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Abstract

Inspired by Montanaro’s work, we introduce the concept of additivity rates
of a quantum channel L, which give the first order (linear) term of the minimum
output p-Rényi entropies of L⊗r as functions of r. We lower bound the additivity
rates of arbitrary quantum channels using the operator norms of several interesting
matrices including partially transposed Choi matrices. As a direct consequence,
we obtain upper bounds for the classical capacity of the channels. We study these
matrices for random quantum channels defined by random subspaces of a bipartite
tensor product space. A detailed spectral analysis of the relevant random matrix
models is performed, and strong convergence towards free probabilistic limits is
shown. As a corollary, we compute the threshold for random quantum channels to
have the positive partial transpose (PPT) property. We then show that a class of
random PPT channels violate generically additivity of the p-Rényi entropy for all
p ≥ 30.95.

1. Introduction

In this paper, we focus on three questions related to additivity properties
of quantum channels. First, we introduce the concept of additivity rates
by which we can bound additivity violations for tensor powers of chan-
nels. Then, we use these results to upper bound the classical capacity of
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quantum channels. Finally, we prove the existence of PPT quantum chan-
nels violating the additivity of minimum output p-Rényi entropy. In the
following three subsections, we introduce the above questions and present
our main results.

1.1. Additivity rates of quantum channels
One of the most important conjectures in quantum information theory
had been the additivity of p-Rényi entropy: for any (quantum) channels
L1,2,

Hmin
p (L1 ⊗ L2) = Hmin

p (L1) +Hmin
p (L2) (1.1)

for 1 ≤ p ≤ ∞. Here, Hmin
p (·) is defined for a quantum channel L by

Hmin
p (L) = min

X
Hp(L(X)) (1.2)

where X runs over all the quantum states, and the p-Rényi entropy Hp(·)
is defined by

Hp(X) = 1
1− p log (TrXp) . (1.3)

Note that Hp(·) becomes von Neumann entropy as p→ 1. This conjecture
was made first for p = 1 in [41], and then for p ∈ (1,∞) in [1]. More
detailed explanations about additivity questions can be found in [39].

These conjectures were disproved by Hayden and Winter for 1 < p <∞
[34] and by Hastings for p = 1 [33]. The case p = 0, and p close to 0, was
disproved in [23]. Importantly, the violation in the case p = 1 implies that
we can increase the classical capacity of some quantum channels by using
entangled inputs [48]. Then, an important question comes to our mind:
how much one can increase the classical capacity by using entanglement
over as many quantum states as possible. Although this question on clas-
sical capacity should be most important, it is difficult to treat it directly.
On the other hand, approaches via Rényi entropy only involve eigenvalues
of matrices and this fact enables us to use random matrix and free proba-
bility to investigate the generic behavior of random quantum channels on
this issue. In this paper, for natural class of random quantum channels,
we bound additivity violation of Rényi entropy.

In fact, Montanaro [44] investigated on the limit of additivity violation
for p =∞ and extended the result to 1 ≤ p <∞ by using the monotonicity

2



Additivity rates and PPT property

of the Schatten p-norms in p. In our paper, we study this problem first for
p = 2 and then extend it to 0 ≤ p < 2. His paper and ours both depend
on estimate of norm of random matrices. However, those two random
matrices are different and give different estimates. Detailed discussions on
this matter are made in Section 6.4 and Section 8.2.

Informally, our main theorem on limitation of additivity violation can
be stated as follows.

Theorem 1.1. Consider a sequence of random quantum channels Ln :
Md(C) → Mk(C), defined via random embeddings of Cd into Cn ⊗ Ck,
where k is a fixed parameter and d ∼ tnk for a fixed t ∈ (0, 1). Then,
almost surely as n→∞, for all p ∈ [0, 2], there exist constants αp ∈ [0, 1]
such that, for all r ≥ 1,

1
r
Hmin
p (L⊗rn ) ≥ αpHmin

p (Ln). (1.4)

The constants αp satisfy the following relations

(1) When 0 < t < 1/2 is a constant,

αp = o(1) + p− 1
2p

[
1 + 2 log 2 + log(1− t)

log t

]
· 1(1,2](p). (1.5)

(2) When k is large and t � k−τ with τ > 0,

αp = o(1) +


p−1
2p if 0 < τ ≤ 1− 1/p
τ/2 if 1− 1/p ≤ τ ≤ 2
1 if τ ≥ 2.

(1.6)

The above statements hold for the complementary channels LC :Md(C)→
Mn(C), where the roles of Ck and Cn are swapped.

In the result above, the larger the constant αp is, the more restrictive
the additivity violation is. A precise definition of additivity rates is given
in Definition 3.1 and more detailed estimates on α are made in Theorem
8.4. Also, our model of random quantum channels together with the idea
of complementarity is described in detail at the beginning of Section 2.1.
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1.2. Range of capacity

In [36, 46], the Holevo capacity of quantum channels, denoted by χ(·), was
proved to be the capacity of transmitting classical information without
entangled inputs. Here, χ(·) is defined for quantum channels L:

χ(L) = max
{pi,Xi}

[
H1

(∑
i

piL(Xi)
)
−
∑
i

piH1(L(Xi))
]
, (1.7)

where the (pi, Xi) are all possible ensembles with (pi) and (Xi) being a
probability distribution and quantum states, respectively. It is not difficult
to see that

χ(L) ≤ Hmax
1 (L)−Hmin

1 (L). (1.8)

Here, Hmax
1 (L) = maxX H1(L(X)); note that this quantity is trivially

additive, Hmax
1 (L⊗r) = rHmax

1 (L). The equality is saturated, for example,
if the channel L has covariant property [37], and it is also the case in
our setting for a similar reason, which will be discussed later. Since the
classical capacity, denoted by Ccl(·) is obtained by regularizing Holevo
capacity χ(·) [36, 46], we can show the following estimate.

Theorem 1.2. Consider a sequence of random quantum channels Ln :
Md(C) → Mk(C), defined via random embeddings of Cd into Cn ⊗ Ck,
where k is a fixed parameter and d ∼ tnk for a fixed t ∈ (0, 1). Then,
almost surely in the regime 1� k � n, the classical capacity is asymptot-
ically bounded as follows:

i) When 0 < t < 1/2 is a constant, we have

lim sup
n→∞

Ccl(Ln) ≤ log k + log 2 + 1
2 log t(1− t) + o(1). (1.9)

ii) When t � k−τ and 0 < τ ≤ 2, we have, for some constant c > 0

lim sup
n→∞

Ccl(Ln) ≤
(

1− τ

2

)
log k + c. (1.10)

iii) When t � k−τ and τ > 2, the classical capacity is almost surely
bounded by a constant.
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1.3. PPT property and additivity violation
Another topic treated in this current paper is the positive partial transpose
property (PPT) for quantum channels; a quantum channel L is called PPT
iff the partial transposition of its Choi matrix is positive semi-definite. The
importance of PPT channels stems from their recent use in the proofs of
superactivation for the quantum capacity, see [49]. Hence, it is interesting
to investigate typical PPT/non-PPT property for random quantum chan-
nels. Also, we show that there exist PPT channels which violate additivity
of Rényi p entropy. This result is interesting because all entanglement-
breaking channels are proved to be additive [42, 47]. Note that the set of
entanglement-breaking channels is contained by the set of PPT channels
but for qubit channels, these sets are the same. The above two problems
are investigated in Section 10, and we obtain the following results.

First, in Section 10.1 we have

Theorem 1.3. Consider a sequence Ln of random quantum channels of
parameters k, t, and let

tPPT = 1
2

(
1−

√
1− 1

k2

)
. (1.11)

If t ∈ (0, tPPT ) then, almost surely as n → ∞, the sequence Ln has the
PPT property, whereas if t ∈ (tPPT , 1), then, almost surely, the sequence
Ln does not have the PPT property. We say that the value tPPT is a
threshold for the PPT property of random quantum channels.

