \). Write \(P = (x, y, z) \) for the projective coordinates of \(P \). It is said to be non-trivial if \(xyz \neq 0 \). Let \(\zeta \) be a primitive cubic root of unity and

\[
\begin{align*}
 a &= (0, -1, 1), \\
 b &= (-1, 0, 1), \\
 c &= (-1, 1, 0) \\
 w &= (\zeta, \zeta^2, 1), \\
 \overline{w} &= (\zeta^2, \zeta, 1).
\end{align*}
\]

It is well known that \(F_5(\mathbb{Q}) = \{a, b, c\} \). In 1978, Gross and Rohrlich have proved that the only quadratic points of \(F_5 \) are \(w \) and \(\overline{w} \) [2, Theorem 5.1]. In 1997, by proving that the group of \(\mathbb{Q} \)-rational points of the Jacobian of \(F_5 \) is isomorphic to \((\mathbb{Z}/5\mathbb{Z})^2\), and by expliciting generators, Klassen and Tzermias have described geometrically all the points of \(F_5 \) whose degrees are less than 6 in [4, Theorem 1]. I mention that Top and Sall have...
A. Kraus

pushed further this description for points of F_5 of degrees less than 12 in [5]. In particular, Klassen and Tzermias have proved that F_5 has no cubic points and they have established the following statement:

Theorem 1.1. The points of degree 4 of F_5 arise as the intersection of F_5 with a rational line passing through exactly one of points a, b, c.

Using this result, and Bruin’s work about the diophantine equations $16x^5 + y^5 = z^2$ and $4x^5 + y^5 = z^2$ [1, 3], we propose in this paper to give an algebraic description of the non-trivial quartic points of F_5.

2. **Statement of the results**

Let K be a number field of degree 4 over \mathbb{Q}.

Theorem 2.1. Suppose that $F_5(K)$ has a non-trivial point of degree 4. One of the following conditions is satisfied:

1. the Galois closure of K is a dihedral extension of \mathbb{Q} of degree 8.

2. One has

$$K = \mathbb{Q}(\alpha) \quad \text{with} \quad 31\alpha^4 - 36\alpha^3 + 26\alpha^2 - 36\alpha + 31 = 0.$$

(2.1)

The extension K/\mathbb{Q} is cyclic. Up to Galois conjugation and permutation, $(2, 2\alpha, -\alpha - 1)$ is the only non-trivial point in $F_5(K)$.

As a direct consequence of [2, Theorem 5.1] and the previous Theorem, we obtain:

Corollary 2.2. Suppose that K does not satisfy one of the two conditions above. The set of non-trivial points of $F_5(K)$ is contained in $\{w, \bar{w}\}$.

All that follows is devoted to the proof of Theorem 2.1.

3. **Preliminary results**

Let $P = (x, y, z) \in F_5(K)$ be a non-trivial point of degree 4. By permuting x, y, z if necessary, we can suppose that P belongs to a \mathbb{Q}-rational line L passing through $a = (0, -1, 1)$ (Theorem 1.1). Moreover, P being non-trivial we shall assume

$$z = 1.$$

(3.1)
Lemma 3.1. One has $K = \mathbb{Q}(y)$. There exists $t \in \mathbb{Q}$, $t \neq -1$, such that
\begin{align*}
y^4 + uy^3 + (u + 2)y^2 + uy + 1 &= 0 \quad \text{with} \quad u = \frac{4t^5 - 1}{t^5 + 1}, \\
x &= t(y + 1).
\end{align*}

Proof. The equation of the tangent line to F_3 at the point a is $Y + Z = 0$. Since $x \neq 0$, it is distinct from L. According to (3.1), it follows there exists $t \in \mathbb{Q}$ such that
\begin{align*}
x &= t(y + 1).
\end{align*}

In particular, one has $K = \mathbb{Q}(y)$. Furthermore, one has
\begin{align*}
t \neq -1. \quad (3.4)
\end{align*}

Indeed, if $t = -1$, the equalities $x + y + 1 = 0$ and $x^5 + y^5 + 1 = 0$ imply
\begin{align*}
x(x + 1)(x^2 + x + 1) &= 0.
\end{align*}

Since P is non-trivial, one has $x(x + 1) \neq 0$, so $x^2 + x + 1 = 0$. This leads to $P = w$ or $P = \overline{w}$, which contradicts the fact that P is not a quadratic point, and proves (3.4).

From the equalities (3.3) and $x^5 + y^5 + 1 = 0$, as well as the condition $y \neq -1$, we then deduce the Lemma. \qed

Let G be the Galois group of the Galois closure of K over \mathbb{Q}. Let us denote by $|G|$ the order of G.

Lemma 3.2.

