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Tomasz Szarek

Abstract

We extend the so-called lower-bound technique for equicontinuous families
of Markov operators by introducing the new concept of uniform equicontinuity
on balls. Combined with a semi-concentrating condition, it yields a new abstract
mathematical result on existence and uniqueness of invariant measures for Markov
operators. It allows us to show the tightness of the set of invariant measures for
some classes of Markov operators. This, in turn, gives a useful tool for proving a
continuous dependence on given parameters for semi–concentrating Markov semi-
groups. In the second part we formulate an abstract modelling framework that
defines a piecewise deterministic Markov process whose transition operator at the
times of intervention yields a semi-concentrating Markov operator that is uniformly
equicontinuous on balls. We show that this framework applies to a detailed stochas-
tic model for an autoregulated gene in a bacterium that takes random transcription
delay into account.

1. Introduction

The paper is concerned with Markov operators. Its main aim is to show
the utility of the so–called lower bound technique in studying iterates of
transformations with some random disturbance. The lower bound tech-
nique was established by Doeblin in [11]. He proved mixing for Markov
chains with transition functions absolutely continuous with respect to
some fixed measure. Lasota and Yorke used similar technique for proving
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the existence of a unique invariant distribution absolutely continuous with
respect to Lebesgue measure for Frobenius–Perron operators correspond-
ing to piecewise monotonic transformations [24]. Next they also extended
the technique to Markov operators acting on arbitrary Borel measures
what allowed them to study operators appearing in the theory of frac-
tal and semi-fractal sets [25]. Recently it was shown that the technique
may be used in verifying the ergodic properties of solutions of infinitely
dimensional stochastic differential equations [21]. In this paper we study
Markov operators corresponding to iterated function systems with some
disturbance. We are going to show that under some natural conditions
on the unperturbed system its disturbance will possess a unique ergodic
measure. Additionally, we prove that the invariant measure will converge,
as disturbance decreases to zero, to a unique invariant measure of the
original iterated function system. It is worth mentioning here that the
non-disturbed system is a type of system appearing for instance in [23]
as the model of the cell cycle. Its stability allowed the authors to support
their conjecture showing that cell division may serve to confer stability
on intracellular biochemical mechanisms that might be unstable in the
absence of cell division. This proves its importance in biomathematics.

In the second part of our paper we will show that the system under
consideration may be adapted as a model for the stochastic dynamics
of an autoregulated gene in a bacterium. Since the model is described
by Markov semigroups acting on some space of functions we must have
developed techniques valid in general spaces which are neither compact
nor locally compact. To do this we had to provide some extension of the
lower bound technique to general Polish spaces.

There is a vast literature on mathematical models for gene regulatory
networks, e.g. deterministic, in terms of systems of ordinary differential
equations (ODEs) ranging from a single gene network, starting with [18],
to a large number of interacting genes in a realistic network, such as
the phosphorelay and sporulation network in Bacillus subtilis [8]. How-
ever, researchers realised already early in time the intrinsic stochastic na-
ture of the processes. So a huge family of mathematical models has been
developed that incorporate stochasticity to study the consequences (see
e.g. [1, 22, 27, 26, 40, 41] and further references found there). Some of these
add random effects as perturbation to a deterministic system, in various
ways. These models take into account the (random) time needed by the
RNAp for completion of the mRNA transcript, bursting in the translation
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of mRNA into the gene product and/or variation in molecule degrada-
tion. However, only few consider the system under general assumptions
on functional forms for differential equations or probability distributions
(e.g. [26], to some extent).

Mackey et al. [26] also considered models incorporating bursting and
arrived at existence of a unique steady state distribution, though under
assumption of time scale separation in the deterministic part of their model
and a particular (state-dependent) type of distribution for the arrival time
of the next burst.

Stochasticity in the process of transcription and translation has effects
on the dynamics of the network and the associated molecular distribution
as compared to a deterministic system (e.g. [41]). Various researchers have
dealt for example with investigating the occurence of bimodal distribu-
tions for the molecular compounds in these systems [26, 29]. Understand-
ing these effects has become important for the explanation of observed
biological phenomena that occur at population level. A growing and di-
viding genetically homogeneous population of bacteria may develop for
example into a phenotypically heterogeneous population of cells [1, 14].
Random fluctuations in environment, internal chemical composition and
the regulatory system are identified as underlying cause [32].

Sections 2–4 provide the derivations of the main mathematical theorems
(Theorems 3.3, 4.5 and 4.9) on which the application to a stochastic model
for an autoregulated gene in Section 5 is based. Theorem 4.9 shows that
the invariant distribution in our setting converges to that obtained through
the approach in [23] when randomness in the number of produced proteins
vanishes.

Section 2 introduces basic notation and fundamental concepts on
Markov operators that are needed in Section 3 to obtain existence of an
invariant measure (Theorem 3.3) and separation of supports for different
invariant measures (Proposition 3.5) that will lead to uniqueness (The-
orem 4.5). Section 4 provides a general abstract model of a piecewise
deterministic Markov process that possesses a unique invariant measure.

In Section 5.1 we provide the necessary biochemical background that
is incorporated in our stochastic model for an autoregulated gene that is
mathematically formulated in Section 5.2. Section 5.3 derives conditions
under which the gene model fits into the abstract model framework of
Section 4. Finally, in Section 5.5 we discuss values for some of the model
parameters as they can be found in literature.
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2. Basic notions

Let X be a closed subset of some separable Banach space (H, ‖ · ‖). We
denote by B(x, r) the open ball in X with center at x and radius r, by
B(X) the σ-algebra of Borel subsets of X, by M = M(X) the family of
all finite Borel measures on X, and by Ms the space of all finite signed
Borel measures on X. According to Jordan’s decomposition theorem any
measure µ ∈Ms may be uniquely written as µ+−µ−, where µ+, µ− ∈M.
Using this decomposition we define the total variation norm

‖µ‖TV = µ+(X) + µ−(X).

We shall write M1 = M1(X) for the family of all µ ∈ M such that
µ(X) = 1. The elements ofM1 are called distributions. If A ∈ B(X), then
byMA

1 we denote the set of all measures µ ∈M1 such that µ(X \A) = 0.
We denote by suppµ for µ ∈M the support of µ, i.e.,

suppµ = {x ∈ X : µ(B(x, r)) > 0 for any r > 0}.

As usual, B(X) denotes the space of all bounded Borel measurable
functions f : X → R and C(X) the subspace of all continuous functions.
Both spaces are equipped with the supremum norm ‖ · ‖0.

We introduce inMs the Fortet–Mourier norm ‖ · ‖F given by

‖µ‖F = sup
{∫

X
f(x)µ(dx) : f ∈ F

}
for µ ∈Ms,

where F is the set of all f ∈ C(X) such that |f(x)| ≤ 1 and |f(x)−f(y)| ≤
‖x− y‖ for x, y ∈ X.

We say that a sequence (µn)n≥1, µn ∈M, converges weakly to a measure
µ ∈M if

lim
n→∞

∫
X
f(x)µn(dx) =

∫
X
f(x)µ(dx) for every f ∈ C(X).

Then we shall write
w-lim
n→∞

µn = µ.

It is well known that the convergence in the Fortet–Mourier norm ‖ · ‖F
is equivalent to the weak convergence (see [12]).

An operator P :M→M is called a Markov operator if

P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ∈ R+ and µ1, µ2 ∈M
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and
Pµ(X) = µ(X) for µ ∈M.

It is easy to prove that every Markov operator can be uniquely extended
to a linear operator on the space of all signed measuresMs.

A linear operator U : B(X)→ B(X) is called dual to P if∫
X
Uf(x)µ(dx) =

∫
X
f(x)Pµ(dx) for f ∈ B(X) and µ ∈M. (2.1)

Setting µ = δx, the point (Dirac) measure supported at x, in (2.1) we
obtain

Uf(x) =
∫
X
f(y)Pδx(dy) for f ∈ B(X) and x ∈ X. (2.2)

A Markov operator P is called a Feller operator if it possesses the dual
operator U such that U(C(X)) ⊂ C(X).

A measure µ∗ ∈ M is called invariant (or stationary) with respect to
P if Pµ∗ = µ∗.

We denote by Cδ(X), δ > 0, (Cδ for abbreviation), the family of all
closed sets C for which there exists a finite set {x1, x2, . . . , xm} ⊂ X such
that C ⊂

⋃m
i=1B(xi, δ).

An operator P is called semi-concentrating if for every δ > 0 there exist
C ∈ Cδ and θ > 0 such that

lim inf
n→∞

Pnµ(C) > θ for µ ∈M1. (2.3)

Let {Pλ : λ ∈ Λ} be a family of Markov operators. The family is called
uniformly semi-concentrating if for every δ > 0 there exist C ∈ Cδ and
θ > 0 such that Pλ satisfies condition (2.3) for any λ ∈ Λ.

A continuous function V : X → [0,+∞) is called a Lyapunov function
if

lim
%(x,z0)→∞

V (x) =∞

for some z0 ∈ X.

3. A general result

Now we are going to extend known results on existence of an invariant
measure to the setting of uniformly equicontinuous Markov operators.
They were previously proved for nonexpansive Markov operators (see [25,
38]) and the so-called e–chains (see [39]).
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We start with the relevant definition.

Definition 3.1. A Markov operator P is called uniformly equicontinuous
on balls if for any ε > 0 there is δ > 0 such that for every x ∈ X

sup
n≥1
‖Pnµ− Pnν‖F < ε

for any µ, ν ∈MB(x,δ)
1 .

Following the proof of Theorem 3.1 in [38] we may show the following
proposition.

Proposition 3.2. Every Markov operator P which is uniformly equicon-
tinuous on balls is a Feller operator.

Theorem 3.3. If a Markov operator P is semi–concentrating and uni-
formly equicontinuous on balls, then P admits an invariant measure.

Proof. The proof is mostly the same as the proof of Theorem 4.3 in [38].
The only difference consists in assuming uniform equicontinuity on balls
instead of nonexpansiveness. However nonexpansiveness was only used in
proving that

sup
µ,ν∈MA

1

sup
n≥1
‖Pnµ− Pnν‖F → 0

as diamA → 0. This is satisfied for Markov operators that are uniformly
equicontinuous on balls as well. �

Lemma 3.4. Let P be a semi–concentrating Markov operator which is
uniformly equicontinuous on balls and let µ∗ be an ergodic invariant mea-
sure for P . Then for any x ∈ suppµ∗, we have

w-lim
n→∞

1
n

n∑
k=1

P kδx = µ∗. (3.1)

Proof. The proof parallels the proof of Proposition 2 in [19] given for
continuous semigroups but to make the paper self–contained and since
some details are different we provide it here. We will split the proof into
three steps.

Step 1. Fix x ∈ suppµ∗ and let A ⊂ X be an open neighbourhood of x.
Define

B = {y ∈ X : Un1A(y) = 0 for all n ≥ 0},

176



Unique invariant measure

where U is dual to P . Now we show that µ∗(B) = 0. Assume, contrary to
our claim, that µ∗(B) > 0. We shall prove that Un1B = 1B for n ∈ N,
hence µ∗(B) = 1, by the ergodicity of the measure µ∗ (see Theorem 3.2.4
in [7]). On the other hand, since B ⊂ X \A and µ∗(A) > 0, this leads to a
contradiction. So, to finish this step we show that Un1B ≥ 1B for n ∈ N.
Fix z ∈ B and n ∈ N. Set

Cn = {y ∈ X : Un1A(y) > 0}.