Second, we have

Theorem 1.4. Consider a sequence of random quantum channels Ln :
Md(C) → Mk(C), defined via random embeddings of Cd into Cn ⊗ Ck
and let d ∼ n

4k . Suppose one of the following two procedures are made:

• fix k ≥ 76 and take large enough p and n, or

• fix p ≥ 30.95 and take large enough n and k

then, typically Ln are PPT and violate additivity:
Hmin
p (Ln ⊗ L̄n) < 2Hmin

p (Ln). (1.12)

This theorem is divided into two theorems: Theorem 10.5 and Theorem
10.6 in Section 10.2.
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1.4. Structure of the paper

The paper is divided roughly into two parts: Sections 3 and 4 deal with the
general theory of additivity rates and their lower bounds, while Sections
5-10 deal with random quantum channels.

More precisely, after recalling some basic definitions and results in Sec-
tion 2, we introduce in Section 3 one of the main topics of this paper:
additivity rates of quantum channels. Then, in Section 4, we introduce
lower bounds for minimum output Rényi entropies, which are additive
with respect to tensor products. These results can be used to lower bound
the additivity rates. In Sections 5 and 6 we study these bounds for random
quantum channels. After recalling some known results about the minimum
output entropies of random quantum channels in Section 7, we give lower
bounds for the additivity rates of random quantum channels in Section
8, limiting the possible violations of the additivity of the minimum out-
put entropies of these channels. Based on previous results, we present in
Section 9 upper bounds for the classical capacitiy of (random) quantum
channels, and in Section 10 examples of random channels which are PPT
and violate the additivity of the minimum Rényi output entropies.

2. Preliminaries

In this section, we go through basic definitions and knowledge, which are
needed through this current paper. We give definitions on quantum states,
channels and entropy in Section 2.1, and then make quick overviews on
graphical Weingarten calculus and free probability in Section 2.2 and Sec
2.3, respectively, as much as we need.

Let us start by introducing some notation. In this paper, the operator
Tr denotes the usual, unnormalized trace. The reader may choose log to
denote the logarithm in basis 2 or e, depending on her/his background.
Finally, we use the following asymptotic notations for sequences:

xn ∼ yn ⇐⇒ lim
n→∞xn/yn = 1 (2.1)

xn � yn ⇐⇒ 0 < lim inf
n→∞ xn/yn ≤ lim sup

n→∞
xn/yn <∞. (2.2)
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2.1. Quantum states and channels

In this paper we will consider quantum channels L : Md(C) → Mk(C),
defined via the Stinespring dilation [51]

L(X) = [TrCn ⊗ idCk ](V XV ∗), (2.3)

for an isometry V : Cd → Cn ⊗ Ck. In this case, the dimensions of input,
output and environment spaces are d, k and n, respectively. If we swap the
roles of Ck and Cn, we get another channel LC , called the complementary
channel [38, 40]. Outputs of this channel LC : Md(C) → Mn(C) share
non-zero eigenvalues with those of the channel L as long as inputs are pure
states. Hence, our results on entropy bounds are also shared by L and LC .
For such maps L and LC we know that L⊗idCm and LC⊗idCm are positive
for anym ≥ 0. This property is called completely positivity. Later, we shall
consider random quantum channels obtained by choosing the isometry V
randomly. The probability distribution of the random variable V will be
the uniform one on the set of isometries, obtained by truncating a Haar-
distributed unitary matrix U ∈ U(kn): V will consist of the first d columns
of a kn×kn random Haar unitary matrix. For now, let us introduce a key
concept in this paper, the Choi matrix of a quantum channel [11]. To a
channel L, we associate its Choi matrix CL ∈ Mk(C) ⊗Md(C), defined
by

CL = [L⊗ id](Ed) =
d∑

i,j=1
L(eie∗j )⊗ eie∗j , (2.4)

where Ed ∈Md2(C) is the (unnormalized) maximally entangled state

Ed =
d∑

i,j=1
eie
∗
j ⊗ eie∗j . (2.5)

It is a classical result that a linear map L is completely positive if and
only if its Choi matrix CL is positive semidefinite.

Finally, we shall denote byM1,+
d (C) the set of d-dimensional quantum

states
M1,+

d (C) = {X ∈Md(C) : TrX = 1 and X ≥ 0}. (2.6)
Let us now introduce the entropic quantities we are interested in. The

Shannon entropy of a probability vector x ∈ Rk, xi ≥ 0, ∑i xi = 1 is
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defined by

H(x) = −
k∑
i=1

xi log xi, (2.7)

where we put 0 log 0 = 0. This quantity is extended, via functional calcu-
lus, to quantum states, where it is known as the von Neumann entropy.
The Rényi entropies are a one-parameter generalizations of these quanti-
ties. They are defined for any p ∈ [0,∞], as follows:

Hp(x) =



log #{i : xi 6= 0}, if p = 0
H(x), if p = 1

1
1− p log

k∑
i=1

xpi , if p 6= 0, 1,∞

− log max{xi}, if p =∞.

(2.8)

The same quantities are defined for quantum states, and satisfy Hp(X) ∈
[0, log k]. In what follows, we shall use the following well-known result [7]:

Lemma 2.1. For a fixed probability vector x (resp. quantum state X),
the function

[0,∞] 3 p 7→ Hp(x) (2.9)
(resp. p 7→ Hp(X)) is non-increasing in p. In a similar manner, for a fixed
quantum channel L, the function p 7→ Hmin

p (L) is non-increasing in p.

Recall from the introduction that the minimum output p-Rényi entropy
of a quantum channel L is defined by

Hmin
p (L) = min

X∈M1,+
d

(C)
Hp(L(X)), (2.10)

for an arbitrary entropy parameter p ∈ [0,∞]. The functionals Hmin
p are

sub-additive, in the sense that for any quantum channels L,K, we have
Hmin
p (L⊗K) ≤ Hmin

p (L) +Hmin
p (K). (2.11)

For a pair of quantum channels (L,K) such that L ⊗ K has no pure
outputs, define the relative violation of minimum output p-entropy of the
pair (L,K) by

vp(L,K) :=
Hmin
p (L) +Hmin

p (K)
Hmin
p (L⊗K) ∈ [1,∞]. (2.12)

With this notation, we call the pair (L,K) p-additive iff. vp(L,K) = 1.
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2.2. The graphical Weingarten integration formula
The model of random quantum channels we are interested in involves
random isometries, which can be seen as truncated random Haar unitary
matrices. Since our approach to understanding statistics of such channels
is the moment method, we shall compute integrals of polynomials in the
entries of unitary matrices. The main result here is the Weingarten for-
mula, which was introduced by Weingarten [53] in the physics literature
and rigorously developed by Collins [12], and Collins and Śniady [19].

Theorem 2.2. Let n be a positive integer and i = (i1, . . . , ip), i′ =
(i′1, . . . , i′p), j = (j1, . . . , jp), j′ = (j′1, . . . , j′p) be p-tuples of positive inte-
gers from {1, 2, . . . , n}. Then, the following integral over the Haar measure
of Un can be evaluated as∫

Un
Ui1j1 · · ·UipjpŪi′1j′1 · · · Ūi′pj′p dU

=
∑

α,β∈Sp
δi1i′α(1)

. . . δipi′α(p)
δj1j′β(1)

. . . δjpj′β(p)
Wg(n, α−1β),

(2.13)

where the function Wg is called the Weingarten function (see the next
definition). If p 6= p′ then∫

U(n)
Ui1j1 · · ·UipjpŪi′1j′1 · · · Ūi′p′j′p′ dU = 0. (2.14)

For a permutation σ ∈ Sp, #σ denotes the number of cycles of σ,
and |σ| is the length of σ, i.e. the minimal number of transpositions that
multiply to σ. Note that the length function defines a distance on Sp, via
d(σ, τ) = |σ−1τ |. Let us recall the definition of the unitary Weingarten
function.

Definition 2.3. The unitary Weingarten function Wg(n, σ) is a combi-
natorial function which depends on a dimension parameter n and on a
permutation σ in the symmetric group Sp. It is the inverse of the function
σ 7→ n#σ with respect to the following convolution operation:

∀σ, π ∈ Sp,
∑
τ∈Sp

Wg(n, σ−1τ)n#(τ−1π) = δσ,π. (2.15)

In the large n limit (p is being kept fixed), it has the following asymptotics

Wg(n, σ) = n−(p+|σ|)(Mob(σ) +O(n−2)), (2.16)
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where the Möbius function Mob is multiplicative on the cycles of σ and
its value on a r-cycle is

(−1)r−1Catr−1, (2.17)
where Catr are the Catalan numbers. Note that we omit the dimension in
the Weingarten function when there is no confusion and write Wg(σ) for
Wg(n, σ). Also, we use the notation Mob(α, β) = Mob(α−1β).

