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Reduced Lq,p-Cohomology of Some Twisted
Products

Vladimir Gol′dshtein
Yaroslav Kopylov

Abstract

Vanishing results for reduced Lq,p-cohomology are established in the case
of twisted products, which are a generalization of warped products. Only the case
q ≤ p is considered. This is an extension of some results by Gol′dshtein, Kuz′minov
and Shvedov about the Lp-cohomology of warped cylinders. One of the main obser-
vations is the vanishing of the “middle-dimensional” cohomology for a large class
of manifolds.

La cohomologie Lq,p réduite de quelques produits twistés
Résumé

On établit des résultats d’annulation de la cohomologie Lq,p réduite pour les
produits twistés, une généralisation des produits tordus dans le cas de q ≤ p. Le
résultats obtenus sont des généralisations de certains résultats par Gol′dshtein,
Kuz′minov et Shvedov sur la cohomologie Lp des cylindres tordus. Une des obser-
vations principales est la trivialité de la cohomolgie en dimension “moyenne” pour
une large classe de variétés.

1. Introduction

The Lq,p-cohomology Hk
q,p(M) of a Riemannian manifold (M, g) is defined

to be the quotient of the space of closed p-integrable differential k-forms
by the exterior differentials of q-integrable k-forms. The quotient space
of Hk

q,p(M) by the closure of zero is called the reduced Lq,p-cohomology
H
k
q,p(M). If p = q then Lq,p-cohomology is usually referred to as simply

Lp-cohomology and the index p is used instead of p, p in all the notations.

The second author was partially supported by the State Maintenance Program for the
Leading Scientific Schools and Junior Scientists of the Russian Federation.
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A twisted product X ×h Y of two Riemannian manifolds (X, gX) and
(Y, gY ) is the direct product manifold X×gY endowed with a Riemannian
metric of the form

g := gX + h2(x, y)gY , (1.1)
where h : X × Y → R is a smooth positive function (see [4]). If X is
a half-interval [a, b[ then the twisted product X ×h Y is called a twisted
cylinder.

We refer to an m-dimensional Riemannian manifold (M, gM ) as an as-
ymptotic twisted product (respectively, as an asymptotic twisted cylinder)
if, outside anm-dimensional compact submanifold, it is bi-Lipschitz equiv-
alent to a twisted product (respectively, to a twisted cylinder).

In this paper, we prove some vanishing results for the (reduced) Lq,p-
cohomology of twisted cylinders [a, b)×hN for a positive smooth function
h : [a, b)×N → R in the case where the base N is a closed manifold and
p ≥ q > 1.

If in (1.1) the function h depends only on x then we obtain the familiar
notion of a warped product (see [1]). Twisted products were the object of
recent investigations [2, 3, 5, 6, 10, 14]. The reduced Lq,p-cohomology of
warped cylinders [a, b)×hN , i.e., of product manifolds [a, b)×N endowed
with a warped product metric

g = dt2 + h2(t)gN ,
where gN is the Riemannian metric of N and h : [a, b) → R is a positive
smooth function, was studied by Gol′dshtein, Kuz′minov, and Shvedov [7],
Kuz′minov and Shvedov [12, 13] (for p = q), and Kopylov [11] for p, q ∈
[1,∞), 1

p −
1
q <

1
dimN+1 .

The main results of this paper are technical. Here we mention a “uni-
versal” consequence of the main results on the vanishing of the “middle-
dimensional” cohomology:

Let N be a closed smooth n-dimensional Riemannian manifold. If
p ≥ q > 1 and n

p is an integer then H
n
p
q,p([0,∞)×h N) = 0.

In particular, if 1 < q ≤ 2 and n is even then H
n
2
q,2([0,∞)×h N) = 0.

The result was not known even for L2-cohomology. It does not depend
on the type of the warped Riemannian metric. Of course, the result leads
to the vanishing of the “middle-dimensional” cohomology for asymptotic
twisted cylinders.
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2. Basic Definitions

In this section, we recall the main definitions and notations. In what fol-
lows, we tacitly assume all manifolds to be oriented. Let M be a smooth
Riemannian manifold. Denote by Dk(M) := C∞0 (M,Λk) the space of all
smooth differential k-forms with compact support contained in M \ ∂M
and designate as L1

loc(M,Λk) the space of locally integrable differential
k-forms. Denote by Lp(M,Λk) the Banach space of locally integrable dif-
ferential k-forms endowed with the norm ‖θ‖Lp(M,Λk) := (

∫
M |θ|pdx)

1
p <∞

(as usual, we identify forms coinciding outside a set of measure zero).