Observe that if Un1X\B(z) > 0, then Un1Cm(z) > 0 for some m ∈ N,
since X \B =

⋃∞
i=0Ci. Then

Un+m1A(z) =
∫
X
Um1A(y)Pnδz(dy) ≥

∫
Cm

Um1A(y)Pnδz(dy) > 0,

contrary to our definition of z. Therefore Un1X\B(z) = 0 for any z ∈ B,
and consequently Un1B(z) = Un1B(z) + Un1X\B(z) = Un1X(z) = 1 for
z ∈ B. Therefore Un1B ≥ 1B. Since µ∗(B) > 0 and µ∗ is ergodic, we have
µ∗(B) = 1. This completes the first part of our proof.

Step 2. Fix an ε > 0. In this step we are going to show that γ :=
sup ν(X) = 1, where the supremum is taken over all ν’s such that µ∗ ≥ ν
and ν = α1P

n1ν1 + . . . + αmP
nmνm for some ν1, . . . , νm ∈ MB(x,ε)

1 and
α1, . . . , αm, n1, . . . , nm ≥ 0. Observe that the set of measures on which the
supremum is taken is not empty, since the measure ν(·) = µ∗(· ∩B(x, ε))
belongs to it. If sup ν(X) < 1, there exist a sequence (νn)n≥1 such that
1 > γ = limn→∞ νn(X) and νn are as above. Set µn = µ∗ − νn for n ≥ 1.
Obviously the sequence (µn)n≥1 is tight, and therefore there exists µ0 6≡0
such that µn’s converge weakly to µ0, passing to a subsequence if neces-
sary. Let A = B(x, ε). By Step I we may choose z ∈ suppµ0 ⊂ suppµ∗
and n ≥ 0 such that η = Un1A(z) = Pnδz(A) > 0. From the Feller
property it follows that there exists θ > 0 such that Pnδy(A) ≥ η/2 for
any y ∈ B(z, θ). Denote by α = µ0(B(z, θ)). Let N ∈ N be such that
γ − νN (X) < ηα/4 and µN (B(z, θ)) > α/2 by the fact that (νn)n≥1 con-
verges weakly to µ∗ and by the Alexandrov theorem. Then we have

PnµN (A) =
∫
X
PnδA(y)µN (dy) ≥ αη/4

and consequently we obtain

µ∗ = Pnµ∗ ≥ PnνN + (αη/4)ν̃,
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where ν̃(·) = (Pnµ∗ − PnνN )(· ∩ A)/(Pnµ∗ − PnνN )(A). Hence γ ≥
νN (X) + αη/4, which contradicts the definition of νN .

Step 3. From the previous step it easily follows that for an arbitrary ε > 0
we may find ν1, . . . , νN ∈ MB(x,ε)

1 and α1, . . . , αN ≥ 0, n1, . . . , nN ≥ 0
such that

µ∗ ≥ α1P
n1ν1 + . . .+ αNP

nN νN

and α1 + . . .+ αN > 1− ε/2. Further, we may choose M > 0 such that∥∥∥∥∥(1/M)
M∑
k=1

P kνi − (1/M)
M∑
k=1

P k+niνi

∥∥∥∥∥
TV

< ε/2 for i = 1, . . . , N.

Hence we obtain∥∥∥∥∥µ∗ − (1/M)
M∑
k=1

P k(α1ν1 + . . .+ αNνN )
∥∥∥∥∥
TV

=
∥∥∥∥∥(1/M)

M∑
k=1

P kµ∗ −
(

(α1/M)
M∑
k=1

P kν1 + . . .+ (αN/M)
M∑
k=1

P kνN

)∥∥∥∥∥
TV

≤
∥∥∥∥∥(1/M)

M∑
k=1

P kµ∗ − (1/M)
M∑
k=1

P k(α1P
n1ν1 + . . .+ αNP

nN νN )
∥∥∥∥∥
TV

+
∥∥∥∥∥
(

(α1/M)
M∑
k=1

P k+n1ν1 + . . .+ (αN/M)
M∑
k=1

P k+nN νN

)

−
(

(α1/M)
M∑
k=1

P kν1 + . . .+ (αN/M)
M∑
k=1

P kνN

)∥∥∥∥∥
TV

≤ ‖µ∗ − (α1P
n1ν1 + . . .+ αNP

nN νN )‖TV

+
N∑
i=1

αi

∥∥∥∥∥(1/M)
M∑
k=1

P kνi − (1/M)
M∑
k=1

P k+niνi

∥∥∥∥∥
TV

< ε.

Consequently for any ε > 0 we obtain that there exists a sequence (µεm)m≥1
of probability measures supported on B(x, ε) such that

w-lim
m→∞

1
m

m∑
k=1

P kµεm = µ∗.

178



Unique invariant measure

On the other hand, for any bounded Lipschitz function f we have

sup
k,m≥1

∣∣∣∣∫
X
f(y)P kµεm(dy)− Ukf(x)

∣∣∣∣→ 0 as ε→ 0,

therefore we finally obtain∫
X
f(y) 1

n

n∑
k=1

P kδx(dy)→
∫
X
f(y)µ∗(dy) as n→∞.

Since f was an arbitrary bounded Lipschitz function, formula (3.1) is
proved and we are done. �

From Lemma 3.4 the following proposition follows

Proposition 3.5. Let P be a semi–concentrating Markov operator which
is uniformly equicontinuous on balls. Then for any two different ergodic
invariant measures µ∗ and µ∗ we have

dist(suppµ∗, suppµ∗) := inf{‖x− y‖ : x ∈ suppµ∗, y ∈ suppµ∗} > 0.

Proof. Assume, contrary to our claim, that dist(suppµ∗, suppµ∗) = 0.
Further, let f be a bounded Lipschitz function such that

ε :=
∣∣∣∣∫
X
fdµ∗ −

∫
X
fdµ∗

∣∣∣∣ > 0.

Without loss of generality we may assume that Lip f ≤ 1 and ‖f‖0 ≤ 1.
From the uniform equicontinuity of P it follows that there exists δ > 0
such that

sup
x,y∈X, ‖x−y‖<δ

sup
n≥1
|Unf(x)− Unf(y)| < ε/2.

Let x ∈ suppµ∗ and y ∈ suppµ∗ be such that ‖x− y‖ < δ. Then, by the
uniform equicontinuity we have∣∣∣∣∣

∫
X
f(z) 1

n

n∑
k=1

P kδx(dz)−
∫
X
f(z) 1

n

n∑
k=1

P kδy(dz)
∣∣∣∣∣ ≤ ε/2

and, by Lemma 3.4, taking appropriate limits, we obtain∣∣∣∣∫
X
fdµ∗ −

∫
X
fdµ∗

∣∣∣∣ ≤ ε/2,
which contradicts the definition of ε. The proof is complete. �
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4. An abstract model

Let X be a closed subset of some separable Banach space (H, ‖ · ‖).
We will consider the stochastically perturbed dynamical system on X

of the form
xn+1 = S(xn, tn) for n = 0, 1, 2, . . . (4.1)

We assume that:
(1) The function S : X × [0, T ]→ X is continuous.
(2) The tn are random variables with values in [0, T ] and the distribu-

tion of tn conditional on xn = x is given by

Prob(tn < t|xn = x) =
∫ t

0
p(x, u)du for 0 < t ≤ T, (4.2)

where p : X × [0, T ]→ R+, (R+ = [0,∞)), is a measurable function such
that ∫ T

0
p(x, u)du = 1 for x ∈ X. (4.3)

(3)We assume that the continuous function S : X×[0, T ]→ X satisfies
the Lipschitz type inequality
‖S(x, t)− S(y, t)‖ ≤ λ(x, t)‖x− y‖ for x, y ∈ X, t ∈ [0, T ] (4.4)

and ∫ T

0
λ(x, t)p(x, t)dt ≤ γ < 1 for x ∈ X. (4.5)

(4) We assume moreover that p : X × [0, T ] → R+ satisfies the Dini
condition∫ T

0
|p(x, t)− p(y, t)|dt ≤ ω(‖x− y‖) for x, y ∈ X, (4.6)

where ω : R+ → R+ is a concave and non–decreasing function such that∫ σ

0

ω(t)
t

dt < +∞ for some σ > 0.

Additionally, for any x ∈ X there is θ(x) ∈ (0, T ) such that p(x, t) = 0 for
t < θ(x) and p(x, t) > 0 for θ(x) < t ≤ T .

Similar assumptions were made by Barnsley et al. for classical iterated
function systems with place dependent probabilities (see [2]), where the
Dini condition for the function ω was introduced. It has been also proved
that this assumption is necessary for uniquness of an invariant measure
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(see [35]). Barnsley and the coauthors additionally assumed that proba-
bilities p are strictly positive but here we have to slightly strengthen this
assumption taking the threshold θ(x) when the biological transcription
process we shall consider later starts.

We easily check that for any c < 1 we have

ϕc(t) :=
∞∑
n=1

ω(cnt) < +∞ for any t ≥ 0

and limt→0 ϕc(t) = 0.
(5) We assume that there exists ε∗ > 0 such that S(t, x) + h ∈ X for

any x ∈ X, t ∈ [θ(x), T ] and h ∈ B(0, ε∗).
Fix an ε ∈ (0, ε∗]. Let νε be a Borel probability measure on (H, ‖ · ‖)

such that its support is in B(0, ε). Set additionally ν0 = δ0. For any x ∈ X
we set

νεx(·) = νε(· − x). (4.7)
We shall consider the Markov chain given by the transition function

πε(·, ·) : X × B(X)→ [0, 1] of the form

πε(x,B) =
∫ T

0
p(x, t)νεS(x,t)(B)dt for x ∈ X, B ∈ B(X). (4.8)

Then we may write the Markov operator Pε : M1 → M1 corresponding
to πε :

Pεµ(A) =
∫
X
πε(x,A)µ(dx) for A ∈ B(X), µ ∈M1. (4.9)

Its dual operator has the form

Uεf(x) =
∫ T

0
p(x, t)

∫
X
f(z)νεS(x,t)(dz)dt. (4.10)

By induction we define
T1(x, t1, h1) = S(x, t1) + h1 (4.11)

and

Tn(x, t1, . . . , tn, h1, . . . , hn)
= S(Tn−1(x, t1, . . . , tn−1, h1, . . . , hn−1), tn) + hn (4.12)

for x ∈ X, n ≥ 1, t1, . . . , tn ∈ [0, T ], h1, . . . , hn ∈ supp νε if the above com-
positions are possible. Otherwise we may put Tn(x, t1, . . . , tn, h1, . . . , hn):=
x0 for some x0 ∈ X.
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Observe that for every n ∈ N, t1, . . . tn ∈ [0, T ], h1, . . . , hn ∈ supp νε and
x ∈ X, we have

Tn(x, t1, . . . , tn, h1, . . . , hn)
= Tn−1(T1(x, t1, h1), t2, . . . , tn, h2, . . . , hn). (4.13)

Using the above notion we may write the iterates Unε in the following
form

Unε f(x) =
∫ T

0
. . .

∫ T

0

∫
. . .

∫
B(0,ε)n

f(Tn(x, t1, . . . , tn, h1, . . . , hn))

× Pn(x, t1, . . . , tn, h1, . . . , hn−1)νε(dh1) . . . νε(dhn)dt1 . . . dtn,
(4.14)

where

Pn(x, t1, . . . , tn, h1, . . . , hn−1)
= p(Tn−1(x, t1, . . . , tn−1, h1, . . . , hn−1), tn) · · · p(T1(x, t1, h1), t2)p(x, t1).

From the definition of Pn it follows

Pn(x, t1, . . . , tn, h1, . . . , hn−1)
= Pn−1(T1(x, t1, h1), t2, . . . , tn, h2, . . . , hn−1)p(x, t1). (4.15)

For brevity we denote t = (t1, . . . , tn) and h = (h1, . . . , hn−1) and conse-
quently we shall write Pn(x, t,h) instead of Pn(x, t1, . . . , tn, h1, . . . , hn−1)
for t ∈ [0, T ]n and h ∈ [0, ε∗]n−1.