When applying the above integration formula, especially in the cases
where the degree of the polynomial to be integrated is high, one has to deal
often with sums indexed by a large set of indices. Computing such sums is
a tedious task, so we use here a graphical formulation of the Weingarten
formula, introduced in [22]. Here we sketch the main ideas, referring the
reader to original work [22] for the technical details. This method has been
used recently in relation to channel capacities [16, 13, 20, 30], entanglement
theory [4, 18] and condensed matter physics [14].

The Weingarten graphical calculus builds up on the tensor diagrams
introduced by theoretical physicists and adds to it the ability to perform
averages over diagrams containing Haar unitary matrices. In the graphical
formalism, tensors (vectors, linear forms, matrices, etc.) are represented
by boxes, see Figure 2.1, left diagram. To each box, one attaches labels of
different shapes, corresponding to vector spaces. The labels can be filled
(black) or empty (white) corresponding to spaces or their duals: a (p, q)-
tensor will be represented by a box with p black labels and q white labels
attached. The example in Figure 2.1, left corresponds to a (square) matrix
A ∈Mn(C)⊗Mk(C).

Besides boxes, our diagrams contain wires, which connect the labels
attached to boxes. Each wire corresponds to a tensor contraction between
a vector space V and its dual V ∗ (V × V ∗ → C). See Figure 2.1 for the
example of the partial trace. A diagram is simply a collection of such boxes
and wires and corresponds to an element in a tensor product space (which
might be degenerate, i.e. the scalars C).

Let us now describe briefly how one computes expectation values of
such diagrams containing boxes U corresponding to Haar-distributed ran-
dom unitary matrices. The idea in [22] was to implement in the graphical
formalism the Weingarten formula in Theorem 2.2. Each pair of permuta-
tions (α, β) in (2.13) will be used to eliminate U and Ū boxes and wires
will be added between the black, resp. white, labels of the box U with in-
dex i and the black, resp. white, labels of the box Ū with index α(i), resp.
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where Catr are the Catalan numbers. Note that we omit the dimension in
the Weingarten function when there is no confusion and write Wg(σ) for
Wg(n, σ). Also, we use the notation Mob(α, β) = Mob(α−1β).

When applying the above integration formula, especially in the cases
where the degree of the polynomial to be integrated is high, one has to deal
often with sums indexed by a large set of indices. Computing such sums is
a tedious task, so we use here a graphical formulation of the Weingarten
formula, introduced in [22]. Here we sketch the main ideas, referring the
reader to original work [22] for the technical details. This method has been
used recently in relation to channel capacities [16, 13, 20, 30], entanglement
theory [4, 18] and condensed matter physics [14].
The Weingarten graphical calculus builds up on the tensor diagrams

introduced by theoretical physicists and adds to it the ability to perform
averages over diagrams containing Haar unitary matrices. In the graphical
formalism, tensors (vectors, linear forms, matrices, etc.) are represented
by boxes, see Figure 2.1, left diagram. To each box, one attaches labels of
different shapes, corresponding to vector spaces. The labels can be filled
(black) or empty (white) corresponding to spaces or their duals: a (p, q)-
tensor will be represented by a box with p black labels and q white labels
attached. The example in Figure 2.1, left corresponds to a (square) matrix
A ∈ Mn(C) ⊗ Mk(C).
Besides boxes, our diagrams contain wires, which connect the labels

attached to boxes. Each wire corresponds to a tensor contraction between
a vector space V and its dual V ∗ (V × V ∗ → C). See Figure 2.1 for the
example of the partial trace. A diagram is simply a collection of such boxes
and wires and corresponds to an element in a tensor product space (which
might be degenerate, i.e. the scalars C).

A A

Figure 2.1. Diagram for a matrix A acting on a tensor
product space and for its partial trace [id⊗Tr](A), obtained
by contracting with a wire the labels corresponding to the
second tensor factor.
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Figure 2.1. Diagram for a matrix A acting on a tensor
product space and for its partial trace [id⊗Tr](A), obtained
by contracting with a wire the labels corresponding to the
second tensor factor.

β(i). In this way, for each pair of permutations, one obtains a new diagram
Dα,β, called a removal of the original diagram corresponding to α, β. The
graphical Weingarten formula is described in the following theorem [22].

Theorem 2.4. If D is a diagram containing boxes U, Ū corresponding to
a Haar-distributed random unitary matrix U ∈ U(n), the expectation value
of D with respect to U can be decomposed as a sum of removal diagrams
Dα,β, weighted by Weingarten functions:

EU (D) =
∑
α,β

Dα,β Wg(n, α−1β). (2.18)

Since the above Weingarten formula is written as a sum over permuta-
tions we review next some additional properties of the symmetric group
endowed with the distance d(α, β) = |α−1β|. The function | · | has nice
properties, for example, |α−1| = |α| and |αβ| = |βα|; we refer the read-
ers to [45] for more details. For three permutations α, β, γ the triangle
inequality holds:

|α−1γ| ≤ |α−1β|+ |β−1γ|. (2.19)
When the bound above is saturated, we say that β is on a geodesic between
α and γ, and write α − β − γ. When γ is the full cycle permutation,
γ = (p · · · 3 2 1), permutations lying on the geodesic between id and γ are
simply called geodesics permutations. In [45, Proposition 23.23], it is shown
that geodesic permutations are in bijection with non-crossing partitions.
Recall that a partition π of {1, . . . , p} is said to be non-crossing if

∀ i < j < k < l, i ∼ k and j ∼ l =⇒ i ∼ j ∼ k ∼ l, (2.20)
where ∼ denotes the equivalence relation on {1, . . . , p} induced by π. We
denote by NC(p) the set of non-crossing partitions on p elements. More-
over, the isomorphism between geodesic permutations and non-crossing
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partitions respects many combinatorial properties of the objects, such as
the number of cycles (resp. blocks); see [45, Section 23] for more details.

2.3. Some elements of free probability
An excellent reference for the theory of free probability is [45]; we recall
now only some basic facts from this theory needed in the current paper.

A C∗ probability space is a unital C∗-algebra A equipped with a state
τ , which gives a norm; ‖a‖τ = limp→∞(τ(ap))1/p. Such a C∗ probability
space is denoted by (A, τ, ‖ · ‖τ ).

The convergence of the eigenvalues of random matrices can be stated
in the language of C∗ probability spaces as follows. Note that we define
two types of convergence: the convergence in distribution (which is the
convergence of all moments) and the strong convergence (which implies,
in particular, the convergence of the extreme eigenvalues of the matrices).
In this paper, we are interested in the operator norms of random matrices,
and the usual convergence in distribution does not guarantee the conver-
gence of the norms in the case when the size of the matrices grows; hence
we shall make use of the strong convergence.

Definition 2.5. Suppose we have C∗-probability spaces: (A, τ, ‖ · ‖τ ) and
(AN , τN , ‖ · ‖τN ) with N ∈ N, where τ and τN are faithful traces. For
l-tuple elements a = (a1, . . . , al) in A and a(N) = (a(N)

1 , . . . , a
(N)
l ) in A(N),

i) we say a(N) converges to a in distribution if

lim
N→∞

τN [P (a(N), a(N)∗)] = τ [P (a, a∗)], (2.21)

ii) we say a(N) converges to a strongly in distribution if in addition

lim
N→∞

‖[P (a(N), a(N)∗)‖τN = ‖P (a, a∗)‖τ . (2.22)

Here, P is any polynomial in non-commuting 2l variables.