Definition 2.1. We call a differential (k + 1)-form θ ∈ L1
loc(M,Λk+1)

the weak exterior derivative (or differential) of a differential k-form φ ∈
L1
loc(M,Λk) and write dφ = θ if∫

M
θ ∧ ω = (−1)k+1

∫
M
φ ∧ dω

for any ω ∈ Dn−k−1(M).

Remark 2.2. Note that the orientability of M is not substantial since
one may take integrals over orientable domains on M instead of integrals
over M .

We then introduce an analog of Sobolev spaces for differential k-forms,
the space of q-integrable forms with p-integrable weak exterior derivative:

Ωk
q,p(M) =

{
ω ∈ Lq(M,Λk) | dω ∈ Lp(M,Λk+1)

}
,

This is a Banach space for the graph norm

‖ω‖Ωkq,p(M) =
(
‖ω‖2Lq(M,Λk) + ‖dω‖2Lp(M,Λk+1)

)1/2
.

The space Ωk
q,p(M) is a reflexive Banach space for any 1 < q, p <∞. This

can be proved using standard arguments of functional analysis.

Denote by Ωk
q,p,0(M) the closure of Dk(M) in the norm of Ωk

q,p(M). We
now define our basic ingredients (for three parameters r, q, p).

Definition 2.3. Put
(a) Zkp,r(M) = Ker[d : Ωk

p,r(M)→ Lr(M,Λk+1)].
(b) Bk

q,p(M) = Im[d : Ωk−1
q,p (M)→ Lp(M,Λk)].
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Lemma 2.4. The subspace Zkp,r(M) does not depend on r and is a closed
subspace in Lp(M,Λk).

Proof. The lemma is in fact [9, Lemma 2.4 (i)]. However, we now repeat the
proof for the reader’s convenience. Note that Zkp,r(M) is a closed subspace
in Ωk

p,r(M) because it is the kernel of the bounded operator d. It is also
a closed subspace of Lp(M,Λk) since ‖α‖Ωkp,r(M) = ‖α‖Lp(M,Λk) for any
α ∈ Zkp,r(M). �

This allows us to use the notation Zkp (M) for all Zkp,r(M). Note that
Zkp (M) ⊂ Lp(M,Λk) is always a closed subspace but this is in general
not true for Bk

q,p(M). Denote by Bk
q,p(M) its closure in the Lp-topology.

Observe also that since d ◦ d = 0, one has Bk
q,p(M) ⊂ Zkp (M). Thus,

Bk
q,p(M) ⊂ Bk

q,p(M) ⊂ Zkp (M) = Z
k
p(M) ⊂ Lp(M,Λk).

Definition 2.5. Suppose that 1 ≤ p, q ≤ ∞. The Lq,p-cohomology of
(M, g) is defined as the quotient

Hk
q,p(M) := Zkp (M)/Bk

q,p(M) ,

and the reduced Lq,p-cohomology of (M, g) is, by definition, the space

H
k
q,p(M) := Zkp (M)/Bk

q,p(M) .

Since Bk
q,p is not always closed, the Lq,p-cohomology is in general a

(non-Hausdorff) semi-normed space, while the reduced Lq,p-cohomology
is a Banach space. Considering only the forms equal to zero on some
neighborhood (depending on the form) of a subset A ⊂ M and taking
closures in the corresponding spaces, we obtain the definition of the rela-
tive spaces Lp(M,A,Λk) and Ωq,p(M,A) and the relative nonreduced and
reduced cohomology spaces Hk

q,p(M,A) and Hk
q,p(M,A).

Similarly, one can define the Lq,p-cohomology with compact support
(interior cohomology)Hk

q,p;0(M,A) andHk
q,p;0(M,A). The interior reduced

cohomology is dual to the reduced cohomology:

Theorem 2.6 ([9]). Let (M, g) be an oriented m-dimensional Riemannian
manifold. If 1 < p, q < ∞ then H

k
q,p(M) is isomorphic to the dual of

H
m−k
p′,q′;0(M), where 1

p′ + 1
p = 1

q′ + 1
q = 1.
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Therefore, if M is complete then H
k
p(M) = H

k
p;0(M) and H

k
p(M) is

isomorphic to dual of Hm−k
p′ (M), where 1

p + 1
p′ = 1 [9].

Below |X| stands for the volume of a Riemannian manifold (X, g); the
notation |ω|X means the modulus of a differential form on (X, g).

3. Lq,p-Cohomology and Smooth Forms

It follows from the results of [8] that, under suitable assumptions on p, q,
the Lq,p-cohomology of a Riemannian manifold can be expressed in terms
of smooth forms.

Introduce the notations:
C∞Lp(M,Λk) := C∞(M,Λk) ∩ Lp(M,Λk);
C∞Ωk

q,p(M) := C∞(M,Λk) ∩ Ωk
q,p(M).