The following simple lemma follows from the Dini condition and condi-
tions (4.13), (4.15).

Lemma 4.1. If S : X × [0, T ] → X satisfies conditions (4.4), (4.5) and
p : X × [0, T ]→ R+, satisfies condition (4.6), then

∫ T

0
. . .

∫ T

0
|Pn(x, t,h)− Pn(y, t,h)|dt ≤

n−1∑
i=0

ω(γi‖x− y‖) ≤ ϕγ(‖x− y‖)

(4.16)
for any n ∈ N,h ∈ [0, ε∗]n−1 and x, y ∈ X.
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Proof. The proof is by induction on k. For k = 1 it is obvious. For given
t = (t1, . . . , tk) and h = (h1, . . . , hk−1), k ≥ 2, we write t1 = (t2, . . . , tk)
and h1 = (h2, . . . , hk−1). If (4.16) holds for k− 1, k ≥ 2, then by Jensen’s
inequality, concavity and the fact that ω is non–decreasing we have

∫ T

0
. . .

∫ T

0
|Pk(x, t,h)− Pk(y, t,h)|dt

=
∫ T

0
. . .

∫ T

0
|Pk−1(T1(x, t1, h1), t1,h1)p(x, t1)

− Pk−1(T1(y, t1, h1), t1,h1)p(y, t1)|dt1dt1

≤
∫ T

0
. . .

∫ T

0
|Pk−1(T1(x, t1, h1), t1,h1)− Pk−1(T1(y, t1, h1), t1,h1)|

× p(x, t1)dt1dt1

+
∫ T

0
. . .

∫ T

0
Pk−1(T1(y, t1, h1), t1,h1)|p(x, t1)− p(y, t1)|dt1dt1

≤
∫ T

0

k−2∑
j=0

ω(γj‖T1(x, t1, h1)− T1(y, t1, h1)‖)p(x, t1)dt1 + ω(‖x− y‖)

≤
k−1∑
j=1

ω(γj‖x− y‖) + ω(‖x− y‖)

=
k−1∑
j=0

ω(γj‖x− y‖) ≤ ϕγ(‖x− y‖).

The proof is complete. �

Lemma 4.2. If S : X × [0, T ] → X satisfies conditions (4.4), (4.5) and
p : X × [0, T ] → R+, satisfies condition (4.6), then the operator Pε, ε ∈
[0, ε∗], given by (4.9) is uniformly equicontinuous on balls.

Proof. Fix n ∈ N, ε ≥ 0, x, y ∈ X and denote by t = (t1, . . . , tn) and
h = (h1, . . . , hn−1). Let f : X → R be a bounded Lipschitz function with
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the Lipschitz constant L = 1. Then we have

|Unε f(x)− Unε f(y)|

≤
∫
. . .

∫
[0,T ]n×B(0,ε)n

|f(Tn(x, t,h, hn))− f(Tn(y, t,h, hn))|

× Pn(x, t,h) (νε ⊗ · · · ⊗ νε)︸ ︷︷ ︸
n times

(d(h× hn))dt

+ ‖f‖0
∫
. . .

∫
[0,T ]n×B(0,ε)n

|Pn(x, t,h)− Pn(y, t,h)|

× (νε × · · · × νε)(dh)dt

≤
∫
. . .

∫
[0,T ]n×B(0,ε)n

|Tn(x, t,h, hn)− Tn(y, t,h, hn)|

× Pn(x, t,h) (νε ⊗ · · · ⊗ νε)︸ ︷︷ ︸
n times

(d(h× hn))dt

+ ‖f‖0ϕγ(‖x− y‖),

by Lemma 4.1. On the other hand, (4.5) immediately gives∫ T

0
. . .

∫ T

0
|Tn(x, t,h, hn)− Tn(y, t,h, hn)|Pn(x, t,h)dt ≤ γn‖x− y‖

for h1, . . . , hn ∈ supp νε. Thus we obtain

|Unε f(x)− Unε f(y)| ≤ γn‖x− y‖+ ‖f‖0ϕγ(‖x− y‖)

and consequently we have

sup
n≥1
‖Pnε µ− Pnε ν‖F = sup

n≥1
sup
f∈F

{∫
X

∫
X
|Unε f(x)− Unε f(y)|µ(dx)ν(dy)

}
< 2δ + ϕγ(2δ)

for any µ, ν ∈ M1 supported on the same δ–ball. This completes the
proof. �

Lemma 4.3. If S : X × [0, T ] → X satisfies conditions (4.4), (4.5) and
p : X × [0, T ] → R+ satisfies condition (4.6), then for any δ > 0 there
exists a bounded Borel set B such that all the operators Pε for ε ∈ [0, ε∗],
given by (4.9), satisfy the following

lim inf
n→∞

Pnε µ(B) > 1− δ for µ ∈M1. (4.17)
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Proof. Define V (x) = ‖x − x0‖ for some x0 ∈ X. Obviously V is a Lya-
punov function. Then by (4.4) and (4.5) for every ε ∈ [0, ε∗] we have

UεV (x) =
∫ T

0

∫
B(0,ε)

V (S(x, t) + h)p(x, t)νε(dh)dt

≤
∫ T

0

∫
B(0,ε)

‖S(x, t)− S(x0, t)‖p(x, t)νε(dh)dt

+
∫ T

0

∫
B(0,ε)

‖S(x0, t)− x0‖p(x, t)νε(dh)dt

+
∫ T

0

∫
B(0,ε)

‖h‖p(x, t)νε(dh)dt

≤
∫ T

0

∫
B(0,ε)

λ(x, t)p(x, t)‖x− x0‖νε(dh)dt

+ sup
t∈[0,T ]

‖S(x0, t)− x0‖+
∫ T

0

∫
B(0,ε)

‖h‖p(x, t)νε(dh)dt

≤ γV (x) + sup
t∈[0,T ]

‖S(x0, t)− x0‖+ ε.

Thus condition
UεV (x) ≤ aV (x) + b

holds for every ε ∈ [0, ε∗] with a = γ and b = sup
t∈[0,T ]

‖S(x0, t) − x0‖ + 1.

An application of Lemma 2.4.2 in [38] finishes the proof. �

Theorem 4.4. Let S : X × [0, T ] → X satisfy conditions (4.4), (4.5)
and let p : X × [0, T ] → R+ satisfy condition (4.6). Assume that Υ =
{ε1, ε2, . . .} ⊂ [0, ε∗] and εn → 0 as n→∞. Then the family {Pε : ε ∈ Υ}
with Pε given by (4.9) is uniformly semi-concentrating.

Proof. Fix β > 0 and let Υ = {ε1, ε2, . . .} with εn → 0 as n → ∞ be
given. From Lemma 4.3 it follows that there exists a bounded Borel set
B ⊂ X such that the operator Pε, ε ∈ Υ, given by (4.9) satisfies

lim inf
n→∞

Pnε µ(B) > 1
2 for µ ∈M1. (4.18)

To show this let
B = {x : V (x) ≤ q},
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where q > 4b(1 − a)−1. Fix µ ∈ M1 and let K ⊂ X be a compact set
such that µ(K) ≥ 3/4. Set µK(·) := µ(· ∩K)/µ(K). From (4.17) and the
Chebyshev inequality we obtain

Pnµ(B) ≥ (3/4)Pnε µK(B) ≥ (3/4)
(

1− 1
q

∫
X
V (x)Pnε µK(dx)

)
= (3/4)

(
1− 1

q

∫
X
Unε V (x)µK(dx)

)
≥ (3/4)

(
1− 1

q

(
an
∫
X
Vε(x)µK(dx) + b

1−a

))
≥ (3/4)

(
1− 1

4 −
an

q

∫
X
V (x)µK(dx)

)
≥ (3/4)

(
1− 1

4 −
an

q
sup
x∈K

V (x)
)
.

Consequently, there exists an integer n0 such that
Pnε µ(B) ≥ 1/2

for all n ≥ n0.
For every ε ∈ Υ choose a compact set Kε ⊂ B(0, ε) such that νε(Kε) >

1
2 , by Ulam’s lemma (see [3]). Choose γ0 ∈ (γ, 1), where γ satisfies in-
equality (4.5). We can find an integer m such that

γm0 diamB ≤ β/2. (4.19)
From (4.5) it follows that for every x ∈ X∫

{t∈[0,T ]:λ(x,t)>γ0}
p(x, t)dt ≤ γ

γ0
< 1.

Hence setting σ = (γ0 − γ)/γ0 and Ux = {t ∈ [0, T ] : λ(x, t) ≤ γ0}, we
obtain ∫

Ux

p(x, t)dt ≥ σ.

Choose x0 ∈ B and for every ε ∈ Υ define

Cε =
⋃

(t1,...,tm)∈[0,T ]m,(h1,...,hm)∈Km
ε

B(Tm(x0, t1, . . . , tm, h1, . . . , hm), β/2).

It is evident that Cε ∈ C3β/4. Furthermore, from the definition of the
set Υ it follows that C =

⋃
ε∈ΥCε ∈ Cβ, by the continuity of S and the

fact that Kε ⊂ B(0, ε) for ε ∈ Υ.
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Fix ε ∈Υ. For every x ∈B, (h1, . . . , hm) ∈Km
ε and (t1, . . . , tm) ∈ [0, T ]m

such that t1 ∈ Ux, t2 ∈ UT (x,t1,h1), . . . , tm ∈ UTm−1(x,t1,...,tm−1,h1,...,hm−1) we
have

‖Tm(x, t1, . . . , tm, h1, . . . , hm)− Tm(x0, t1, . . . , tm, h1, . . . , hm)‖
≤ γm0 ‖x− x0‖ ≤ β/2. (4.20)

Now fix µ ∈M1. Let n ∈ N be such that

Pnε µ(B) > 1/2. (4.21)

Then by (4.20), (4.21) and the Fubini theorem we obtain

Pn+m
ε µ(C)

≥
∫
. . .

∫
X×Km

ε

∫
Ux

. . .

∫
UTm−1(x,t1,...,tm−1,h1,...,hm−1)

1C(Tm(x, t1, . . . , tm, h1, . . . , hm))

× Pm(x, t1, . . . , tm, h1, . . . , hm)dtm . . . dt1νε(dh1) . . . νε(dhm)Pnε µ(dx)
≥ σm/2.

This completes the proof. �

Theorem 4.5. Let S : X × [0, T ] → X satisfy conditions (4.4), (4.5)
and let p : X × [0, T ]→ R+ satisfy condition (4.6), then the operator Pε,
ε ∈ [0, ε∗], given by (4.9) admits a unique invariant measure.

Proof. The existence of an invariant measure follows from Theorems 3.3
and 4.4. To show uniqueness it is enough to verify that if there exist two
different invariant measures µ∗ and µ∗, then

dist(suppµ∗, suppµ∗) = 0.

Assume, contrary to our claim, that d := dist(suppµ∗, suppµ∗) > 0.
Choose x0 ∈ suppµ∗ and x1 ∈ suppµ∗ such that ‖x1−x0‖ < γ−1d, where
γ is given by formula (4.4). By (4.4) we may find t > max{θ(x1), θ(x0)}
and h ∈ supp νε such that

‖T (x0, t, h)− T (x1, t, h)‖ ≤ γ‖x0 − x1‖ < d.