The strong asymptotic freeness of random unitary matrices and deter-
ministic matrices has been proved by Collins and Male:

Proposition 2.6 ([15]). Suppose we have C∗-probability spaces: (A, τ, ‖ ·
‖τ ) and (MN (C), τN , ‖ · ‖τN ) with N ∈ N. Here, τ is a faithful trace and
τN is the usual normalized trace on the N×N matrix spaceMN (C). Take

12
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• a p-tuple of free Haar unitary elements u = (u1, . . . , up) in A, and

• a p-tuple of i.i.d. Haar-distributed unitary matrices
U (N) = (U (N)

1 , . . . , U
(N)
p ) inMN (C).

Suppose we are given
• a q-tuple of elements y = (y1, . . . , yq) free from u in A, and

• a q-tuple of matrices Y (N) = (Y (N)
1 , . . . , Y

(N)
q ) independent from

U (N) inMN (C).

such that Y (N) converges to y strongly in distribution. Then, almost surely
(U (N), Y (N)) converges to (u, y) strongly in distribution.

The following useful statement was proved by Male:
Proposition 2.7 (Proposition 7.3 in [43]). Suppose we have C∗-probability
spaces: (A, τ, ‖ · ‖τ ) and (AN , τN , ‖ · ‖τN ) with N ∈ N, where τ and τN are
faithful traces. Take

• a l-tuple of self-adjoint elements z = (z1, . . . , zl) in A, and

• a l-tuple of self-adjoint elements z(N) = (z(N)
1 , . . . , z

(N)
l ) in AN .

If we assume that z(N) converges to z strongly in distribution, then we
have strong convergence in the following sense: for any polynomial P in l
non-commuting variables with coefficients inMk(C),

lim
N→∞

‖P (z(N))‖τk⊗τN = ‖P (z)‖τk⊗τ (2.23)

Note that in the above result, one can drop the self-adjointness assump-
tion by considering real and imaginary parts of the operators involved.

We prove next a simple lemma about push-forwards of free additive con-
volution powers of probability measures and we recall a well-known result
about the free multiplicative convolution product of Bernoulli distribu-
tions bt = (1 − t)δ0 + tδ1. Recall that given two free elements a, b having
distributions µ, ν, the distributions of a + b and respectively a−1/2ba−1/2

are denoted by µ � ν, respectively µ � ν, and they are called the free
additive (resp. multiplicative) convolutions of µ and ν (for the latter, we
require a ≥ 0). We denote by f#µ the push-forward of a measure µ by a
measurable function f : if the random variable X has distribution µ, then
f(X) has distribution f#µ.

13



M. Fukuda & I. Nechita

Lemma 2.8. Let µ be a compactly supported probability measure on R so
that, for any T ≥ 1, µ�T is well-defined. Then, we have, for any a, b ∈ R

((x 7→ ax+ b)#µ)�T = (x 7→ ax+ Tb)#(µ�T ). (2.24)
Proof. First, let vµ be an element in the C∗-algebra which gives the prob-
ability measure µ so that avµ + b induces the probability measure µax+b.
Then, first by using multi-linear property of cummulant,

κn(avµ) = κn(avµ, . . . , avµ) = anκn(vµ). (2.25)
Also, shift does not change cummulants κn except for the case when n = 1:
κ1(av + b) = κ1(av) + b. Therefore,

κn((avµ + b)�T ) = T [anκn(vµ) + bδ1,n]
= κn(av�Tµ ) + Tbδ1,n = κn(av�Tµ + Tb).

(2.26)

This completes the proof. �

Proposition 2.9. The free multiplicative convolution of two Bernoulli
distributions bs, bt (with s, t ∈ [0, 1]) is given by
bs � bt = (1−min(s, t))δ0 + max(s+ t− 1, 0)δ1

+
√

(ϕ+(s, t)− x)(x− ϕ−(s, t))
2πx(1− x) 1[ϕ−(s,t),ϕ+(s,t)](x) dx, (2.27)

where the bounds of the a.c. part of the support are given by

ϕ±(s, t) = s+ t− 2st± 2
√
st(1− s)(1− t). (2.28)

Equivalently, for any T ≥ 1,
b�Ts = max(0, 1− Ts)δ0 + max(0, 1− T (1− s))δT

+ T
√

(γ+(s, T )− x)(x− γ−(s, T ))
2πx(T − x) 1[γ−(s,T ),γ+(s,T )](x) dx,

(2.29)

where γ±(s, T ) = (T − 2)s+ 1± 2
√

(T − 1)s(1− s). Note that ϕ±(s, t) =
tγ±(s, 1/t).
Proof. The first claim is taken from [52, Example 3.6.7], while the second
one follows from the fact that (see [45, Exercise 14.21])

(1− T−1)δ0 + T−1b�Ts = bs �
(
(1− T−1)δ0 + T−1δT

)
. (2.30)

�
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3. Additivity rates for quantum channels

In this section, we discuss how the functional Hmin
p (·) behaves with respect

to tensor products. The ideas and results developed here will be applied to
random quantum channels later. Our inspiration comes from [44], where
a multiplicative version of the additivity rates was established.

3.1. Definition and basic properties
First, as is explained in Section 1.1, because of non-additivity properties
of quantum channels, we do not know how Hmin

p (L⊗r) behaves as r grows.
So, we introduce a notion which quantifiesHmin

p (L⊗r) in terms ofHmin
p (L):

Definition 3.1. For a quantum channel L and an entropy parameter
p ∈ [0,∞], define the p-additivity rate of L by

αp(L) = sup
{
a ∈ [0, 1] : lim inf

r→∞
1
r
Hmin
p (L⊗r) ≥ aHmin

p (L)
}
. (3.1)

Different characterizations as well as some basic properties of p-additi-
vity rates can readily be obtained from basic properties of the entropy
functionals.

Proposition 3.2. The p-additivity rate of a quantum channel L can be
characterized in the following equivalent ways:

αp(L) = sup
{
a ∈ [0, 1] : ∀r ≥ 1, 1

r
Hmin
p (L⊗r) ≥ aHmin

p (L)
}

(3.2)

=

 lim
r→∞

Hmin
p (L⊗r)
rHmin

p (L) , if Hmin
p (L) > 0

1 , if Hmin
p (L) = 0.

(3.3)

=

inf
r≥1

Hmin
p (L⊗r)
rHmin

p (L) , if Hmin
p (L) > 0

1 , if Hmin
p (L) = 0.

(3.4)

Proof. The statements follow from Fekete’s sub-additive lemma [50,
Lemma 1.2.1] and (2.11): the lim inf in (3.1) is actually a limit and it
is equal to the infimum of the sequence Hmin

p (L⊗r)/r. The zero entropy
case follows from the fact that if the channel L has zero minimum output
entropy for some p, then the same holds for all tensor powers L⊗r because
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0 ≤ Hmin
p (L⊗r) ≤ rHmin

p (L) = 0. Moreover, such a channel is additive
with any channel (see [27, Lemma 1]). �

Proposition 3.3. The p-additivity rate functionals have the following set
of properties:

(1) The additivity relation Hmin
p (L⊗r) = rHmin

p (L) holds for all r ≥ 1
if and only if αp(L) = 1.

(2) Monotonicity with respect to tensor powers:

αp(L⊗s) ≥ αp(L), (3.5)

for all integer tensor powers s ≥ 1.

(3) Convex-like behaviour with respect to tensor products:
αp(L⊗K) ≤ vp(L,K) [tαp(L) + (1− t)αp(K)]

≤ vp(L,K) max {αp(L), αp(K)} , (3.6)

where vp(L,K) is the relative violation of the minimum p-output
entropy (2.12) and t = Hmin

p (L)/[Hmin
p (L) + Hmin

p (K)] ∈ [0, 1]; if
Hmin
p (L) = Hmin

p (K) = 0, just put t = 0.