Theorem 3.1 ([8, Theorem 12.8 and Corollary 12.9]). Let (M, g) be anm-
dimensional Riemannian manifold and suppose that p, q ∈ (1,∞) satisfy
1
p −

1
q ≤

1
m . Then the cohomology H∗q,p(M) can be represented by smooth

forms.
More precisely, any closed form in Zkp (M) is cohomologous to a smooth

form in Lp(M). Furthermore, if two smooth closed forms α, β ∈ C∞(M)∩
Zkp (M) are cohomologous modulo dΩk−1

q,p (M) then they are cohomologous
modulo dC∞Ωk−1

q,p (M).
Similarly, any reduced cohomology class can be represented by a smooth

form.
In what follows, unless otherwise specified, we always assume that

p, q ∈ (1,∞) and 1
p −

1
q ≤

1
dimM .

4. The Homotopy Operator

From now on, Cha,bN is the twisted cylinder I×hN , that is, the product of
a half-interval I := [a, b) and a closed smooth n-dimensional Riemannian
manifold (N, gN ) equipped with the Riemannian metric dt2 + h2(t, x)gN ,
where h : I ×N → R is a smooth positive function.

Every differential form on I ×N admits a unique representation of the
form ω = ωA + dt ∧ ωB, where the forms ωA and ωB do not contain dt
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(cf. [7]). It means that ωA and ωB can be viewed as one-parameter families
ωA(t) and ωB(t), t ∈ I, of differential forms on N . Given a form ω defined
on I × N and numbers c, t ∈ [a, b), consider the form

∫ t
c ω =

∫ t
c ωB(τ)dτ

on N and the form Scω on [a, b) × N , (Scω)(t) =
∫ t
c ω for all t ∈ [a, b).

The domains of of these operators will be specified below.
The modulus of a form ω of degree k on Cha,bN is expressed via the

moduli of ωA(t) and ωB(t) on N as follows:

|ω(t, x)|M =
[
h−2k(t, x)|ωA(t, x)|2N + h−2(k+1)(t, x)|ωB(t, x)|2X

]1/2 (4.1)

Consequently,

‖ω‖Lp(Ch
a,b
N,Λk)

=
[∫ b

a

∫
N

(
h

2(n
p
−k)(t, x)|ωA(t,x)|2N+h

2(n
p
−k+1)(t,x)|ωB(t,x)|2N

)p
2 dxdt

]1
p

.

(4.2)

In the particular case of ω = ωA, call the form ω horizontal. If ω is a
horizontal form then

‖ω‖Lp(Ch
a,b
N,Λk) =

[∫ b

a

∫
N
|ω(t)|phn−kp(t, x)dxdt

]1/p

. (4.3)

Put

fk,p(t) = min
x∈N

{
h
n
p
−k(t, x)

}
and

Fk,p(t) = max
x∈N

{
h
n
p
−k(t, x)

}
.

Remarks 4.1.
(1) Suppose that k = n

p is an integer. Then Fn/p,p(t) = fn/p,p(t) ≡ 1.
For example, if n is even and p = 2 then Fn/2,2(t) = fn/2,2(t) ≡ 1.

(2) For warped products (h depends only on x), fk,p(t) = Fk,p(t) =
h
n
p
−k(t).
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Let
π : I ×N → N, π(t, x) = x

be the natural projection. For c ∈ [a, b), put Nc := {c} ×N . Let it : N →
Nt ⊂ [a, b)×N and ic : N → Nc ⊂ [a, b)×N be the natural immersions.

Every smooth k-form ω on Cha,bN satisfies the homotopy relations

dN

(∫ t

c
ω

)
+
∫ t

c
dω = i∗tω − i∗cω, (4.4)

dScω + Scdω = ω − π∗i∗cω. (4.5)

Here dN stands for the exterior derivative on N and d designates the
exterior derivative on [a, b)×N .

The homotopy relations cannot be used automatically for ω ∈
Ωk
q,p(Cha,bN) because of the problem of the existence of traces on subman-

ifolds. However, by Theorem 3.1, we can take only smooth forms in all
considerations concerning both reduced and nonreduced Lq,p-cohomology.

For the reader’s convenience, we repeat the classical proofs of (4.4)
and (4.5).

Using the representation ω = ωA + dt ∧ ωB, we have

dω = d(ωA(t) + dt ∧ ωB(t)) = dt ∧ ∂ωA
∂t

(t) + dNωA(t)− dt ∧ dNωB(t),

dN

(∫ t

c
ω

)
= dN

(∫ t

c
ωB(τ)dτ

)
=
∫ t

c
dNωB(τ)dτ,∫ t

c
dω =

∫ t

c
(dω)B (τ)dτ =

∫ t

c

(
∂ωA
∂t

(τ)
)
dτ −

∫ t

c
dNωB(τ)dτ.