Since p(xi, t) > 0 for i = 0, 1, we obtain that T (x0, t, h) ∈ suppµ∗ and
T (x1, t, h) ∈ suppµ∗, which leads to contradiction. Now Proposition 3.5
finishes the proof. �
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Lemma 4.6. If S : X × [0, T ] → X satisfies conditions (4.4), (4.5) and
p : X × [0, T ]→ R+, satisfies condition (4.6), then∫ T

0
. . .

∫ T

0
|Pn(x, t1, . . . , tn, h1, . . . , hn−1)

− Pn(x, t1, . . . , tn, h′1, . . . , h′n−1)|dt1 · · · dtn

≤
n∑
i=1

ω

 i∑
j=1

γi−j‖hj − h′j‖

 =
n∑
i=1

ω

(
i−1∑
k=0

γk‖hi−k − h′i−k‖
)

for any n ∈ N, h1, . . . , hn−1, h
′
1, . . . , h

′
n−1 ∈ B(0, ε∗) and x ∈ X.

Proof. Assume that the desired formula holds for n = k. We show that it is
satisfied for n = k + 1 also. Denote by t = (t1, . . . , tk), h = (h1, . . . , hk−1)
and h′ = (h′1, . . . , h′k−1). We have∫ T

0
. . .

∫ T

0
|Pk+1(x, t, tk+1,h, hk)− Pk+1(x, t, tk+1,h′, h′k)|dtdtk+1

=
∫ T

0
. . .

∫ T

0
|p(Tk(x, t,h, hk), tk+1)Pk(x, t,h)− p(Tk(x, t,h′, h′k), tk+1)

× Pk(x, t,h′)|dtdtk+1

≤
∫ T

0
. . .

∫ T

0
|p(Tk(x, t,h, hk), tk+1)− p(Tk(x, t,h′, h′k), tk+1)|

× Pk(x, t,h)dtdtk+1

+
∫ T

0
. . .

∫ T

0
|Pk(x, t,h)− Pk(x, t,h′)|p(Tk(x, t,h, hk), tk+1)dtdtk+1

=: I1 + I2.

We easily see that

I1 ≤
∫ T

0
. . .

∫ T

0
ω(‖Tk(x, t,h, hk)− Tk(x, t,h′, h′k)‖)Pk(x, t,h)dtdtk+1

≤ ω

k+1∑
j=1

γk+1−j‖hj − h′j‖


and

I2 ≤
k∑
i=1

ω

 i∑
j=1

γi−j‖hj − h′j‖

 . �
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Lemma 4.7. If S : X × [0, T ] → X satisfies conditions (4.4), (4.5) and
p : X × [0, T ] → R+ satisfies condition (4.6), then for any n ≥ 1, x ∈ X
and bounded Lipschitz function f

Unε f(x)→ Un0 f(x) as ε→ 0, ε ∈ [0, ε∗].

Proof. Let f be a bounded Lipschitz function with the Lipschitz constant
L. Fix x ∈ X and n ≥ 1 and let t = (t1, . . . , tn) and h = (h1, . . . , hn−1).
We have
|Unε f(x)− Un0 f(x)|

≤
∫ T

0
. . .

∫ T

0

∫
. . .

∫
B(0,ε)n

|f(Tn(x, t,h, hn))− f(Tn(x, t,0))|

× Pn(x, t,h) (νε ⊗ · · · ⊗ νε)︸ ︷︷ ︸
n times

(d(h× hn))dt

+ ‖f‖0
∫ T

0
. . .

∫ T

0

∫
. . .

∫
B(0,ε)n

|Pn(x, t,h)− Pn(x, t,0)|

× 1 (νε ⊗ · · · ⊗ νε)︸ ︷︷ ︸
n times

(d(h× hn))dt

≤ L
∫ T

0
. . .

∫ T

0

∫
. . .

∫
B(0,ε)n

|Tn(x, t,h, hn)− Tn(x, t,0)|

× Pn(x, t,h) (νε ⊗ · · · ⊗ νε)︸ ︷︷ ︸
n times

(d(h× hn))dt

+ ‖f‖0
∫
. . .

∫
B(0,ε)n

n∑
i=1

ω

 i∑
j=1

γi−j‖hj‖

 (νε ⊗ · · · ⊗ νε)︸ ︷︷ ︸
n times

(d(h× hn)),

by Lemma 4.6. We see immediately that the term∫
. . .

∫
B(0,ε)n

|Tn(x, t,h, hn)− Tn(x, t,0)|

× Pn(x, t,h) (νε ⊗ · · · ⊗ νε)︸ ︷︷ ︸
n times

(d(h× hn))→ 0

as ε→ 0 and our proof is complete. �

Lemma 4.8. Let S : X × [0, T ] → X satisfy conditions (4.4), (4.5)
and let p : X × [0, T ] → R+ be such that for any x ∈ X there is
θ(x) such that p(x, t) > 0 for t > θ(x) and p(x, t) = 0 for t < θ(x).
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Morever, p : X × [0, T ]→ R+ satisfies condition (4.6). Assume that Υ =
{ε1, ε2, . . .} ⊂ [0, ε∗] with εn → 0 as n→∞. Then the family {µε∗ : ε ∈ Υ},
where µε∗ is invariant for Pε, is pre–compact in the weak topology.

Proof. Let Υ = {ε1, ε2, . . .}, where εn → 0 as n → ∞, be given. We are
going to show that the family {µε∗ : ε ∈ Υ} is tight, i.e., for any η > 0 there
is a compact set K ⊂ X such that µε∗(K) > 1− η for ε ∈ Υ. Equivalently,
by LeCam’s lemma (see [12]), it is enough to assure that for any η > 0
there exists a set Cη ∈ Cη such that µε∗(Cη) > 1− η for ε ∈ Υ.

Fix η ∈ (0, 1). Let δ > 0 be such that 2δ + ϕ(2δ) < η2/16. From
Lemma 4.3 it follows that there exists a bounded closed set B ⊂ X such
that

lim inf
n→∞

Pnε µ(B) > 1− δ2 for ε ∈ Υ and µ ∈M1. (4.22)

Hence it follows that µε∗(B) > 1− δ2, ε ∈ Υ, as well.
Denote by MB,1−δ

1 the set of all measures µ ∈ M1 such that µ(B) >
1− δ. From the proof of Theorem 4.4 we obtain that there exist integers
m,N , a positive number β < δ and a set {x1, . . . , xM} ⊂ X such that

Pmε µ

(
M⋃
i=1

B(xi, δ)
)
> β for any µ ∈MB,1−δ

1 and ε ∈ Υ. (4.23)

Hence for every µ ∈MB,1−δ
1 and ε ∈ Υ there is a ball B(xi, δ) such that
Pmε µ(B(xi, δ)) > β/M := α. (4.24)

Let k ≥ 1 be such that (1 − α)k ≤ δ < (1 − α)k−1. Fix ε ∈ Υ. We are
going to show that

µε∗ =
k∑
i=1

α(1− α)i−1P (i−1)m
ε νiε + (1− α)kµ̃ε, (4.25)

where νiε, i = 1, . . . , k, are supported on one of the balls B(x1, δ), . . . ,
B(xN , δ) and µ̃ε ∈M1.

We are now in a position to show formula (4.25). Indeed, since µε∗ ∈
MB,1−δ

1 , we have
µε∗ = Pmε µ

ε
∗ = αν1

ε + (1− α)µ̃1
ε, (4.26)

where
ν1
ε (·) = Pmε µ

ε
∗(· ∩B(xi, δ))

Pmε µ
ε
∗(B(xi, δ))
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and B(xi, δ) is such a ball that
Pmε µ

ε
∗(B(xi, δ)) > α,

by (4.24). The measure µ̃1
ε is given by equation (4.26).

Observe that if 1 − α > δ, we have µ̃1
ε ∈ M

B,1−δ
1 , by the fact that

µε∗(B) > 1 − δ2. Now we may repeat the above procedure for µ̃1
ε. This

may be done (k–times) until (1−α)k ≤ δ. Consequently we obtain equal-
ity (4.25).

Further, by Ulam’s lemma we may find a compact set W ⊂ X such
that P j0 δxi(W ) ≥ 1 − η/4 for all j = 1, . . . ,mk and i = 1, . . . , N . Then,
since supn≥1 ‖Pnε ν − Pnε δxi‖F ≤ 2δ + ϕ(2δ) < η2/16 for any ν supported
in B(xi, δ) and ε ∈ [0, ε∗], by the proof of Lemma 4.2, we obtain

Pn0 ν(N (W, η/2)) ≥ Pn0 δxi(W )− η/4,
by Lemma 2.4.1 in [38]. (Here N (W, η/2) denotes the η/2–neighbourhood
of the set W ). On the other hand, since ‖Pnε δxi − Pn0 δxi‖F → 0 as ε→ 0
for n ≥ 1, by Lemma 4.7, for every n ≥ 1 we may choose ε0 > 0 such that
for all ε ∈ (0, ε0) ∩Υ we have

‖Pnε ν − Pn0 δxi‖F < η2/8 (4.27)
for any ν supported in B(xi, δ). Taking ε0 small enough we may assure that
condition (4.27) holds for n = 1, . . . ,ml. Applying once again Lemma 2.4.1
from [38] we obtain

Pnε ν(N (W, η/2)) ≥ Pn0 δxi(W )− η/2 > 1− 3η/4
for all ε ∈ (0, ε0) ∩ Υ. Then from condition (4.25) and the inequality
δ < η/4 we have µε∗(N (W, η/2)) > 1− η. Obviously N (W, η/2) ∈ Cη.

From the definition of the set Υ it follows that there are only finitely
many ε’s such that ε /∈ (0, ε0)∩Υ. Therefore we may find by Ulam’s lemma
a compact set Z ⊂ X such that

µε∗(Z ∪N (W, η/2)) > 1− η for all ε ∈ Υ.
Obviously Z ∪ N (W, η/2) ∈ Cη. Since η ∈ (0, 1) was arbitrary, the appli-
cation of Prokhorov’s theorem (see [3]) finishes the proof. �

Theorem 4.9. Let S : X × [0, T ] → X satisfy conditions (4.4), (4.5)
and let p : X × [0, T ] → R+ be such that for any x ∈ X there is θ(x)
such that p(x, t) > 0 for t > θ(x) and p(x, t) = 0 for t < θ(x). Morever,
p : X× [0, T ]→ R+ satisfies condition (4.6). Let µ∗ε be invariant measures
for Pε, ε ∈ [0, ε∗]. Then µ∗ε converges weakly to µ∗0 as ε→ 0.
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Proof. Assume, contrary to our claim, that µ∗ε does not converge to µ∗0.
In other words there exists a sequence (εn)n≥1 tending to 0 such that
the sequence (µ∗εn

)n≥1 converges weakly to some µ∗, by Lemma 4.8. Fix
a bounded Lipschitz function f with the Lipschitz constant L. We eas-
ily see that |Uεf(x) − U0f(x)| ≤ Lε for any x ∈ X and ε ∈ [0, ε∗].
Further, limn→∞

∫
X f(x)µ∗εn

(dx) =
∫
X f(x)µ∗(dx) and

∫
X f(x)µ∗εn

(dx) =∫
X Uεnf(x)µ∗εn

(dx). Therefore, we have limn→∞
∫
X U0f(x)µ∗εn

(dx) =∫
X f(x)µ∗(dx). From the weak convergence of µ∗εn

to µ∗ we have
limn→∞

∫
X U0f(x)µ∗εn

(dx) =
∫
X U0f(x)µ∗(dx) =

∫
X f(x)P0µ∗(dx) and

since f was an arbitrary Lipschitz function, we finally obtain P0µ∗ = µ∗.
However P0 admits a unique invariant measure and therefore µ∗ = µ∗0.
The proof is complete. �

5. Application to a model for an autoregulated gene

In this section we illustrate the applicability of the abstract model dis-
cussed in the previous section by means of a mathematical model for the
stochastic dynamics of an autoregulated gene in a bacterium. An autoreg-
ulated gene is the simplest form of gene regulatory network. In this case,
the gene product has a feedback effect – indirectly – on its own transcrip-
tion either positively or negatively, by stimulating or inhibiting further
transcription. The protein produced from the gene typically needs to be
activated, i.e. undergo chemical transformations like phosphorylation and
dimerisation, before it can affect transcription as so-called transcription
factor [37]. We believe that larger regulatory networks will also fit to our
abstract setting, but a discussion of these is beyond the scope of this paper.