(4) Additivity violations yield upper bounds:

αp(L) ≤ 1
vp(L,L) , ∀p ∈ [0,∞]. (3.7)

Proof. The first property follows directly from the definition. For the sec-
ond one, in the case when Hmin

p (L) > 0, write

αp(L⊗s) = lim
r→∞

Hmin
p ((L⊗s)⊗r)
rHmin

p (L⊗s) ≥ lim
r→∞

Hmin
p (L⊗sr)
srHmin

p (L) = αp(L). (3.8)

The last two statements follow from the definition of the relative violation
vp. �

Remark 3.4. In Proposition 3.3, we set an upper bound for αp(L) by using
the relative violation vp(L,L). However, in Section 8.3, we lower bound
αp(L⊗ L̄) by using vp(L, L̄), where L̄ is the complex conjugate of L.
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3.2. Examples: the Werner-Holevo and the antisymmetric
channels

In Proposition 3.3, we have seen that any p-additive channel L has unit
additivity rate αp(L) = 1. We discuss next some examples of non-additive
channels. Below, we shall denote with A> the transposition of a matrix
A.
Example 3.5. The Werner-Holevo channel Wd :Md(C)→Md(C),

Wd(X) = 1
d− 1[Tr(X)Id −X>] (3.9)

is the first known example of a quantum channel that violates the addi-
tivity of the minimum p-output Rényi entropy. In [54], it has been shown
that W3 violates the additivity for any value p > 4.79. From [54] we have
explicitly
vp(Wd,Wd) (3.10)

≥ 2 log(d− 1)
log {(d2 − 1)[(1− 2/d)/(d− 1)2]p + [(2− 2/d)/(d− 1)2]p} /(p− 1) ,

from which we can infer the following upper bounds for additivity rates
(see (3.7)):

α5(W3) ≤ 1
v5(W3,W3) ≤ 0.989

α∞(W3) ≤ 1
v∞(W3,W3) ≤

log 3
log 4 .

(3.11)

Example 3.6. In [31], the authors construct explicit counterexamples to
the additivity relation, for all values p > 2, by considering the natural
embedding of the anti-symmetric subspace Λ2(Cd) into Cd ⊗ Cd. This
yields a channel Ad :Md(d−1)/2(C)→Md(C). From [31], one has

vp(Ad, Ad) ≥
2 log 2

p
p−1 log

[
2 d
d−1

] . (3.12)

From the above relation, using (3.7), one gets, for example

∀p > 2, αp(Ad) ≤
1

vp(Ad, Ad)
= p

2(p− 1)(1 + log2[d/(d− 1)])

−−−→
d→∞

p

2(p− 1) < 1.
(3.13)
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4. Additive bounds for the Rényi entropies via (partial)
traces and transpositions

In this section we introduce several additive bounds for the Rényi entropies
of quantum channels (we focus on p = 2,∞) that we obtain by considering
the operator norm of the vectorized version of the isometry defining the
channel, after applying one or several traces or transpositions. We perform
an exhaustive study of this method, concluding that the method yields 5
non-trivial bounds, including the one studied by Montanaro [44]. The key
point is that the bounds we are providing are additive with respect to
tensor powers of channels, so they can be used to bound the additivity
rates defined in the previous sections. Interesting bounds for the classical
capacity of quantum channels can be obtained from these bounds.

Recall that the 2, resp. ∞-minimum output Rényi entropies of a quan-
tum channel L are

Hmin
2 (L) = min

X

log Tr
[
L(X)2]

1− 2 = −max
X

log Tr
[
L(X)2

]
(4.1)

Hmin
∞ (L) = −max

X
log ‖L(X)‖, (4.2)

where X runs over all the input quantum states. In what follows, we shall
write Θ(A) = A> for the transposition map, which is an involution on
matrix algebras. Moreover, for bi-partite matrices B ∈ Mp(C)⊗Mq(C),
we write BΓ for the partial transposition of B with respect to the second
subsystem,

BΓ = [idp ⊗Θq](B). (4.3)
Equivalently, the partial transposition operation can be defined on simple
tensors by (B1 ⊗B2)Γ = B1 ⊗B>2 .

4.1. Quantities arising from vectorized isometries
The starting point of our study is the vectorization of the isometry V :
Cd → Cn ⊗ Ck defining the channel L as in (2.3). To this isometry we
associate its vectorization v ∈ Cn ⊗Ck ⊗Cd (which is a tripartite tensor)
by the relation

v =
n∑
i=1

k∑
j=1

d∑
s=1
〈ei ⊗ fj , V gs〉ei ⊗ fj ⊗ gs, (4.4)
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where {ei}, {fj}, {gs} are orthonormal bases of respectively Cn, Ck, Cd.
The Choi matrix CL of the channel L (see (2.4)) is related to the third
order tensor v by the partial trace operation:

CL = [Trn ⊗ idk ⊗ idd](vv∗). (4.5)
For a graphical representation of the vectorization v and its relation to
the Choi matrix CL, see Figure 4.1. Note also that ‖v‖2 = Tr(V ∗V ) = d.

V
=v CL = v v∗

Figure 4.1. The vectorization v of the isometry V defin-
ing a quantum channel is an order 3 tensor. The partial
trace of the orthogonal projection of v with respect to the
first tensor factor gives the Choi matrix of the channel. In
both figures, round shaped labels correspond to Cn, squares
to Ck, and diamonds to Cd.

We shall now apply different operations to the orthogonal projection
on v and take the operator norm of the resulting matrix, in order to
obtain a scalar quantity B(v); in the next subsection, we show that some
of these quantities are (additive) bounds for the 2 or the ∞ minimum
output Rényi entropies of quantum channels. We are interested in three
operations: the identity id, the trace Tr, and the transposition Θ. These
operators will act on the three tensor factors of vv∗, and we shall denote
by BQRS = BQRS(L) the quantity

BQRS = ‖[Qn ⊗Rk ⊗ Sd](vv∗)‖, (4.6)
where Q,R, S ∈ {id,Tr,Θ}. As an illustration, in the case of the Choi
matrix, where we apply the trace map on the first factor and the identity
on the other two, we have BTr,id,id(L) = ‖CL‖.

We gather in Table 4.1 the 27 = 33 possibilities we obtain by applying
on each of the tensor factors the maps above. We obtain 5 different bounds
(BI , BC , BCΓ, BCcΓ, and BMΓ) which appear several times in the list, as
well as some trivial, constant bounds which do not depend on the channel.

Let us first comment on the equalities in Table 4.1. These follow from
the following basic facts about the operator norm. First, we note that the
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Table 4.1. Bounds obtained by applying traces and
transpositions to the orthogonal projection on v. The defin-
ing occurrences of the bounds appear in red, while the other
occurrences appear in blue; trivial, constant bounds are
black.

N◦ Cn Ck Cd Norm
1. id id id = d

2. id id Tr = 1
3. id id Θ = 1
4. id Tr id = BI

5. id Tr Tr = BC

6. id Tr Θ =: BCcΓ
7. id Θ id = BI

8. id Θ Tr =: BMΓ
9. id Θ Θ = BC

10. Tr id id =: BC
11. Tr id Tr =: BI
12. Tr id Θ =: BCΓ
13. Tr Tr id = 1
14. Tr Tr Tr = d

N◦ Cn Ck Cd Norm
15. Tr Tr Θ = 1
16. Tr Θ id = BCΓ
17. Tr Θ Tr = BI

18. Tr Θ Θ = BC

19. Θ id id = BC

20. Θ id Tr = BMΓ
21. Θ id Θ = BI

22. Θ Tr id = BCcΓ
23. Θ Tr Tr = BC

24. Θ Tr Θ = BI

25. Θ Θ id = 1
26. Θ Θ Tr = 1
27. Θ Θ Θ = d

operator norm is invariant under global transposition. Moreover, consider
a rank one projection xx∗ acting on a bipartite Hilbert space Cp ⊗ Cq
(here, p is the product of some, possible empty, subset of {n, k, d} and
q = nkd/p). Then, one has

‖[idp ⊗ Trq](xx∗)‖ = ‖[Trp ⊗ idq](xx∗)‖ = ‖[idp ⊗Θq](xx∗)‖
= ‖[Θp ⊗ idq](xx∗)‖ = λ1,

(4.7)

where λ1 is the largest Schmidt coefficient of the vector x ∈ Cp⊗Cq. The
statement above is well known in the case of the partial traces. In the case
of the partial transpositions, it is also straightforward, see [35, Lemma
III.3]. Let us use these simple facts to prove the equality cases in Table
4.1.
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First, the constant value d appears 3 times in the table, and the equality
of the three quantities is precisely equation (4.7) with the choice p = 1,
q = nkd. The same relation (4.7) implies the equality of the quantities
in the rows 2, 3, 13, and 25 with the choice p = nk, q = d; the common
value is the operator norm of the orthogonal projection on the image of
V (see row 2), which is 1. Moreover, applying a global transposition to
the quantities on rows 15 and 26, we obtain, respectively, the quantities
on rows 13 and 2, which are 1; we have shown thus the equality of all the
quantities which give 1 in Table 4.1.