Hence,

dN

(∫ t

c
ω

)
+
∫ t

c
dω =

∫ t

c

(
∂ωA
∂t

(τ)
)
dτ = ωA(t)− ωA(c) = i∗tω − i∗cω.

Similarly,

Scω =
∫ t

c
ωB(τ)dτ

dScω = d

(∫ t

c
ωB(τ)dτ

)
= dt ∧ ωB(t) +

∫ t

c
dNωB(τ)dτ,

Scdω =
∫ t

c
dω =

∫ t

c

(
∂ωA
∂t

(τ)
)
dτ −

∫ t

c
dNωB(τ)dτ.
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Therefore,

dScω + Scdω = dt ∧ ωB(t) +
∫ t

c

(
∂ωA
∂t

(τ)
)
dτ

= dt ∧ ωB(t) + ωA(t)− ωc(t)

= ω − i∗cω.

Lemma 4.2. Suppose that g is a function locally integrable on [a, b),∫ b
a |g(t)|dt = ∞, and ω ∈ C∞Lkp(Cha,bN). Then every set of full mea-
sure on [a, b) contains a sequence {tj} that converges to b and is such that
g(tj) 6= 0 and ‖i∗tjω‖Lp(N,Λk) = o([fk,p(tj)]−1|g(tj)|1/p) as j →∞.

Proof. Equality (4.3) implies:

∫ b

a
‖i∗tω‖

p
Lp(N,Λk)f

p
k,p(t)dt ≤

∫ b

a

∫
N
|ωA(t)|p hn−kp(t, x)dxdt

≤ ‖ω‖p
Lp(Ch

a,b
N,Λk)

<∞,

which yields the lemma. �

Lemma 4.3. Suppose that ω ∈ Lkp(Cha,bN), c ∈ [a, b), p ≥ q > 1. Then
the form

∫ t
c ω is defined for each t ∈ [a, b) and belongs to Lq(N,Λk−1).

Moreover, the norm of the linear operator
∫ t
c : Lkp(Cha,bN)→ Lk−1

q (Cha,bN)
satisfies the inequality

∥∥∥∥∫ t

c

∥∥∥∥ ≤ |N | 1q− 1
p

∣∣∣∣∫ t

c
f−p

′

k−1,p(τ)dτ
∣∣∣∣1/p′ .

The same holds for c = b if

∫ b

a
f−p

′

k−1,p(τ)dτ <∞.
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Proof. By Hölder’s inequality∥∥∥∥∫ t

c
ω

∥∥∥∥
Lq(N,Λk−1)

≤ |N |
1
q
− 1
p

∥∥∥∥∫ t

c
ω

∥∥∥∥
Lp(N,Λk−1)

= |N |
1
q
− 1
p

(∫
N

∣∣∣∣∫ t

c
ωB(τ)dτ

∣∣∣∣p
N

dx

)1/p

≤ |N |
1
q
− 1
p

(∫
N

∣∣∣∣∫ t

c
|ωB(τ)|Ndτ

∣∣∣∣pdx)1/p

≤ |N |
1
q
− 1
p

[∫
N

∣∣∣∣∫ t

c
h
−(n

p
−k+1)p′(x, τ)dτ

∫ t

c
|ωB(τ)|pN h

n−kp+p(τ, x)dτ
∣∣∣∣dx
]1/p

≤ |N |
1
q
− 1
p

[∫
N

∣∣∣∣∫ t

c
f−p

′

k−1,p(τ, x)dτ
∫ t

c
|ωB(τ)|pN h

n−kp+p(τ, x)dτ
∣∣∣∣dx
]1/p

≤ |N |
1
q
− 1
p

∣∣∣∣∫ t

c
f−p

′

k−1,p(τ)dτ
∣∣∣∣ ‖ω‖Lp(Ch

a,b
N,Λk).

This proves the lemma. �

5. The Main Results

5.1. Absolute reduced Lq,p-cohomology

Using the results of the previous section, we prove

Theorem 5.1. Let N be a closed smooth n-dimensional Riemannian man-
ifold and let p ≥ q > 1. If

Ia,b :=
∫ b

a
F pk,p(t)dt =∞; Jδ0,b :=

∫ b

δ0
fpk,p(τ)

(∫ τ

a
F pk,p(t)dt

)−1
dτ =∞

for some δ0 ∈ [a, b) then Hk
q,p(Cha,bN) = 0.