1. One has $|G| \in \{4, 8\}$.

2. Suppose that $|G| = 4$. One of the two following conditions is satisfied:
\begin{align*}
5(16t^5 + 1) &= \text{a square in } \mathbb{Q}. \\
1 - 4t^5)(16t^5 + 1) &= \text{a square in } \mathbb{Q}.
\end{align*}

Proof. Let us denote
\begin{align*}
f &= X^4 + uX^3 + (u + 2)X^2 + uX + 1
\end{align*}
in $\mathbb{Q}[X]$. One has $f(y) = 0$ (Lemma 3.1). Let $\varepsilon \in \overline{\mathbb{Q}}$ such that
\begin{align*}
\varepsilon^2 &= u^2 - 4u.
\end{align*}

The element $y + \frac{1}{\varepsilon}$ is a root of the polynomial $X^2 + uX + u$. So we have the inclusion
\begin{align*}
\mathbb{Q}(\varepsilon) \subseteq K.
\end{align*}
Moreover, we have the equality
\[f = \left(X^2 + \frac{u - \varepsilon}{2} X + 1 \right) \left(X^2 + \frac{u + \varepsilon}{2} X + 1 \right). \tag{3.8} \]
Since \(K = \mathbb{Q}(y) \) and \([K: \mathbb{Q}] = 4\), we have
\[[\mathbb{Q}(\varepsilon): \mathbb{Q}] = 2. \tag{3.9} \]
From (3.8), we deduce that the roots of \(f \) belong to at most two quadratic extensions of \(\mathbb{Q}(\varepsilon) \). The equality (3.9) then implies \(|G| \leq 8\). Since 4 divides \(|G|\), this proves the first assertion.

Henceforth let us suppose \(|G| = 4\), i.e. the extension \(K/\mathbb{Q} \) is Galois. Let \(\Delta \) be the discriminant of \(f \). One has the equalities
\[\Delta = -u^2(u - 4)^3(3u + 4) = 5^3 \frac{(4t^5 - 1)^2(16t^5 + 1)}{(t^5 + 1)^6}. \tag{3.10} \]
Let us prove that
\[\Delta \text{ is a square in } \mathbb{Q}(\varepsilon). \tag{3.11} \]
From (3.8) and our assumption, the roots of the polynomials
\[X^2 + \frac{u - \varepsilon}{2} X + 1 \quad \text{and} \quad X^2 + \frac{u + \varepsilon}{2} X + 1 \]
belong to \(K \), which is a quadratic extension of \(\mathbb{Q}(\varepsilon) \) ((3.7) and (3.9)). Therefore, the product of their discriminants
\[\left(\left(\frac{u - \varepsilon}{2} \right)^2 - 4 \right) \left(\left(\frac{u + \varepsilon}{2} \right)^2 - 4 \right) \quad \text{i.e.} \quad -(u - 4)(3u + 4) \]
must be a square in \(\mathbb{Q}(\varepsilon) \). The first equality of (3.10) then implies (3.11).

Suppose that the condition (3.5) is not satisfied. From the second equality of (3.10), we deduce that \(\Delta \) is not a square in \(\mathbb{Q} \). It follows from (3.11) that we have
\[\mathbb{Q} \left(\sqrt{\Delta} \right) = \mathbb{Q}(\varepsilon). \]
Therefore, \(\Delta(u^2 - 4u) \) is a square in \(\mathbb{Q} \), in other words, such is the case for \(-u(3u + 4)\). One has the equality
\[-u(3u + 4) = \frac{(1 - 4t^5)(16t^5 + 1)}{(t^5 + 1)^2}. \]
This implies the condition (3.6) and proves the Lemma. \(\square \)
4. The curve C_1/\mathbb{Q}

Let us denote by C_1/\mathbb{Q} the curve, of genus 2, given by the equation

$$Y^2 = 5(16X^5 + 1).$$

Proposition 4.1. The set $C_1(\mathbb{Q})$ is empty.

Proof. Suppose there exists a point $(X, Y) \in C_1(\mathbb{Q})$. Let $Z = \frac{Y}{5}$. We obtain

$$5Z^2 = 16X^5 + 1. \quad (4.1)$$

Let a and b be coprime integers, with $b \in \mathbb{N}$, such that

$$X = \frac{a}{b}. \quad (4.2)$$

Let us prove there exists $c \in \mathbb{N}$ such that

$$b = 5c^2. \quad (4.3)$$

For every prime number p, let v_p be the p-adic valuation over \mathbb{Q}. If p is a prime number dividing b, distinct from 2, 5, one has

$$2v_p(Z) = -5v_p(b),$$

consequently

$$v_p(b) \equiv 0 \mod 2. \quad (4.4)$$

Moreover, one has $v_2(X) < 0$ (5 is not a square modulo 8), so

$$4 - 5v_2(b) = 2v_2(Z).$$

In particular, one has

$$v_2(b) \equiv 0 \mod 2. \quad (4.5)$$

Let us verify the congruence

$$v_5(b) \equiv 1 \mod 2. \quad (4.6)$$

One has $v_5(X) \leq 0$. Suppose $v_5(X) = 0$. In this case, one has $X^5 \equiv \pm 1, \pm 7 \mod 25$.