The choice p = k, q = nd in (4.7) yields the equality of the rows
4,7,11,21; the common value is the operator norm output of the identity
‖L(I)‖, as seen from row 11. Applying a global transposition on the rows
17 and 24, we obtain the rows 11 and 4, giving the same value BI :=
‖L(I)‖.

Similarly, the choice p = n, q = kd in (4.7) yields the equality of the
rows 5, 9, 10, 19; the common value is the operator norm of the Choi
matrix ‖CL‖, as seen from row 10. Applying a global transposition on
the rows 23 and 18, we obtain the rows 5 and 10, giving the same value
BC := ‖CL‖.

The 6 remaining cases are the ones corresponding to the 6 permuta-
tions of the operators id, Tr, and Θ acting on the 3 legs of the tensor v.
The fact that each of the quantities BCΓ, BCcΓ, and BMΓ appears twice
is a consequence of the invariance of the norm by global transposition.
The quantity BCΓ corresponds to the partial transposition of the Choi
matrix of L: BCΓ := ‖CΓ

L‖. The quantity BCcΓ corresponds to the par-
tial transposition of the Choi matrix of the complementary channel Lc:
BCcΓ := ‖CΓ

Lc‖. Finally, BMΓ corresponds to Montanaro’s bound [44, Fact
1 and Proposition 4]: it is the norm of the partial transposition of the or-
thogonal projection on the image of V , BMΓ := ‖MΓ

L‖, where M is the
projection on the image of V , ML = V V ∗.

Let us note the important fact that the last two bounds we considered,
‖CΓ

Lc‖ and ‖MΓ
L‖, are not defined in terms of the channel L, but in terms

of the isometry V , or its vectorized version v (whereas the first two are
defined in terms of the Choi matrix of L). In the next lemma, we show that
these two quantities do not depend on the actual choice of the isometry
V defining the channel, but only on the channel itself, so the notations
BCcΓ(L) and BMΓ(L) are justified.
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Lemma 4.1. Consider a fixed quantum channel L : Md(C) → Mk(C)
and let V : Cd → Cn ⊗ Ck be a Stinespring isometry for L, i.e. L(X) =
[Trn ⊗ idk](V XV ∗). Then, the bounds BCcΓ = ‖CΓ

Lc‖ and BMΓ = ‖MΓ
L‖,

defined using V , do not depend on the choice of the isometry V .

Proof. Let r be the rank of the Choi matrix CL of L and consider a
minimal purification v0 ∈ Cr⊗ (Ck⊗Cd) of CL. The vectorized version of
the Stinespring isometry V is another purification of CL (not necessarily
minimal). Since any purification of a quantum mixed state is related to a
minimal one by an isometry, there exist an isometric operator W : Cr →
Cn such that v = (W ⊗ Ikd)v0. We now have that

vv∗ = (W ⊗ Ikd)v0v
∗
0(W ⊗ Ikd)∗, (4.8)

so, after taking a partial trace, a partial transposition, the operator norm,
and using W ∗W = Ir, we can conclude. �

To summarize, we have associated to a quantum channel L the following
quantities:

BC(L) = ‖CL‖ (4.9)
BCΓ(L) = ‖CΓ

L‖ (4.10)
BCcΓ(L) = ‖CΓ

Lc‖ (4.11)
BMΓ(L) = ‖MΓ

L‖ (4.12)
BI(L) = ‖L(I)‖, (4.13)

where CL, resp. CLc are the Choi matrices of the channel L, resp. of the
complementary channel V c andML = V V ∗ is the projection on the image
of the Stinespring isometry V defining the channel L.

4.2. Additivity and Rényi entropy bounds

We start our discussion with the proof of the fact the quantities B·(L)
introduced previously (4.9)-(4.13) are multiplicative with respect to the
tensor product operation. Later, in order to be consistent with the en-
tropic quantities, we shall take logarithms of these quantities, making
them additive.
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Lemma 4.2. Let Q,R, S be arbitrary operations chosen from the set
{id,Tr,Θ}. Then, for any quantum channels L1, L2, the following mul-
tiplicativity relation holds:

BQ,R,S(L1 ⊗ L2) = BQ,R,S(L1) ·BQ,R,S(L2). (4.14)

Proof. Let V1,2 the isometries defining the quantum channels L1,2. It is
immediate that V1 ⊗ V2 is a Stinespring isometry for L1 ⊗ L2; the same
holds for the vectorized versions v1,2. Hence,

BQ,R,S(L1 ⊗ L2) = ‖[Q⊗R⊗ S] ((v1 ⊗ v2)(v1 ⊗ v2)∗) ‖
= ‖[Q⊗R⊗ S] (v1v

∗
1 ⊗ v2v

∗
2) ‖

= ‖[Q⊗R⊗ S](v1v
∗
1)⊗ [Q⊗R⊗ S](v2v

∗
2)‖

= ‖[Q⊗R⊗ S](v1v
∗
1)‖ · ‖[Q⊗R⊗ S](v2v

∗
2)‖

= BQ,R,S(L1) ·BQ,R,S(L2), (4.15)
where we have used the multiplicativity of the maps T ∈ {id,Tr,Θ}:
T (X ⊗ Y ) = T (X)⊗ T (Y ). �

We continue with a useful linear algebra lemma, relating the (partially
transposed) Choi matrix of a channel with that of the dual channel. Recall
that the dual map L∗ of a quantum channel L :Md(C)→Mk(C) is the
unital, completely positive map L∗ : Mk(C) → Md(C) which satisfies
the following duality relation with respect to the Hilbert-Schmidt scalar
product

∀X ∈Mk(C), Y ∈Md(C), 〈X,L(Y )〉 = 〈L∗(X), Y 〉. (4.16)

Lemma 4.3. Let L : Md(C) → Mk(C) be a linear map and L∗ :
Mk(C) → Md(C) be its dual with respect to the usual, Hilbert-Schmidt,
scalar product. Then,

CL∗ = Fk,dC
>
L F
∗
k,d (4.17)

CΓ
L∗ = Fk,d(CΓ

L)>F ∗k,d, (4.18)

where Fk,d : Ck⊗Cd → Cd⊗Ck is the flip operator, i.e. Fk,d(a⊗b) = b⊗a.
In particular, the matrices CL and CL∗ (resp. CΓ

L and CΓ
L∗) have the same

spectrum.

Proof. We are going to show the first equality, the proof for the partial
transpositions being similar. A simple proof of the claim can be obtained
using the graphical notation for tensors, see Figure 4.2: the diagram on
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the right can be obtained by flipping horizontally (>) and vertically (Fk,d)
the input and output labels of the diagram on the left.

CL

V V ∗

=

CL∗

VV ∗

=

Figure 4.2. Diagrams for the Choi matrix of a channel
L (left) and for the Choi matrix of the adjoint channel L∗
(right). The channel L is given by a Stinespring isometry
V : Cd → Cn ⊗ Ck. The round, square, and resp. diamond
shapes denote the vector spaces Cn, Ck and resp. Cd.