Remark 5.2. The condition “Jδ0,b = ∞ for some δ0 ∈ [a, b)” is in fact
equivalent to “Jδ0,b = ∞ for every δ0 ∈ [a, b)”. In this connection, below
we sometimes write Jb instead of Jδ0,b.
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Proof. Suppose that ω ∈ Lkp(Cha,bN) is weakly differentiable and dω = 0.
Therefore, ω ∈ Ωk

p,p(Cha,bN). By Theorem 3.1, we may assume that ω is

a smooth form. If
∫ b
δ0
fpk,p(τ)

(∫ τ
a F

p
k,p(t)dt

)−1
dτ = ∞ for δ0 ∈ (a, b) then

the function g(τ) = fpk,p(τ)
(∫ τ
a F

p
k,p(t)dt

)−1
is not integrable on intervals

of the form (c, b), δ0 ≤ c < b. By Lemma 4.2, there exists a sequence
{τj} ⊂ (δ0, b) ⊂ (a, b) such that τj → b and

‖i∗τjω‖Lp(N,Λk) = o

([∫ τj

a
F pk,p(t)dt

]−1/p
)

as j →∞.

Consider the form

ωj =
{
ω on Cha,τjN ,
π∗i∗τjω on Chτj ,bN.

It is easy to verify that ωj is weakly differentiable, belongs to Ωk
q,p(Cha,bN),

and satisfies dωj = 0. Indeed, if u ∈ Dn−k−1(Cha,bN) then, denoting the
restrictions of the corresponding forms to Cha,τj and Chτj ,bN by the same
symbols for simplicity and using (4.5), we get∫

Ch
a,b
N
ωj ∧ du =

∫
Cha,τj

ω ∧ du+
∫
Ch
τj,b

(ω − dSτjω) ∧ du

= (−1)k+1
∫
Cha,τj

dω ∧ u+ (−1)k+1
∫
Ch
τj,b

d(ω − dSτjω) ∧ u = 0,

which implies that dωj = 0.
We infer

‖ωj‖pLp(Ch
a,b
N,Λk) ≤

∫ τj

a
F pk,p(t)dt ‖i

∗
τjω‖

p
Lp(N,Λk) + ‖ω‖p

Lp(Ch
τj,b

N,Λk).

Therefore, ‖ωj‖Lp(Ch
a,b
N,Λk) → 0 as j → ∞; moreover, the form ω − ωj

is equal to 0 on [τj , b) × N . Hence, Sτj (ω − ωj) ∈ Ωq,p(Cha,bN) and
dSτj (ω − ωj) = ω − ωj . Thus, the cocycle ω is zero in the reduced co-
homology Hk

q,p(Cha,bN). �

From Remark 4.1 and Theorem 5.1 we obtain
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Theorem 5.3. Let N be a closed smooth n-dimensional Riemannian man-
ifold. If p ≥ q > 1, b =∞ and n

p is an integer then H
n
p
q,p(Cha,∞N) = 0.

In particular, if 1 < q ≤ 2 and n is even then H
n
2
q,2(Cha,∞N) = 0.

Proof. In this case, Ia,∞ = Ja,∞=∞, and by Theorem 5.1

H
n
p
q,p(Cha,∞N) = 0. �

Remark 5.4. For a warped cylinder Cha,bN , we have fpk,p(τ) = F pk,p(τ) =
hn−kp(τ). Therefore, if ∫ b

a
hn−kp(t)dt =∞

then

Jδ0,b =
∫ b

δ0
hn−kp(τ)

(∫ τ

a
hn−kp(t) dt

)−1
dτ

=
∫ b

δ0

d

dτ
log

(∫ τ

a
hn−kp(t)dt

)
dτ

= lim
τ↗b

{
log

(∫ τ

a
hn−kp(t)dt

)
− log

(∫ δ0

a
hn−kp(t)dt

)}
=∞,

and the result of Theorem 5.1 coincides with the corresponding result
in [7].

5.2. Relative reduced Lq,p-cohomology

Here we prove a sufficient vanishing condition for Hk
q,p(Cha,bN,Na), where

Na = {a} ×N .
Theorem 5.5. Let N be a closed smooth n-dimensional Riemannian man-
ifold. Assume that p ≥ q > 1,

Ĩa,b :=
∫ b

a
f−p

′

k−1,p(t)dt =∞,

and the integral

Aδ0,b :=
∫ b

δ0

F pk−1,p(τ)
fpp

′

k−1,p(τ)

(∫ τ

a
f−p

′

k−1,p(t)dt
)−1∣∣∣∣log

(∫ τ

a
f−p

′

k−1,p(t) dt
)∣∣∣∣−p dτ

is finite for some δ0 ∈ [a, b). Then Hk
q,p(Cha,bN,Na) = 0.
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Proof. Suppose that ω ∈ C∞Ωk
p,p(Cha,bN,Na) and dω = 0. The form ω is

the limit in Ωk
p,p(Cha,bN) of a sequence ωj of smooth forms each of which

is equal to zero on some neighborhood of Na.
As above, for a ≤ c < d ≤ b denote by Chc,dN the product [c, d)×N with

the metric induced from Cha,bN . For every e ∈ (a, b), Lemma 4.3 implies
that the operator Sa : Ωk

p,p(Cha,bN) → Ωk−1
q,p (Cha,eN) is bounded. Hence,

Saωj → Saω in Ωk−1
q,p (Cha,eN). Each of the forms Saωj vanishes on some

neighborhood of Na. Therefore, Saω ∈ Ωk−1
q,p (Cha,eN,Na) for all e ∈ (a, b).