The equality (4.1) implies $X^5 \equiv -1 \mod 25$ and $Z^2 \equiv 2 \mod 5$, which leads to a contradiction. Therefore, we have $1 + 2v_5(Z) = -5v_5(b)$, which proves (4.5).

The conditions (4.3), (4.4) and (4.5) then imply (4.2).

We deduce from (4.1) and (4.2) the equality

$$16a^5 + b^5 = d^2 \quad \text{with} \quad d = 5^3c^5Z.$$

One has $ab \neq 0$. From the informations given in the Appendix of [3], this implies

$$(a, b, d) = (-1, 2, \pm 4).$$

We obtain $X = -1/2$, which is not the abscissa of a point of $C_1(\mathbb{Q})$, hence the result. \qed
5. The curve \(C_2/Q \)

Let us denote by \(C_2/Q \) the curve, of genus 4, given by the equation
\[
Y^2 = (1 - 4X^5)(16X^5 + 1).
\]

Proposition 5.1. One has
\[
C_2(Q) = \{(0, \pm 1), (-1/2, \pm 3/4)\}.
\]

Proof. Let \((X, Y)\) be a point of \(C_2(Q) \). Let \(a \) and \(b \) be coprime integers such that
\[
X = \frac{a}{b}.
\]
We obtain the equality
\[
(Yb^5)^2 = (b^5 - 4a^5)(16a^5 + b^5). \quad (5.1)
\]
Therefore, \((b^5 - 4a^5)(16a^5 + b^5)\) is the square of an integer. Moreover, \(b^5 - 4a^5\) and \(16a^5 + b^5\) are coprime apart from 2 and 5. So, changing \((a, b)\) by \((-a, -b)\) if necessary, there exists \(d \in \mathbb{N}\) such that
\[
b^5 - 4a^5 \in \{d^2, 2d^2, 5d^2, 10d^2\}.
\]
Suppose \(b^5 - 4a^5 \in \{2d^2, 10d^2\}\). In this case, \(b\) must be even, therefore \(v_2(2d^2) = 2\), which is not.

Suppose \(b^5 - 4a^5 = d^2\). One has \(b \neq 0\). It then comes from [3] that
\[
a = 0 \quad \text{or} \quad (a, b, d) = (-1, 2, \pm 6).
\]
We obtain \(X = 0\) or \(X = -1/2\), which leads to the announced points in the statement.

Suppose \(b^5 - 4a^5 = 5d^2\). It follows from (5.1) that there exists \(c \in \mathbb{N}\) such that
\[
16a^5 + b^5 = 5c^2.
\]
Since \(a\) and \(b\) are coprime, 5 does not divide \(ab\). We then directly verify that the two equalities \(b^5 - 4a^5 = 5d^2\) and \(16a^5 + b^5 = 5c^2\) do not have simultaneously any solutions modulo 25, hence the result. \(\Box\)

6. End of the proof of Theorem 2.1

The group \(G\) is isomorphic to a subgroup of the symmetric group \(S_4\) and one has \(|G| = 4\) or \(|G| = 8\) (Lemma 3.2). In case \(|G| = 8\), \(G\) is isomorphic to a 2-Sylow subgroup of \(S_4\), that is dihedral.

Suppose \(|G| = 4\) and let us prove the assertion 2 of the Theorem.

First, we directly verify that the extension \(K/Q\) defined by the condition (2.1) is cyclic of degree 4, and that the point \((2, 2\alpha, -\alpha - 1)\) belongs to \(F_5(K)\).
Conversely, from the Proposition 4.1, the condition (3.5) of the Lemma 3.2 is not satisfied. The condition (3.6) and the Proposition 5.1 imply that $t = 0$ or $t = -1/2$. The case $t = 0$ is excluded because P is non-trivial. With the condition (3.2), we obtain

$$u = -\frac{36}{31}.$$

Thus, necessarily y is a root of the polynomial $31X^4 - 36X^3 + 26X^2 - 36X + 31$, in other words y is a conjugate over \mathbb{Q} of α. The equality (3.3),

$$x = -\frac{y + 1}{2}$$

then implies the result.

References