Let us now give a detailed, algebraic proof. Consider orthonormal bases
{ei}di=1, {fx}kx=1 of Cd, resp. Ck, and compute

e∗i ⊗ f∗xCL∗ej ⊗ fy = e∗iL
∗(fxf∗y )ej = Tr[eje∗iL∗(fxf∗y )]

= Tr[L(eje∗i )fxf∗y ] = f∗yL(eje∗i )fx
= f∗y ⊗ e∗jCLfx ⊗ ei = f∗x ⊗ e∗iC>L fy ⊗ ej
= e∗i ⊗ f∗xFk,dC>L F ∗k,dej ⊗ fy,

(4.19)

proving the claim. �

We can now prove the main result of this section, the fact that the
quantities in (4.9)-(4.13) are lower bounds for the minimum output p-
Rényi entropy of the quantum channel L.
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Proposition 4.4. Let L :Md(C)→Mk(C) be a quantum channel. Then,
for all integers r ≥ 1,

Hmin
2 (L⊗r) ≥ −r log ‖CL‖ ∗ (4.20)

Hmin
2 (L⊗r) ≥ −r log ‖CΓ

L‖ (4.21)
Hmin

2 (L⊗r) ≥ −r log ‖CΓ
Lc‖ (4.22)

Hmin
∞ (L⊗r) ≥ −r log ‖MΓ

L‖ (4.23)
Hmin
∞ (L⊗r) ≥ −r log ‖L(I)‖. (4.24)

Proof. Note that, using the multiplicativity result of Lemma 4.2, we only
need to show that the inequalities hold for r = 1. Let us start with the
first two inequalities, involving the Choi matrix CL. The proof begins
with a straightforward “linearization trick” and proceeds by linear algebra
manipulations. For a fixed quantum state X ∈M1,+

d (C), we have
Tr[L(X)2] = Tr[L(X)⊗ L(X) · Fk,k]

= Tr [(X ⊗ L(X)) · [L∗ ⊗ id](Fk,k)]

= Tr
[
(X ⊗ L(X)) · CΓ

L∗

]
≤ λmax(CΓ

L∗) = λmax(CΓ
L) ≤ ‖CΓ

L‖,

(4.25)

where we have used the isospectral property proved in Lemma 4.3 and
the fact that X⊗L(X) is positive semidefinite and has unit trace. Taking
the supremum over all input states X yields (4.21). To show (4.20), apply
in (4.25) the transposition operation Θ on the second factor of the tensor
product; this will remove the partial transposition on the matrix CΓ

L∗ , and
the claim will follow.

The inequality (4.22) follows from (4.21) and the fact that Hmin
2 (L) =

Hmin
2 (Lc). Finally, (4.23) has been proved in [44, Fact 1 and Proposition

4], while (4.24) follows trivially from the matrix inequality L(X) ≤ L(I)
(see also [26]). �

Remark 4.5. The bounds above are tight: the maximally depolarizing
channel ∆(X) = Tr(X)I/d saturates bounds (4.20) and (4.21), while the
identity channel id(X) = X saturates bounds (4.22), (4.23), and (4.24).
∗Actually, the right hand side is a lower bound for Hmin

∞ (L⊗r). This can be seen by
considering the complementary channel. We thank David Reeb for pointing this out.
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4.3. Bounds for additivity rate

The additive bounds derived above can be used to bound the p-additivity
rates of channels, as we show in the following result. Note that our starting
point is the value at p = 2 (see Proposition 4.4) so our method will give
interesting results for values of p in the interval [0, 2]. The extension of
the inequalities for p > 2 is less interesting, since the derived inequalities
contain additional factors which depend on p. Indeed, for any quantum
state ρ and p > 2,

p

2(p− 1)H2(ρ) ≤ Hp(ρ) ≤ H2(ρ), (4.26)

which is the best general bound for the p-Rényi entropy in terms of the
2-Rényi entropy.

Proposition 4.6. For a quantum channel L having no pure outputs, the
p-additvity rate (3.1) is lower bounded, for all p ∈ [0, 2], by the following
quantity

αp(L) ≥ α̂p(L) := − logB
Hmin
p (L) , (4.27)

where B = min{‖CL‖, ‖CΓ
L‖, ‖CΓ

Lc‖, ‖MΓ
L‖, ‖L(I)‖}.

Remark 4.7. When p > 2, the quantity B above has to be replaced by

min{‖CL‖cp , ‖CΓ
L‖cp , ‖CΓ

Lc‖cp , ‖MΓ
L‖, ‖L(I)‖}, (4.28)

where cp = p/(2p−2) is a correction exponent which appears because one
has to use in this case (4.26).

We investigate next how the lower bound for additivity rates behaves
with respect to tensor products.

Proposition 4.8. Let L and K be two quantum channels with the property
that their tensor product L⊗K has no pure output. Then, for all p ∈ [0, 2],
the following inequality holds:

α̂p(L⊗K) ≤ vp(L,K) [tα̂p(L) + (1− t)α̂p(K)] , (4.29)

where vp(L,K) is the relative violation of the minimum p-output entropy
(2.12) and t = Hmin

p (L)/[Hmin
p (L) +Hmin

p (K)] ∈ [0, 1] (note that Hmin
p (L)

and Hmin
p (K) cannot be both null).
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Proof. Let BL, BK , and BL⊗K be the bounds associated to the channels L,
K, and L⊗K, as in Proposition 4.6; they obviously satisfyBLBK ≤ BL⊗K .
Starting from the right-hand-side of the inequality to be proved, we have
then

vp(L,K) [tα̂p(L) + (1− t)α̂p(K)]

= − log(BLBK)
Hmin
p (L⊗K) ≥

− logBL⊗K
Hmin
p (L⊗K) = α̂p(L⊗K). (4.30)

�

4.4. Examples: the Werner-Holevo and the antisymmetric
channels

In this section we compute the bounds derived earlier for the Werner-
Holevo channel discussed in Example 3.5 and for the antisymmetric chan-
nel from Examples 3.6.

Recall that the Werner-Holevo channel Wd : Md(C) → Md(C) is de-
fined by

Wd(X) = 1
d− 1[Tr(X)Id −X>]. (4.31)

First, note that Wd(I) = I, hence ‖Wd(I)‖ = 1. The Choi matrix and
its partial transpose read

CWd
= 1
d− 1[Id2 − Fd] (4.32)

CΓ
Wd

= 1
d− 1[Id2 − Ed], (4.33)

where Ed is the (un-normalized) maximally entangled state (2.5) and Fd
denotes the flip operator Fd(x ⊗ y) = y ⊗ x, for x, y ∈ Cd. The corre-
sponding bounds are easily computed from the above relations: ‖CWd

‖ =
2/(d− 1) and ‖CΓ

Wd
‖ = 1; in particular, note that the matrix CΓ

Wd
is not

positive semidefinite, i.e. the Werner-Holevo channels is not PPT. A mini-
mal purification of the Choi matrix CWd

is given by the four-partite vector
vWd
∈ (Cd)⊗4 (see Figure 4.3 for a graphical representation)

vWd
= 1√

2(d− 1)
v = 1√

2(d− 1)

d∑
i,j=1

ei ⊗ ej ⊗ ej ⊗ ei − ei ⊗ ej ⊗ ei ⊗ ej .

(4.34)
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vWd −= 1√
2(d−1)

v = 1√
2(d−1)

Figure 4.3. A minimal purification of the Choi matrix of
a Werner-Holevo channel.

Using the above purification, the remaining two bounds are seen to
be equal: ‖CΓ

W c
d
‖ = ‖MΓ

Wd
‖ = 2/(d − 1). Note that for the vector vWd

,
the top two factors of the four-partite tensor product correspond to the
“environment dimension”, the third one corresponds to the output, while
the fourth one corresponds to the input. In conclusion, the additivity rates
of the Werner-Holevo channel are bounded, for all p ∈ [0, 2], as follows:

αp(Wd) ≥
− log(2/(d− 1))

log(d− 1) = 1− log 2
log(d− 1) . (4.35)

Let us now move to the case of the antisymmetric channel Ad introduced
by Grudka, Horodecki, and Pankowski in [31]. If P : Cd ⊗ Cd → C(d2)
is the projection operator on the antisymmetric subspace, i.e. P = Q∗,
where Q : Λ2(Cd) ∼= C(d2) → Cd ⊗ Cd is the canonical embedding of the
antisymmetric space Λ2(Cd) into Cd ⊗ Cd, then

vAd = 1√
2

(Id⊗Id⊗P )v = 1√
2

(Id⊗Id⊗P )
d∑

i,j=1
ei⊗ej⊗ej⊗ei−ei⊗ej⊗ei⊗ej .