Then the fact that i∗aω = 0 and relation (4.5) give the equality dSaω = ω.
Consider the functions

I(τ) =
∫ τ

a
f−p

′

k−1,p(t)dt,

ϕ(τ) = log | log I(τ)|,

ϕδ(τ) =
{

1 if τ ≤ δ,
min(1,max(1 + ϕ(δ)− ϕ(τ), 0)) if τ ≥ δ.

The function ϕ(t) is defined for τ sufficiently close to b and ϕδ(t) also
exists only for δ that are sufficiently close to b.

Since d(ϕδSaω) = dϕδ ∧ Saω + ϕδω, it follows that

‖d(ϕδSaω)− ω‖Lp(Ch
a,b
N,Λk)

= ‖d(ϕδSaω)− ω‖Lp(Ch
δ,b
N,Λk)

≤ ‖dϕδ ∧ Saω‖Lp(Ch
δ,b
N,Λk) + ‖(ϕδ − 1)ω‖Lp(Ch

δ,b
N,Λk).

Since |ϕδ − 1| ≤ 1, we have
‖(ϕδ − 1)ω‖Lp(Ch

δ,b
N,Λk) ≤ ‖ω‖Lp(Ch

δ,b
N,Λk).

By (4.2) and Lemma 4.3 for p = q, for δ sufficiently close to b we infer

‖dϕδ ∧ Saω‖pLp(Ch
δ,b
N,Λk) =

∫ b

δ
hn−kp+p(τ, x)

∣∣∣∣dϕδdτ
∣∣∣∣p∣∣∣∣∫ τ

a
ω

∣∣∣∣p
N

dx dτ

≤
∫ b

δ
F pk−1,p(τ)

∣∣∣∣dϕδdτ
∣∣∣∣p(∫ τ

a
f−p

′

k−1,p(t)dt
) p
p′

dτ ‖ω‖p
Lp(N,Λk)

≤
∫ b

δ

F pk−1,p(τ)
fpp

′

k−1,p(τ)

(∫ τ

a
f−p

′

k−1,p(t)dt
)−1∣∣∣∣log

(∫ τ

a
f−p

′

k−1,p(t) dt
)∣∣∣∣−pdτ ‖ω‖pLp(N,Λk).
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By hypothesis, the last quantity vanishes as δ → b. Thus,
d(ϕδSaω) → ω as δ → b. The function ϕδ is equal to zero in some
neighborhood of b. Hence, ϕδSaω ∈ Ωk

q,p(Cha,bN,Na). This shows that
H
k
q,p(Cha,bN,Na)=0. �

Remark 5.6. The paper [7] contains the following assertion for a warped
cylinder Cha,bN [7, Theorem 2]:

If
∫ b

a
h
−(n

p
−k+1)p′(t)dt <∞ then H

k
p,p(Cha,bN,Na) = 0.

Suppose that
b∫
a
h
−(n

p
−k+1)p′(t)dt <∞. We infer

∫ b

δ

h
−(n

p
−k+1)p′(τ)(∫ τ

a h
−(n

p
−k+1)p′(t)dt

)∣∣log
(∫ τ
a h
−(n

p
−k+1)p′(t) dt

)∣∣p dτ
= 1
p− 1

∫ b

δ

d

dτ

[
log

(∫ τ

a
h
−(n

p
−k+1)p′(t) dt

)]1−p
dτ

= 1
p− 1

[
log

(∫ δ

a
h
−(n

p
−k+1)p′(t)dt

)]1−p

→ 0 as δ → b.

Thus, Theorem 5.5 generalizes this assertion to twisted cylinders Cfa,bN
with N closed.

Remark 4.1 and Theorem 5.5 imply
Theorem 5.7. Let N be a closed smooth n-dimensional Riemannian man-
ifold. If p ≥ q > 1, b =∞, and n

p is an integer then H
n
p

+1
q,p (Cha,bN,Na) = 0.

In particular, if 1 < q ≤ 2 and n is even then H
n
2 +1
q,2 (Ca,bN,Na) = 0.