The production of proteins from a single gene is inherently a noisy
process: the gene products arrive in bursts containing a variable amount of
molecules and the time interval between such bursts is random too [4, 17,
36]. Below we introduce a Markov chain model for the spatial distribution
of a gene product and its phosphorylated and dimerised form, just after
the arrival of a new burst of gene product. The main objective is to show
that this model has a unique invariant distribution, using the fundamental
results obtained in the previous sections. The case of deterministic protein
production, i.e. when ε = 0, fits to the framework presented in [23] and
the results obtained there. Theorem 4.9 shows that the invariant measure
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µε∗ for our model with ε > 0 will converge to the invariant measure for the
deterministic case as ε ↓ 0.

5.1. Summary of the biological transcription and translation
process

We follow the so-called ‘central dogma’ in molecular biology for the bacte-
rial transcription and translation machinery, described e.g. in [37]. Thus,
consider a gene ‘a’ that codes for the associated protein ‘A’. The latter
influences its own expression in a manner that is a general motif in regu-
latory systems encountered in nature, like e.g. phage-λ decision circuit in
Escherichia coli or the phosphorelay in Bacillus subtilis [1, 33]. Namely,
A itself cannot act as transcription factor. Only after phosphorylation of
A (A + P � AP, catalysed by kinases and phosphatases) and subsequent
dimerisation (2AP � (AP)2), the resulting dimer (AP)2, which we de-
note by D, can bind the promoter of gene a. We call this set of chemical
reactions the activation system of A:

A + P � AP, 2AP � D. (5.1)

The molecular species A, AP and D diffuse through the cytoplasm in the
cell and are subject to degradation. Degradation is crucial in the analysis
of the associated model, discussed below. Diffusion of D in the cell is a
combination of three-dimensional diffusion in the cytoplasm alternated
with one-dimensional diffusion along the DNA in search of its binding
site [13].

Binding of D to this binding site at the promoter of a affects the binding
of an RNA polymerase (RNAp) to its binding site on the promoter and the
subsequent start of transcription and translation. It can be either repress-
ing or activating, depending on whether it prevents RNAp from binding
the promoter or, on the contrary, it enhances binding by attracting RNAp
to its binding site. RNAp bound to the DNA first forms a closed complex.
Before the RNAp can clear its binding site and start transcription, the
complex must reform into an open complex. The closed-to-open isomeri-
sation reaction is rate limiting. Clearance of the binding site takes a few
seconds [27]. Then transcription of the gene starts. The subsequent move-
ment of RNAp over the gene, making a messenger RNA (mRNA) copy,
is stochastic. It has been observed that RNAp may halt for substantial
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time, may back-track over short nucleotide distances or even drop off the
DNA strand [34].

Multiple ribosomes, responsible for translating mRNA into protein, can
reside on the mRNA strand at the same time in a cue, while transcription
is not yet completed. Thus, once an mRNA copy is finished, it will produce
a burst of a random number of the gene product A [27]. Ribosomes start
translation already when the first part of the mRNA transcript becomes
available from the RNAp. Further A-proteins become available in a tem-
poral sequence of releases of single proteins. Experimentally, the number
of proteins produced has been shown to follow an exponential distribu-
tion [26, 4, 17].

5.2. The mathematical model

We assume in the mathematical representation of the system outlined
above, that the molecular levels of RNAp, ribosomes and amino acids
required for protein production remain constant. This assumption is rea-
sonable if the modelled bacterium lives in a normal temperature range
(25 – 37◦C, cf. [15] and references found there). We assume further that
new transcription can start only after completion of the mRNA transcript
and after the responsible RNAp has dissociated from the gene. Otherwise,
prevention of an event in which one RNAp overtakes another on the gene
complicates the model substantially. This assumption allows to model the
time needed for the production of one complete mRNA transcript as a
random variable with law independent of the abundance of any of the
molecular players. We neglect abortion of the transcription process before
its completion. Moreover, the phosphorylation and dimerisation reactions
occur on a faster time scale (fraction of seconds) than the transcription
process (minutes). Diffusion of protein-sized compounds is limited, since
bacterial cells are ‘crowded’ [9, 10]. We model the complex diffusive move-
ment of D, which consists of alternating 3D and 1D diffusion, by means
of a single effective three-dimensional Fickian diffusion.

Further central assumptions in our model are: (i ) the number of mole-
cules of each of the compounds in the activation system are sufficiently
high such that stochastic fluctuations can be ignored and a model in
terms of partial differential equations is adequate to describe its dynamics.
(ii ) The temporary removal of a single D from the activation system when
it binds to its binding site at the promoter hardly influences the dynamics

194



Unique invariant measure

of this system. We therefore do not include this event in the modeling of
the reaction kinetics of the activation system.

Let the open bounded domain Ω ⊂ R3 represent the cytoplasm of the
bacterial cell. Assume that the boundary ∂Ω of Ω is sufficiently smooth
(say C2). The activation system (5.1) of A is modeled as a system of 3
reaction-diffusion equations in Ω. The concentration of the compounds A,
AP and D in Ω are denoted by u1, u2 and u3, respectively. The system of
equations governing the dynamics of u = (u1, u2, u3) is

∂tu(t) = D∆u+ F (u(t))− Λu(t), (5.2)
where D is a diagonal 3 × 3 matrix with diffusion constants Di > 0 on
the diagonal. Λ = diag(λ1, λ2, λ3) is a diagonal matrix with degradation
rates λi > 0 for each of the compounds. Equation (5.2) is complemented
by Neumann boundary conditions.

The reaction term defined by F models the activation system in absense
of degradation. An explicit model considered for this example is

F1(u) = − v+
Au1

κ+
A + u1

+ v−Au2

κ−A + u2
, (5.3)

F2(u) = v+
Au1

κ+
A + u1

− v−Au2

κ−A + u2
− 2k+

Du
2
2 + 2k−Du3, (5.4)

F3(u) = k+
Du

2
2 − k−Du3, (5.5)

using Michaelis–Menten kinetics for the enzyme catalysed phosphoryla-
tion and dephosphorylation reaction and Mass Action Kinetics for dimeri-
sation. All parameters (rate constants) are assumed to be strictly positive.
Note that F is discontinuous at u1 = −κ+

A and u2 = −κ−A, but real analytic
on its domain

DF := {u ∈ R3 : u1 6= −κ+
A, u2 6= −κ−A}.

Consequently, the superposition operator defined by F on H := C(Ω)3,
where

‖(u1, u2, u2)‖H := ‖u1‖∞ + ‖u2‖∞ + ‖u3‖∞,
is real analytic on an open neighbourhood of each uniformly constant
function u ≡ ū, with ū ∈ DF . (Here ‖ · ‖ denotes the supremum norm.)
We denote this operator also by F .

This observation makes us consider solutions to the initial value prob-
lem defined by (5.2) in H. For reasons of biological interpretation we
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are interested in positive solutions only. We consider mild solutions in
H (e.g. [30]). That is, continuous maps u : [0, T ] → H that satisfy the
Variation of Constants Formula

u(t) = T (t)u(0) +
∫ t

0
T (t− s)

[
F (u(s))− Λu(s)

]
ds, (5.6)

where (T (t))t≥0 is the strongly continuous linear semigroup in H defined
by the product of the diffusion semigroups (Tdi

(t))t≥0 in C(Ω) associated
to Di∆ in each of the components. Let C(Ω)+ denote the closed convex
cone of positive functions in C(Ω) and put H+ := C(Ω)3

+. H+ is closed
in H.

Proposition 5.1. For each u0 ∈ H+ there exist a unique mild solution
t 7→ u(t;u0) to (5.2) with u(0;u0) = u0 that is positive and exists for all
time t ≥ 0. Moreover, the semiflow

φ : H+ × [0, T ]→ H+ : (u0, t) 7→ u(t;u0) (5.7)
is continuous for all T > 0.

The proof of Proposition 5.1 is deferred to Section 5.3.
Bursts of gene product A appear at times 0 < t′1 < t′2 < . . . . Put t′0 := 0

and tn := t′n+1− t′n. We now provide a model for the probability distribu-
tion function (p.d.f.) p(u, t) for the random variables tn, conditional that
the state un of the system at t′n is u:

Prob(tn < t|un = u) =
∫ t

0
p(u, s)ds. (5.8)

Since only the dimer D affects transcription, p(u, s) depends on u through
u3 only.

In the abstract model we require that tn ∈ [0, T ] almost surely, whatever
the concentration of D. One may choose T so large that this is biologically
reasonable. Mathematically, in the formulation of p(u, t), it requires a
truncation procedure. First we describe a p.d.f. p̂(u, t) that allows for
intervals between two consecutive interventions of arbitrary length. We
truncate the distribution p̂ at T large and renormalise to obtain the p.d.f.
p(u, ·) on [0, T ] that ensures that the intervals between interventions will
be of length less than T almost surely:

p(u, t) := p̂(u, t)
(∫ T

0
p̂(u, t)dx

)−1

. (5.9)
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The following assumption on p(u, t) is crucial for application of our
general results on Markov operators:

(A) There exists 0 < τ < T such that p(u, t) = 0 for all 0 ≤ t ≤ τ
and u ∈ H+.

This assumption holds for our model of the biological transcription pro-
cess, as we shall now discuss.

The random variable tn is the sum of two independent random variables:
the time needed for transcription initiation, Tini, and the time needed for
the RNAp to complete transcription Ttr. The latter does not depend on
the state u of the activation system. We start describing the probability
distribution function (p.d.f.) ptr of Ttr.
Ttr is the sum of the random times T itr (i = 1, . . . , N) that the RNAp

requires to copy the i-th nucleotide of the total of N that constitute gene a
and move to the next nucleotide (cf. [34]). We assume T itr ≥ ∆τi > 0 almost
surely for each i. That is, the RNAp cannot make arbitrarily fast jumps
from one nucleotide to the next. It results in an almost sure transcription
delay τtr :=

∑
i ∆τi > 0, such that Assumption (A) is satisfied with τ ≥

τtr. If T itr has p.d.f. pitr and we assume that the T itr are independent, then
ptr is the N -fold convolution product of p1

tr ∗· · ·∗pNtr . Recall that we ignore
transcription abortion.

Providing an expression for the p.d.f. of Tini is more involved. To that
end we also need to model the changes in state of the promoter region,
where D and RNAp can bind at their specific binding sites. We distinguish
six states: the free promoter (R), the closed complex of RNAp bound to
R (RNAp-Rc) and the open complex (RNAp-Ro), all with no D bound.
These states are numbered as 1, 2 and 3. States 4, 5 and 6 of the promoter
region are similar configurations where also D has bound to its binding site
(i.e. RD, RNAp-RcD and RNAp-RoD). The changes in state are modeled
as a continuous time Markov process with constant transition rates as
indicated in Figure 5.1, except for the transitions in which D binds. These
depend on u3(t). The transition from RNAp-Ro to R or from RNAp-
RoD to RD correspond to a transcription initiation event. It results in a
transcript of gene a provided that there is no active RNAp already active
on the gene. If there is, it is a futile attempt and the initiation is ignored.