Proof. In this case, Aδ0,b =
∫ b
δ0

(τ−a)−1 (log(τ − a))−p dτ <∞ for any a, b
and, by Theorem 5.5, Hk

q,p(Cha,bN,Na) = 0. �

6. Asymptotic Twisted Cylinders

Definition 6.1. We refer to a pair (M,X) consisting of anm-dimensional
manifold M and an m-dimensional compact submanifold X with bound-
ary as an asymptotic twisted cylinder ACha,b∂X if M \ X is bi-Lipschitz
diffeomorphically equivalent to the twisted cylinder Cha,b∂X.
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Theorem 5.5 readily implies

Theorem 6.2. Let (M,X) = ACha,b∂X be an asymptotic twisted cylinder
with dimM = dimX = m = n+ 1. Assume that p ≥ q > 1,∫ b

a
f−p

′

k−1,p(t)dt =∞,

and the integral

Aδ0,b :=
∫ b

δ0

F pk−1,p(τ)
fpp

′

k−1,p(τ)

(∫ τ

a
f−p

′

k−1,p(t)dt
)−1∣∣∣∣log

(∫ τ

a
f−p

′

k−1,p(t) dt
)∣∣∣∣−p dτ

is finite for some δ0 ∈ (a, b).
Then Hk

q,p(M,X) = 0.

Proof. Note that bi-Lipschitz diffeomorphisms preserve Lp and Lq. More-
over, extension by zero gives a topological isomorphism between the rel-
ative spaces Wr,s(Cha,b∂X, (∂X)a) and Wr,s(M,X) for all r, s. This gives
topological isomorphisms

H∗r,s(M,X) ∼= H∗r,s(Cha,b∂X, (∂X)a); H
∗
r,s(M,X) ∼= H

∗
r,s(Cha,b∂X, (∂X)a)

for all r, s. The theorem now follows from Theorem 5.5. �

To obtain a version of this theorem for Hk
q,p(M), we will need the exact

sequences of a pair for Lq,p-cohomology.
Recall that an exact sequence

0→ A
ϕ→ B

ψ→ C → 0 (6.1)

of cochain complexes of vector spaces is called an exact sequence of Banach
complexes if A, B, C are Banach complexes and all mappings ϕk, ψk are
bounded linear operators.

A short exact sequence (6.1) of Banach complexes induces an exact
sequence in cohomology

. . . −→ Hk−1(C) ∂
k−1
−→ Hk(A) ϕ∗k−→ Hk(B) ψ∗k−→ Hk(C) −→ . . .

with all operators ∂, ϕ∗, ψ∗ bounded and a sequence in reduced
cohomology

. . . −→ H
k−1(C) ∂

k−1

−→ H
k(A) ϕ∗k−→ H

k(B) ψ
∗k

−→ H
k(C) −→ . . . , (6.2)
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where all operators ∂, ϕ∗, ψ∗ are bounded and the composition of any
two consecutive morphisms is equal to zero. Sequence (6.2) is in general
not exact but exactness at its particular terms can be guaranteed by some
additional assumptions. For example, we have (see [7, Theorem 1 (1)]):

Proposition 6.3. Given an exact sequence (6.1) of Banach complexes, if
Hk(C) is separated and dim ∂k−1(Hk−1(C)) <∞ then the sequence

H
k−1(C) ∂

k−1

−→ H
k(A) ϕ∗k−→ H

k(B) ψ
∗k

−→ H
k(C)

is exact.

Let (M,X) = ACha,b∂X be an asymptotic twisted cylinder.
Consider the short exact sequence of Banach complexes

0→ C∞ΩP(M,X) j→ C∞ΩP(M) i→ C∞ΩP(X)→ 0. (6.3)
In all the three complexes of (6.3),

C∞Ωl
P =


C∞Ωl

q,q if l ≤ k − 1;
C∞Ωl

q,p if l = k;
C∞Ωl

p,p if l ≥ k + 1;

i is the natural embedding, and j is the restriction of forms. The coho-
mology of C∞ΩP(X) is simply the de Rham cohomology of X.

Theorem 6.4. Let (M,X) = ACha,b∂X be an asymptotic twisted cylinder
with dimM = dimX = m = n+ 1. Assume that p ≥ q > 1, Hk(X) = 0,∫ b

a
f−p

′

k−1,p(t)dt =∞,

and the integral

Aδ0,b :=
∫ b

δ0

F pk−1,p(τ)
fpp

′

k−1,p(τ)

(∫ τ

a
f−p

′

k−1,p(t)dt
)−1∣∣∣∣log

(∫ τ

a
f−p

′

k−1,p(t) dt
)∣∣∣∣−p dτ

is finite for some δ0 ∈ (a, b).
Then Hk

q,p(M) = 0.

Proof. Using Theorem 3.1 and Proposition 6.3, we obtain the exact se-
quence of reduced cohomology spaces

H
k
q,p(M,X) −→ H

k
q,p(M) −→ 0. (6.4)
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By Theorem 6.2, Hk
q,p(M,X) = 0 if p ≥ q > 1,

∫ b
a f
−p′
k−1,p(t)dt =∞, and

Aδ0,b <∞ for some δ0 ∈ (a, b). Hence, Hk
q,p(M) = 0. �

Theorem 5.7 and the exact sequence (6.4) readily imply

Theorem 6.5. Let (M,X) = ACha,b∂X be an asymptotic twisted cylin-
der with dimM = dimX = m. If p ≥ q > 1, m−1

p is an integer, and

H
m−1
p

+1(X) = 0 then H
m−1
p

+1
q,p (M) = 0.

In particular, if 1 < q ≤ 2, m is odd, and H
m−1

2 +1(X) = 0 then
H

m−1
2 +1

q,2 (M) = 0.

Using the duality theorem (Theorem 2.6), we now reformulate this re-
sult for cohomology with compact support (interior cohomology) in the
case of p ≥ q > 1. Consider the dual exponents p′ = p/(p − 1) and
q′ = q/(q − 1).

Theorem 6.6. Let (M,X) = ACha,b∂X be an asymptotic twisted cylin-
der with dimM = dimX = m. If p ≥ q > 1, m−1

q is an integer, and

H
m−1
q′ +1(X) = 0 then H

m−1
q

q,p;0 (M) = 0.
In particular, if q ≥ 2, m is odd, and H

m−1
2 (X) = 0 then

H
m−1

2
q,2;0 (M) = 0.

Proof. We have q′ ≥ p′ > 1. Note that

m− 1
q

= (m− 1)
(

1− 1
q′

)
= m−

(
m− 1
q′

+ 1
)
.

By Theorem 6.5, H
m−1
q′ +1

p′,q′,0 (M) = 0 and, by the Hölder–Poincaré duality
for Lq,p-cohomology (Theorem 2.6),

H
m−1
q

q,p,0 (M) = H
m−1
q′ +1

p′,q′ (M) = 0. �

Recall that if a manifold Y is complete then Hk
p(Y ) = H

k
p;0(Y ) for all k

(see [9]). We have:

166



Reduced Lq,p-Cohomology

Corollary 6.7. Let (M,X) = ACha,b∂X be an asymptotic twisted cylinder
with dimM = dimX = m and let M be a complete manifold.

If p > 1, m−1
p is an integer, and H

m−1
p

+1(X) = 0 then H
m−1
p′

p′ (M) =

H
m−1
p

+1
p (M) = 0.
In particular, if m is odd and H

m−1
2 +1(X) = 0 then H

m−1
2

2 (M) =
H

m−1
2 +1

2 (M) = 0.
Remark 6.8. Observe that, in Theorems 6.5 and 6.6 and Corollary 6.7, for
the usual de Rham cohomology, we have H∗(X) = H∗(M).

Unfortunately, our methods only make it possible to make conclusions
mainly about warped cylinders and not about twisted cylinders.

The examples below can be considered in a straightforward manner
with the use of Theorems 5.3 and 5.7. The results are new even for Lp-
cohomology (p = q). Similar observations also hold for asymptotic twisted
cylinders.

Below the symbols C1, C2 stand for positive constants.
(A) Suppose that a ≥ 0, b = ∞, and C1e

s1t ≤ h(t, x) ≤ C2e
s2t (s2 ≥

s1 ≥ 0). Then
(1) Hk

q,p(Cha,∞N) = 0 in each of the following cases:
(1a) p ≥ q > 1, k = n

p ;
(1b) p ≥ q > 1, s1 = s2, k < n

p ;
(2) Hk

q,p(Cha,∞N,Na) = 0 in each of the following cases:
(2a) p ≥ q > 1, k = n

p + 1;
(2b) p ≥ q > 1, k > n

p + 1 + 1
pp′s1

, s1 = s2.
(B) Suppose that a ≥ 1, b = ∞, and C1t

s1 ≤ h(t, x) ≤ C2t
s2 with

s2 ≥ s1 ≥ 0. Then
(1) Hk

q,p(Cha,∞N) is zero in each of the following cases:
(1a) p ≥ q > 1, k = n

p ;
(1b) p ≥ q > 1, s1 = s2, k < n

p ;
(1c) p ≥ q > 1, s1 = s2, np < k ≤ n

p + 1
ps1

.
(2) Hk

q,p(Cha,∞N,Na) is zero in each of the following cases:
(2a) p ≥ q > 1, s1 = s2, np + 1− 1

p′s1
≤ k < n

p + 1;
(2b) p ≥ q > 1, k = n

p + 1;
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