Describe the state of the promoter region by an element π =
(π1, . . . , π6) ∈ [0, 1]6, where πi be the probability that the promoter region
is in state i. If the change in time of the concentration of D, t 7→ u3(t)
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Figure 5.1. The six states of the promoter region indicat-
ing possible transitions. The direction corresponding to the
rate constants with positive upper index in (5.10)-(5.15) are
shown. State 7 is added to compute the probability distribu-
tion function for the waiting time till the next transcription
start event.

is given and the state of the promoter at t = 0 is π0, then the probabil-
ities πi(t) for the state of the promoter at time t are determined by the
nonautonomous system of ordinary differential equations (ODEs)

d
dtπ1(t) = −k+

Rπ1 + k−Rπ2 − k+(u3(t))π1 + k−π4 + kini π3, (5.10)

d
dtπ2(t) = k+

Rπ1 − k−Rπ2 − k+
p (u3(t))π2 + k−p π5 − k+

co π2 + k−co π3, (5.11)

d
dtπ3(t) = k+

co π2 − k−co π3 − kini π3, (5.12)

d
dtπ4(t) = −k+

RDπ4 + k−RDπ5 + k+(u3(t))π1 − k−π4 + kini π6, (5.13)

d
dtπ5(t) = k+

RDπ4 − k−RDπ5 + k+
p (u3(t))π2 − k−p π5 − k+

co π5 + k−co π6,

(5.14)
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d
dtπ6(t) = k+

co π5 − k−co π6 − kini π6, (5.15)

with initial condition π(0) = π0.
The transition rate k+ from R to RD (state 1 to 4) and k+

p from RNAp-
Rc to RNAp-RcD (state 2 to 5) depend on the concentration u3 of D
throughout the cell. We assume that the maps u3 7→ k+(u3) and u3 7→
u+
p (u3) are Lipschitz continuous from H+ into R+, such that k+(0) = 0 =
k+
p (0). For example, one may take

k+(u3) = k+
0

∫
ΩD

u3(x) dx,

where k+
0 > 0 and ΩD ⊂ Ω is a region around the location of the binding

site of D where D can bind to its site.
Equations (5.10)–(5.12) allow for the occurrence of ‘spontaneous’ tran-

sciption initiations, in the absence of D. The effect of the transcription
factor D on the transcription initiation process is in changing the binding
rate of RNAp to the promoter from k+

R , when D is not bound, to k+
RD,

when D is bound. If k+
RD > k+

R , this models activation. k+
RD < k+

R models
inhibition. kini is the rate of transition initiation attempts from an open
complex. An attempt is successful when there is no RNAp already active
on gene a. k−co is the rate of the closed-to-open complex isomerisation re-
action. In model (5.10)–(5.15) we assumed that the presence of D at the
promoter region does not influence this isomerisation reaction, nor the
transition initiation attempt.

Define
Π :=

{
π ∈ [0, 1]6 : π1 + · · ·+ π6 = 1

}
.

Lemma 5.2. The flow associated to the linear system (5.10)–(5.15) leaves
Π invariant. If u3(t) = ū3 is constant, then system (5.10)–(5.15) has a
unique steady state π∗(ū3) in Π. Moreover, π∗(ū3) is strictly positive and
globally attracting in Π. The map u3 7→ π∗(u3) is Lipschitz when restricted
to bounded subsets of C(Ω)+.

Proof. The structure of the equations is such that π1(t) + · · · + π6(t) is
constant. The solution cannot leave R6

+, since the vectorfield is pointing
inwards on the boundary. Therefore Π is invariant.

We can write system (5.10)–(5.15) as π′(t) = Kπ(t) where the matrixK
is positive off-diagonal. So there exists a > 0 such that Ka := aI+K ≥ 0.
Ka is primitive. In fact, inspection of the graph of the possible transitions
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shows that K6
a > 0, i.e. there is a directed path of length 6 between

each pair of states. ‘Conservation of mass’ arises from 1K = 0, where
1 = (1, . . . 1). Thus, 1 is a strictly positive left-eigenvector of Ka for the
eigenvalue a. The Perron–Frobenius Theorem yields that the Ka right-
eigenspace of the eigenvalue a is one-dimensional too and must contain
a strictly positive vector π∗, which can be uniquely chosen in Π. Thus,
π∗(ū3) := π∗ is the unique steady state in Π and π∗ is strictly positive.
Moreover, all other eigenvalues λ of Ka have Reλ < a, which implies that
all eigenvalues of K other than 0 have strictly negative real part. This
yields the global attractivity of π∗ in Π.

Each component of π∗ can be computed using the King–Altman diagra-
matic method [20], which is essentially Cramer’s rule applied to matrices
that arise from chemical reaction networks. It yields that

π∗i (u3) =
a

(i)
0 + a

(i)
1 k+(u3) + a

(i)
2 k+

p (u3) + a
(i)
3 k+(u3)k+

p (u3)
a′0 + a′1k

+(u3) + a′2k
+
p (u3) + a′3k

+(u3)k+
p (u3)

where a(i)
j , a

′
j ≥ 0 are sums of particular products of rate constants in the

transition network that do not depend on u3. One has a′0 > 0. Because
the rate functions k+ and k+

p are Lipschitz, they are bounded on bounded
subsets of C(Ω)+. The bounded Lipschitz functions are an algebra. So
when π∗i is restricted to a bounded subset, then π∗i (u3) = f(u3)/g(u3)
with f and g bounded Lipschitz and g(u3) ≥ 1, using the positivity of
k+(u3) and k+

p (u3) and the constants a′j . Then∣∣π∗i (u3)− π∗i (u′3)
∣∣ ≤ ∣∣g(u′3)f(u3)− f(u′3)g(u3)

∣∣
≤ |g(u′3)| · |f(u3)− f(u′3)|+ |f(u′3)| · |g(u′3)− g(u3)|,

from which follows that π∗i is Lipschitz condition on each bounded subset
of C(Ω)+. �

We compute the p.d.f. pini of Tini by modifying the transition model
that we already have. We add a state 7 of the promoter region that can
be reached by transition from state 3 and 6, each with a rate kini. This
state represents a (absorbing) transcription initiation attempt. Moreover,
remove the transitions from state 3 to 1 and 6 to 4 (see Figure 5.1). π̄i(t),
i = 1, . . . , 7, denotes the probabilities to be in state i at time t in this
new model. The dynamics of π̄(t) is governed by (5.10)–(5.15), where we
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removed the terms kini π3 and kini π6. Also add the equation
d
dt π̄7 = kini π̄3 + kini π̄6 (5.16)

and initial condition π̄7(0) = 0. Then π̄7(t) is the probability that tran-
scription initiation occurred before time t, given that concentration of
D evolved according to t 7→ u3(t). Thus, if the state at t = 0 of the
promoter, π0, and that of the activation system, u0, is given, then put
u3(t) = φ(u0, t)3 and

Prob
(
Tini(u0) ≤ t

)
= π̄7(t;u3(·), π0).

Here we stressed in the notation the dependence of the solution on the
initial state π0 and the development u3(·) of the concentration of D over
time. It yields

pini(u0, t;π0) = d
dt π̄7(t;u3(·), π0)

= kini π̄3(t, u3(·), π0) + kini π̄6(t, u3(·), π0). (5.17)

We now assume that u3(t) changes slowly compared to the transitions
of state in the promoter region such that the state of the promoter just
after an intervention at time t′n is equal to the unique steady state π∗(un3 )
of system (5.10)–(5.15), where un3 is the state of the activation system
directly after the arrival of the burst in protein production. Thus, if the
state of the activation system directly after an intervention equals u0, then
pini(u0, t) = kini

[
π∗3(t;φ(u0, ·), π∗(u0)) + π∗6(t;φ(u0, ·), π∗(u0))

]
(5.18)

for (slowly) changing u, starting from u0 at t = 0.
Finally,

p̂(u, t) = pini(u) ∗ ptr(t) =
∫ t

0
pini(u, s)ptr(t− s)ds (5.19)

and equation (5.9) defines p(u, t). Since ptr(t) = 0 for 0 ≤ t ≤ τtr, a similar
statement holds for p̂(u, t), hence p(u, t). So Assumption (A) is satisfied.

Since ribosomes start translation already when the first part of the
mRNA transcript becomes available from the RNAp, the time of appear-
ance of the first completed gene product A is taken equal to the time of
completion of the mRNA transcript. When transcription of gene a is com-
plete a burst of A proteins is added to the system. We model this addition
as instantaneous. It causes the state x′ of the system just before the burst
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to change to x′ + h′, where h′ is a random variable in H+ of the partic-
ular form h′ = (h′A, 0, 0), because no other compounds are added after
the translation process than A. Notice that h′A models randomness both
in the number of proteins in a burst (cf. [27]) and their spatial location
directly after completion of translation.

Because the abstract model in Section 4 assumes that the random jumps
h are centered at 0, we fix a probability density function f1

A ∈ C(Ω)+,
f1
A 6= 0 and N̄ > 0 such that

h′A = N̄f1
A + h1,

where h1 is a C(Ω)-valued random variable with law νε1 that is supported
in B(0, ε) in C(Ω). It has been observed experimentally that the number of
proteins in a burst follows an exponential distribution approximately [26,
4, 17], but due to volume and resource restrictions in a cell, there should
be a cut-off to this distribution at higher molecular numbers. Note that
N̄ need not be the expected number of produced molecules.
νε1 induces a probability measure νε on H, supported within the ball

B(0, ε) in H. In particular it is concentrated on C(Ω)× {0} × {0}.
Define

S(u, t) := φ(u, t) + N̄(f1
A, 0, 0).

Clearly, S(·, t) mapsH+ into itself. The state un+1 of the activation system
just after the arrival of the burst of proteins at time t′n+1 then equals

un+1 = S(un, tn) + h, (5.20)

where h ∈ H represents a random deviation from the deterministic jump
with law νε, independent of the state S(un, tn). We thus defined a Markov
chain (un) in H+. The law µn ∈M1(H+) satisfies

µn = Pµn−1,

were the Markov operator P is given by equations (4.8) and (4.9).
The set-up is as in the abstract model introduced at the start of Sec-

tion 4, except that we need to define the invariant closed set X of H+ for
the deterministic ‘flow’ S(·, t) on which Assumptions (1)–(5) hold. This is
the objective of the next section.
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5.3. Verification of assumptions of the abstract model
We show in this section that Assumptions (1)–(5) for the abstract model,
formulated in Section 4, hold for the model for an autoregulated gene
described above. Assumptions (1), (3) and (5) are the most involved.

Let G(u) := F (u) − Λu, viewed as map from DF ⊂ R3 into R3. The
dynamical system (Φt)t≥0 defined by the initial value problem for the
ODE x′(t) = G(x(t)) leaves R3

+ invariant. Moreover, 0 is a globally stable
steady state of this system in R3

+, because the total number of A-particles,
N(t) := x1(t) + x2(t) + 2x3(t), satisfies

d
dtN(t) ≤ −λ0N(t), λ0 := min

i
λi.

Lemma 5.3. Let bi > 0, i = 1, 2, 3. The region Rb := {u ∈ R3 : 0 ≤ ui ≤
bi, i = 1, 2, 3} is invariant under (Φt)t≥0, provided

b1 >
v−A
λ1
,

k+
D

k−D + λ3
· b22 < b3 <

k+
D

k−D
· b22 + λ2

2k−D
· b2 −

v+
A

2k−D
. (5.21)

There exist b3 > 0 satisfying (5.21) if and only if

b2 >
λ2(k−D + λ3)

4λ3k
+
D

−1 +

√√√√1 + 8 v+
Ak

+
Dλ3

λ2
2(k−D + λ3)

 . (5.22)

Moreover, for each u ∈ R3
+ there exists b ∈ R3

+ satisfying (5.21) such that
u ∈ Rb.

Proof. A sufficient condition for Rb to be invariant is, that the vector field
G points inwards at any boundary point. For the part of the boundary
where ui = 0 for some i this is easily observed. For the other sides of the
box Rb, observe that

G1(b1, u2, u3) ≤ v−A − λ1b1, (5.23)
G2(u1, b2, u3) ≤ v+

A − 2k+
D b

2
2 + 2k−Du3 − λ2b2 (5.24)

G3(u1, u2, b3) ≤ k+
D u

2
2 − (k−D + λ3)b3. (5.25)

Thus, a sufficient condition for invariance is, that the right hand sides
in each of the inequalities (5.23)–(5.25) is strictly less than zero for all
u ∈ Rb. This leads to (5.21). The two parabolas in (b2, b3)-space that
define the condition on b3 in (5.21) intersect in the positive cone at the
value for b2 given by the right hand side in (5.22) and the condition on b3
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can hold only when b2 is beyond this point. The region bounded by the
two parabolas is unbounded, both in b2 and b3 direction. So we obtain the
last statement. �

The invariant region Rb for the ODE defined by G results into an in-
variant set

HRb
:= {f ∈ H : f(x) ∈ Rb for all x ∈ Ω}

for the reaction-diffusion system (5.2), according to [5, 6]. This allows to
establish Proposition 5.1 and Assumption (1) of Section 4:

Proof of Proposition 5.1. Standard arguments (e.g. [30]) lead to local exis-
tence and uniqueness of the mild solution t 7→ u(t;u0) for initial condition
u0 in H+, because of the local Lipschitz property of the perturbation G on
an open neighbourhood of H+ that avoids the discontinuities in G relating
to the denominators in the Michaelis–Menten rates in (5.3) and (5.4).

Let u0 ∈ H+. According to Lemma 5.3 there exists b ∈ R3
+ that sat-

isfies (5.21) and such that u0 ∈ HRb
.The latter set is invariant for the

solution operators (φt)t≥0 of (5.2), i.e. u(t;u0) ∈ HRb
for all t for which

the solution exists. In particular the solution remains positive and is uni-
formly bounded. Thus the maximal mild solution exists for all time, since
no blow-up can occur in finite time. Standard estimates using the Vari-
ation of Constants Formula (5.6) yield the joint continuity of the map
(u0, t) 7→ u(t;u0). �

Let b ∈ R3
+ satisfy (5.21) such that HRb

is an invariant set for the
dynamical system (φt)t≥0 defined by (5.2). We view the latter as ∂tu =
(D∆u − Λu) − F (u). That is, as a perturbation of the linear semigroup
generated by D∆u−Λu by the non-linear map F . The corresponding mild
solution u ∈ C(R+, H+) satisfies

ui(t) = e−λitTdi
(t)u0

i +
∫ t

0
e−λi(t−s)Tdi

(t− s)Fi(u(s)) ds, (5.26)

component-wise.

Lemma 5.4. Let N̄ > 0 and f1
A ∈ C(Ω)+ be given. Assume that Assump-

tion (A) holds. If b ∈ R3
+ satisfies (5.21) and

N̄‖f1
A‖∞ ≤ (1− e−λ1τ ) ·

(
b1 −max

(v+
A

λ1
,
v−A
λ1

))
, (5.27)
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then S(·, t) maps HRb
into itself for any τ ≤ t ≤ T . Moreover, there

exist b ∈ R3
+ that satisfy both (5.21) and (5.27). Consequently, S satisfies

Assumption (1) when we take X := HRb
.

Proof. Note that −v+
A ≤ F1(u) ≤ v−A in C(Ω) for u ∈ H+. From (5.26)

one then derives

‖u1(t)‖∞ ≤ e−λ1tb1 + max
(v+
A

λ1
,
v−A
λ1

)
· (1− e−λ1t). (5.28)

If (5.27) holds, then for any τ ≤ t ≤ T , ‖u1(t)+N̄f1
A‖∞ ≤ b1, so S(u0, t) ∈

HRb
. Comparison of (5.21) and (5.27) reveals that one can always choose

b ∈ R3
+ such that both conditions are satisfied. The continuity assertion

is covered by Proposition 5.1. �

Lemma 5.5. Let N̄ > 0, ε > 0, f1
A ∈ C(Ω)+, f1

A 6= 0, and Borel prob-
ability measure νε1 supported on B(0, ε) ∩ (C(Ω)+ − N̄f1

A) be given. Then
there exists b ∈ R3

+ such that Assumptions (1) and (5) hold on X = HRb
.

Proof. Because τ > 0, we can choose first b1 > 0 so large that (5.27)
is satisfied. Lemma 5.4 yields b ∈ RR3

+ such that Assumption (1) holds.
Moreover, for every h ∈ supp νε, h = (h1, 0, 0) with h1 ∈ supp νε1. Because
of the conditions imposed on supp νε1 and the choice of b1 in (5.27), one
has

N̄f1
A + h1 ≥ 0, u1(t) + N̄f1

A + h1 ≤ b1
for all τ ≤ t ≤ T . This yields Assumption (5). �

From this point on we fix b ∈ R3
+ such that the statements in Lemma 5.5

hold.
Next consider the estimation of the Lipschitz constant of u 7→ φ(u, t),

hence of S(·, t), and Assumption (3), ‘contractivity on average’. These are
the most involved to establish. We expect solutions of (5.2) to converge
to 0 as t→∞, at least for some sufficiently large set of initial conditions
near 0 in H+. In effect, for any invariant region Rb for the ODE system
defined by G, Theorem 3.1 in [6] provides essentially a condition under
which the solution starting in HRb

will converge exponentially fast to 0
in H. However, to verify Assumption (3), we need to control the Lips-
chitz constant of the semiflow φ, which seems more difficult to achieve.
Moreover, the condition in [6] is

σ := dλ∆ −M > 0,
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where d = mini di, λ∆ is the smallest positive eigenvalue of −∆ acting on
C(Ω) with Neumann conditions, and M = max{‖DG(u)‖ : u ∈ Rb}. One
has

DF (u) =


− v+

Ak
+
A

(k+
A + u1)2

v−Ak
−
A

(k−A + u2)2 0

v+
Ak

+
A

(k+
A + u1)2 − v−Ak

−
A

(k−A + u2)2 − 4k+
Du2 2k−D

0 2k+
Du2 −k−D

 . (5.29)

So
DG(u)23 = 2k−D and DG(u)33 = −k−D − λ3

are both independent of u. So in our setting M ≥ δ > 0, where δ is
independent of the region Rb. λ∆ will depend on Ω, so it may happen
that σ ≤ 0 for some Ω. Thus, [6] cannot be expected to be applicable for
all sets Ω. We like to have broader generality and thus pursuit a different
approach.

Let u and û be two solutions with initial conditions u0 and û0 in HRb
.

According to (5.29) one has

‖F1(u(t))−F1(û(t)‖∞ ≤ α‖u1(t)−û1(t)‖∞ + β‖u2(t)−û2(t)‖∞, (5.30)
‖F2(u(t))−F2(û(t)‖∞ ≤ α‖u1(t)−û1(t)‖∞ + γ‖u2(t)−û2(t)‖∞

+ 2k−D‖u3(t)−û3(t)‖∞, (5.31)
‖F3(u(t))−F3(û(t)‖∞ ≤ 2k+

Db2‖u2(t)−û2(t)‖∞ + k−D‖u3(t)−û3(t)‖∞,
(5.32)

where

α := v+
A

κ+
A

, β := v−A
κ−A

, γ := max

β, 4k+
Db2 + β

(
κ−A

κ−A + b2

)2
 . (5.33)

Here one exploits that each component ui(t) ∈ (C(Ω), ‖ · ‖∞) and that
0 ≤ ui(t) ≤ bi.

From (5.26) we then derive that

eλ0t‖u(t)− û(t)‖H

≤ ‖u0 − û0‖H +
∫ t

0
K(t− s) · eλ0s‖u(s)− û(s)‖H ds, (5.34)

206



Unique invariant measure

with convolution kernel

K(t) := max
(
αe(λ0−λ1)t + αe(λ0−λ2)t,

βe(λ0−λ1)t + γe(λ0−λ2)t + 2k+
Db2e

(λ0−λ3)t,

2k−De
(λ0−λ2)t + k−De

(λ0−λ3)t).
We obtain:

Lemma 5.6. For all u0, û0 ∈ X = HRb
and t ∈ [0, T ],

‖u(t)− û(t)‖H ≤ e(k0−λ0)t ‖u0 − û0‖H (5.35)

with
k0 := max

(
2α, β + γ + 2k+

Db2, 3k
−
D

)
where α, β and γ are defined as in (5.33). Consequently, if k0 < λ0 =
min(λ1, λ2, λ3), then S(·, t) is a contraction for any t ∈ [0, T ]. In particu-
lar, Assumption (3) holds for any p.d.f. p(x, t).

Proof. Clearly, t 7→ K(t) is a strictly decreasing function. Hence

K(t) ≤ K(0) = max
(
2α, β + γ + 2k+

Db2, 3k
−
D

)
. (5.36)

Put k0 := K(0). Gronwall’s Lemma yields the estimate of the Lipschitz
constant. The remaining statements are now obvious. �

The condition k0 < λ0 in Lemma 5.6 puts constraints on all degradation
rates: they should be sufficiently large. It may be too strong to cover
real-life examples. Contractivity is a too strong property to require when
only ‘contractivity-on-average’ is needed. Moreover, (5.36) will be a bad
estimate for t large typically, so (5.35) – hence Lemma 5.6 – is not optimal.

As an example of how the contractivity-on-average condition (3) widens
the applicability of the results in our biological model, let us consider the
situation where λ0 = λ3 and λ1 = λ2 > λ3. That is, the dimer is the most
stable compound in view of degradation, while phosphorylation of protein
does not affect degradation. Put λ := λ1 − λ0. Then

K(t) = max
(
2αe−λt, (β + γ)e−λt + 2k+

Db2, 2k
−
De
−λt + k−D

)
. (5.37)

Note that K does not depend on b1. If we take b2 > 1 sufficiently large,
then (5.37) reduces to

K(t) = (β + γ)e−λt + 2k+
Db2 (5.38)
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Put
c0 := 2k+

Db2, c1 := β + γ.

Lemma 5.7. Assume that 0 < λ3 < λ2 = λ1. Then for all u0, û0 ∈ X =
HRb

,
‖u(t)− û(t)‖H ≤ λ(t) ‖u0 − û0‖H , (5.39)

for all and t ∈ [0, T ], with

λ(t) := a+e
(λ+−λ3)t + a−e

(λ−−λ3)t. (5.40)

Here λ+ and λ− are the positive and negative solution to the equation

x2 + (λ− c0 − c1)x− c0λ = 0,

in which λ := λ2 − λ3. Moreover,

a+ := λ+ + λ

λ+ − λ−
> 0, a− := − λ− + λ

λ+ − λ−
, a+ + a− = 1.

Finally, a− > 0 if and only if λ+ < c0.

Proof. Put f(t) := eλ3t‖u(t)− û(t)‖H . Since K ≥ 0, repeated substitution
of equation (5.34) into itself yields

f(t) ≤ f(0)
n−1∑
k=0

K(∗k) ∗ 1(t) +K(∗n) ∗ f(t), for all n, (5.41)

where ‘∗’ denotes convolution of locally integrable functions on R+ and
K(∗k) the k-fold convolution product of K with itself.

Let Lφ(z) be the Laplace transform of a locally integrable function φ
on R+:

Lφ(z) := lim
R→∞

∫
[0,R]

f(t)e−zt dt,

for those z ∈ C for which the limit exists. For two locally integrable
functions ϕ and ψ, L(ϕ ∗ ψ)(z) = Lϕ(z) · Lψ(z). The Laplace transform
of K defined by (5.38) equals

LK(z) = c0
z

+ c1
z + λ

, (5.42)

so

L
( ∞∑
k=0

K(∗k) ∗ 1
)

(z) = L1(z)
1− LK(z) = z + λ

z2 + (λ− c0 − c1)z − c0λ
(5.43)
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The quadratic polynomial in the denominator in (5.43) has two real roots,

λ± = 1
2

{
(c0 + c1 − λ)±

√
(c0 + c1 − λ)2 + 4c0λ

}
, (5.44)

with λ+ > 0 and λ− < 0, leading to
z + λ

z2 + (λ− c0 − c1)z − c0λ
= a+
z − λ+

+ a−
z − λ−

, a± = ± λ± + λ

λ+ − λ−
.

We obtain
∞∑
k=0

K(∗k) ∗ 1(t) = a+e
λ+t + a−e

λ−t. (5.45)

Notice that a+ > 0. Moreover, a− > 0 if and only if λ+/c0 < 1 (using
λ+λ− = −c0λ).

Since
f(t) ≤ 2(b1 + b2 + b3) eλ0t,

one has
|Lf(z)| ≤ 2(b1 + b2 + b3)

Re z − λ3
.

Moreover, equation (5.42) yields, that there exists C > 0 such that

|LK(∗n)(z)| ≤
(
C

|z|

)n
for z ∈ C with Re z > 0 sufficiently large, for all n. Mellin’s inversion
formula for the Laplace transform then yields that K(∗n) ∗ f(t) → 0 as
n → ∞, uniformly for t in a compact set. Thus we finally obtain the
required estimate (5.39) from (5.45) and (5.41). �

Remark. The sign of λ+ − λ3 may be positive or negative, depending on
the values of the constants c0 and c1 and that of the degradation rates
λ1 = λ2 and their deviation λ from λ3. This can be seen from the following
estimate that simply derives from (5.44):

c0 + c1 − λ1 < λ+ − λ3 < c0 + c1 − λ1 +
√
c0λ.

Lemma 5.8. Assume 0 < λ3 < λ2 = λ1 and let λ(t) be defined by (5.40).
Then λ(0) = 1 and λ′(0) = c0 + c1 − λ3.

Proof. λ(0) = a+ + a− = 1. For the second statement, notice first that

a+λ− + a−λ+ = −λ, λ+ + λ− = c0 + c1 − λ.
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Then

λ′(0) = a+(λ+ − λ3) + a−(λ− − λ3)
= a+(λ+ − λ−) + a+λ− − λ3(a+ + a−) + a−λ+ − a−(λ+ − λ−)
= λ+ + λ+ a+λ− + a−λ+ − λ3 + λ− + λ

= c0 + c1 − λ3. �

According to Lemma 5.8, if c0 + c1 − λ3 < 0, then there exist a T ∗ > 0
such that λ(t) < 1 for 0 < t < T ∗.

Lemma 5.9. Assume c0 + c1 − λ3 < 0 and that τ < T ∗. Take T = T ∗. If
there exists a closed interval I ⊂ (τ, T ) and 0 < δ < 1 such that p(u, t) ≥ δ
for all u ∈ X and t ∈ I, then there exists 0 ≤ γ < 1 such that∫ T

0
λ(t)p(u, t) dt ≤ γ < 1

for all u ∈ X. That is, Assumption (3) is satisfied.

Proof. There exists 0 < δλ < 1 such that 1− λ(t) ≥ δλ for all t ∈ I. Then
for all u ∈ X,

1−
∫ T

0
λ(t)p(u, t) dt =

∫ T

0
(1− λ(t)) p(u, t) dt

≥
∫
I
(1− λ(t)) p(u, t) dt

≥ δλδ|I|,

because 1 − λ(t) ≥ 0 for t ∈ [0, T ]. By making I smaller if necessary, we
can ensure that ∫ T

0
λ(t)p(u, t) dt ≤ 1− δδλ|I| =: γ < 1,

while γ > 0. �

Now consider Assumption (4), the Dini condition for the probability
density function p(x, t). It holds because u3 7→ π∗(u3) is Lipschitz when
restricted to the bounded set {u3 : (u1, u2, u3) ∈ X} (see Lemma 5.2, π∗
has Lipschitz constant L∗ on this set, say) and the following lemma. Recall
the construction of pini(u, t), in particular the solutions π̄(t;u3(·), π0) (see
Section 5.2).
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Lemma 5.10. There exists constants C > 0 and ω ∈ R, depending on
b ∈ R+, T > 0 and the rate constants in the promoter transition model,
such that

‖π̄(t;u3(·), π0)− π̄(t; û3(·), π̂0)‖1

≤ Ceωt
(
‖π0 − π̂0‖1 +

∫ t

0
e−ωs|u3(s)− û3(s)| ds

)

for all u, û ∈ C([0, T ], X), π0, π̂0 ∈ Π and t ∈ [0, T ].

Proof. The solution π̄(t) := π̄(t;u3(·), π0) satisfies a variation of constants
formula of the form

π̄(t) = eK
′tπ0 +

∫ t

0
eK
′(t−s)Fπ(u3(s))π̄(s) ds (5.46)

for a suitable 7×7 matrixK ′ and matrix function Fπ. The non-zero entries
of Fπ(u3) are of the form ±k+(u3) and ±k+

p (u3). Because the maps k+(·)
and k+

p (·) are Lipschitz and X = HRb
is bounded, there exists constants

Mb > 0 and LF such that

‖Fπ(u3(s))‖ ≤Mb, ‖Fπ(u3(s))− Fπ(û3(s))‖ ≤ |u3(s)− û3(s)|

for all u(·), û(·) ∈ C([0, T ], X) and s ∈ [0, T ]. The norm ‖·‖ is the operator
norm associated to ‖ · ‖1. Moreover, there exist M ≥ 1 and ω ∈ R such
that ‖eK′t‖ ≤Meωt for all t ≥ 0.

From equation (5.46) one derives that

e−ωt‖π̄(t;u3(·), π0)− π̄(t; û3(·), π̂0)‖1

≤M‖π0 − π̂0‖1 +M

∫ t

0
e−ωsMb‖π̄(s;u3(·), π0)− π̄(s; û3(·), π̂0)‖1 ds

+MLF

∫ t

0
e−ωs|u3(s)− û3(s)| ds.

Application of a version of Gronwall’s Lemma yields the stated result. �
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Recall expression (5.18) for pini(u). Then we obtain, using (5.39):∫ T

0

∣∣p(u, t)− p(û, t)∣∣dt
≤
∫ T

0

∫ t

0

∣∣pini(u, s)− pini(û, s)
∣∣ptr(t− s) dsdt

≤ kini

∫ T

0

∫ t

0
‖π̄(s;φ(u, ·), π∗(u))− π̄(s;φ(û, ·), π∗(û))‖1 ptr(t− s) dsdt.

Lemma 5.10 then yields∫ T

0

∣∣p(u, t)− p(û, t)∣∣dt
≤ kiniC‖π∗(u)− π∗(û)‖1

∫ T

0

∫ t

0
eωsptr(t− s) dsdt

+ kiniC

∫ T

0

∫ t

0

∫ s

0
eωs‖φ(u, σ)− φ(û, σ)‖H dσ ptr(t− s) dsdt

≤ kiniCL
∗max(1, eωT ) · ‖u− û‖H

+ kiniC sup
t∈[0,T ]

λ(t) ·
∫ T

0

∫ t

0
seωs ptr(t− s) ds dt · ‖u− û‖H

≤ kiniC max(1, eωT )
[
L∗ + T 2 sup

t∈[0,T ]
λ(t)

]
· ‖u− û‖H .

for all u, u′ ∈ X = HRb
. Here we also used Lemma 5.2. This establishes

Assumption (4).

5.4. Main results on the model
We now summarise the major conclusions that can be drawn in the current
set-up in our model of an autoregulated gene as piecewise deterministic
Markov process from the theoretical results obtained in the first part of
the paper. For both theorems one can verify in Section 5.3 that in those
cases Assumptions (1)–(5) of the abstract model are satisfied. Hence The-
orem 4.5 yields the result in each case.

Theorem 5.11. If b ∈ R3
+ is such that the conditions of Lemmas 5.3,

5.4 and 5.5 are satisfied and if min(λ1, λ2, λ3) > max(2α, c0 + c1, 3k−D),
then the Markov operator P on HRb

has a unique invariant measure µ∗ ∈
M1(HRb

).
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Moreover,

Theorem 5.12. Suppose b ∈ R3
+ is such that the conditions of Lem-

mas 5.3, 5.4 and 5.5 are satisfied. If c0 + c1 < λ3 < λ2 = λ1, then
the Markov operator P on HRb

has a unique invariant measure µ∗ ∈
M1(HRb

).

In a forthcoming paper we shall address the stability of the unique
steady state that exists under the conditions on the parameter values
mentioned in Theorems 5.11 and 5.12. More precisely, we show that the
Markov operator P on HRb

satisfies: Pnµ converges weakly to µ∗ and this
convergence is exponentially fast.

5.5. Discussion of set-up and conditions in view of realistic
parameter values

A bacterial cell is small: a typical E. coli cell is about 3 µm long and 1 µm
wide [28]. The literature reports a diffusivity in the cytoplasm of E. coli
in a range 3-8 µm2/s for molecules of the size of green fluorescent protein
(GFP; ca. 27 kDa [28]). This value is consistent with the measured dif-
fusivity of the LacI repressor without its binding domain, fused to Venus
fluorescent protein in vivo (3 µm2/s, cf. [13]). However, the aparent diffu-
sivity of the same transcription factor with binding domain is one order
of magnitude smaller (0.4 µm2/s, [13]), because it spends quite some time
performing a 1D diffusion along the DNA in search of its binding site [13].
We conclude that the time scale of diffusion of transcription factors in an
E. coli cell is of the order of tens of seconds, while other compounds in
the activation system homogenise on a time scale of a second.

RNAp proceeds over the DNA with an average speed of the order of
15 base pairs (bp) per second [34]. Thus transcription time for a protein
consisting of 300 amino acids, coded by about 900 bp, is approximately
60 seconds, which is of the same order of magnitude as the time scale on
which diffusion homogenises the distribution of the transcription factor
(the dimer) in the activation system. Thus, it is not clear that one may
simplify the discussed model for the activation system by removing all
diffusion and using a system of ordinary differential equations instead.

Degradation is an import factor in living cells that cannot be ignored. It
is known from experiments, that newly synthesized proteins are subject to
fast degradation [15, 16, 31], of the order of 1−5×10−3 s−1, i.e. 30% of the
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produced proteins is degraded within a few minutes. Even after successful
folding after their production intracellular proteins are subject to various
protein-modifying processes that can cause their rapid degradation or the
dissociation of multimers [16]. Therefore degradation of all compounds
must be taken into account.

Realistic values for the rates in the chemical reactions and state transi-
tions are notoriously hard to obtain. In fact, the association and dissocia-
tion rates to binding sites of transcription factors and RNAp to the pro-
moter region may differ strongly among genes. It is not clear, whether the
closed-to-open complex isomerisation rate mentioned in [27] (0.014 s−1) is
representative for other genes, or even genes in other species. It requires
focus on a specific biological example and specific (autocatalytic) gene and
subsequent detailed analysis of rate constants to investigate whether the
derived sufficient conditions need further weakening. This should be the
topic of a separate study.
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