(4.36)
Noticing the similarities between the formula above and (4.34), one can
easily show that ‖CΓ

Ad
‖ = ‖CΓ

Ac
d
‖ = 1, while ‖Ad(I)‖ = ‖CAd‖ = ‖MΓ

Ad
‖ =

(d − 1)/2. We conclude that the lower bounds discussed in this paper
are trivial for the antisymmetric channel and we leave the question of
determining the additivity rates of this channel open.

5. Partially transposed random Choi matrices
and their norm

In this section and in the next one, we analyze the behavior of the bounds
(4.9)-(4.13) for random quantum channels L. Here, we compute the bound
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(4.10), while in the next section we compute the four others (when possi-
ble) and we compare them, in the spirit of Proposition 4.6.

This section contains one of the main results of our work, Theorem 5.5,
which contains a formula for the asymptotic operator norm of the partially
transposed Choi matrices of random quantum channels. More precisely, we
consider a sequence of random quantum channels Ln :Mdn(C)→Mk(C)
where dn ∼ tkn, defined by

Ln(X) = [TrCn ⊗ idk](VnXV ∗n ), (5.1)

where Vn : Cdn → Cn ⊗ Ck is the random isometry. We write Cn := CLn
for the Choi matrix of the quantum channel Ln. The proof is split into
three parts, delimited by subsections, and uses the moment method. We
start by computing the asymptotic moments of the random matrices CΓ

n ,
using the graphical Weingarten calculus introduced in Section 2.2. Then,
in the second subsection, we identify a probability measure having the
exact moments computed in the first part; the measure is given in terms
of the free additive convolution operation from free probability theory.
Finally, we show that the random matrices CΓ

n converge strongly, which
gives us the desired norm convergence.

Let us first start with some general considerations about the random
matrix we are studying. Associated to the channel L is the partially trans-
posed Choi matrix of L,

CΓ
L = [idk ⊗Θd][L⊗ idd](Ed) = [L⊗ idd](Fd), (5.2)

which is the random matrix we are interested in (see Figure 5.1 for a graph-
ical representation). Before investigating the eigenvalue distribution of the
random matrix CΓ

L, let us first comment on its distribution as a matrix.
Since, in this paper, Choi matrices are not normalized (TrCΓ

L = TrCL = d),
the matrix d−1CL is a (random) density matrix (mixed quantum state).
In the literature, several ensembles of random density matrices have been
considered: the induced measures [56], the Bures measure [32], or measures
associated to graphs [18], just to name a few (see also [55] for a random
matrix theory perspective). We would like to argue at this point that the
distribution of the Choi matrix we consider is not related to the induced
measures introduced in [56]. Indeed, it is easy to see that the distribu-
tion of CL involves more than one column of the unitary matrix U , while,
in order to define the induced measures, one needs just one column of a
unitary operator (or a random point on the unit sphere, or a normalized
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Gaussian vector). A rigorous argument for this fact is given in Section 10,
Remark 10.3, using PPT thresholds.

5.1. Exact moments
In the next proposition, we compute the moments of the partially trans-
posed Choi matrix CΓ

n , for a fixed value of n. We make use of the graphical
calculus formalism introduced in Section 2.2.

Proposition 5.1. For any integer dimensions n, k, d, the moments of the
random matrix CΓ

n ∈Msa
kd(C) are given by, ∀p ≥ 1,

E
1
kd

Tr(CΓ
n )p = (kd)−1 ∑

α,β∈Sp
n#αk#(γ−1α)d#(γβ) Wgnk(α−1β). (5.3)

In the above equation, #(·) denotes the number of cycles of a permutation,
γ = (p · · · 3 2 1) ∈ Sp denotes the full cycle permutation and Wg is the
Weingarten function [12], see Definition 2.3.

Proof. The proof is an application of the graphical Weingarten formula
from Theorem 2.4. We have depicted in Figure 5.1 the diagram for the
random matrix CΓ

n , which we are investigating. Note that we have replaced
the random isometry Vn by a random, Haar-distributed, unitary matrix
Un ∈ Unk. Moreover, we choose, for the sake of simplicity, not to represent
labels corresponding to the added dimensions nk/d, which do not play
any role in the moment computations which follow, since the contractions
of the corresponding wires multiply the result by the scalar 1. We are

CΓ
n

Un U∗
n

=

Figure 5.1. Diagram for the random matrix CΓ
n . The box

Un corresponds to a random Haar unitary matrix. We do
not depict the labels corresponding to the environment of
size kn/d, which does not play any role in the computa-
tions.

interested in computing, for all integer p ≥ 1, the moment ETr(CΓ
n )p. The

30



Additivity rates and PPT property

diagram corresponding to this real number is depicted in Figure 5.2. We
now use formula (2.18) to compute the expectation, with respect to the
random unitary matrix Un:

ETr(CΓ
n )p =

∑
α,β∈Sp

Dα,β Wgkn(α−1β), (5.4)

where Dα,β is the diagram obtained by erasing the Un and Ūn boxes and
connecting the black (resp. white) decorations of the i-th Un box with the
corresponding black (resp. white) decorations of the α(i)-th (resp. β(i)-th)
Ūn box. The resulting diagram Dα,β is a collection of loops corresponding
to different vector spaces, as follows (see Figure 5.3):

(1) #α loops of dimension n, corresponding to round-shaped labels.
The round decorations are initially connected with the identity
permutation and the graphical expansion connects them with the
permutation α. The resulting number of loops is #α = #(id−1α);

(2) #(γ−1α) loops of dimension k, corresponding to square-shaped
labels. The square decorations are initially connected with the
permutation γ (that is, i 7→ i − 1) and the graphical expansion
connects them with the permutation α. The resulting number of
loops is #(γ−1α);

(3) #(γβ) loops of dimension d, corresponding to diamond-shaped la-
bels. The diamond decorations are initially connected with the
permutation γ−1 (i.e. i 7→ i+ 1) and the graphical expansion con-
nects them with the permutation β. The resulting number of loops
is #((γ−1)−1β) = #(γβ).

Un Ūn Un Ūn Un Ūn

Figure 5.2. Diagram for the trace of the p-th power of
the partially transposed Choi matrix CΓ

n . The diagram con-
tains p copies of the matrix from Figure 5.1.

�

31



M. Fukuda & I. Nechita

Un

i
α(i)

i+ 1
β(i)i− 1

α(i)

Figure 5.3. Diagram representing the i-th Un box in the
graphical expansion. The box itself no longer exists and
the diagram Dα,β consists of a collection of loops.

5.2. Limiting spectral distribution
We consider now the asymptotic behavior of the partially transposed Choi
matrix CΓ

n , in the following regime:
Asymptotic regime

• k is fixed

• n→∞

• d→∞ with d ∼ tkn for some fixed ratio t ∈ (0, 1).

In this regime (which we call the “fixed k regime”), the output dimen-
sion k and the input/(total space) ratio t are treated as parameters that
we shall consider fixed in what follows. We compute next the asymptotic
moments of the random matrix CΓ

n and we identify a probability mea-
sure having these exact moments. Recall that the dilation operator Dt is
defined by Dt[µ] = (x 7→ tx)#µ.
Theorem 5.2. In the fixed k asymptotic regime, the moments of the ran-
dom matrix CΓ

n converge towards the moments of the following probability
measure µ(CΓ)

k,t :

µ
(CΓ)
k,t = Dt

[
((1− s) δ−1 + s δ+1)�1/t

]
, (5.5)

where D· is the dilation operator, � is the additive free convolution and
s := (k + 1)/(2k). More explicitly, we can write

t · µ(CΓ)
k,t = max(t− s, 0)δ−1 + max(s+ t− 1, 0)δ1+ (5.6)√

(2ϕ+(s, t)− 1− x)(x− 2ϕ−(s, t) + 1)
2π(1− x)(x+ 1) 1[2ϕ−(s,t)−1,2ϕ+(s,t)−1](x)dx,
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where ϕ±(s, t) were defined in (2.28).

Proof. First, start from the exact moment formula (5.3) and isolate the
powers of the parameter n → ∞, using also the Weingarten function
asymptotic (2.16). The exponent of n in the fixed k asymptotic regime is:

power of n in (5.3) = −1 + #α+ #(γβ)− p− |α−1β|
= p− 1− (|α|+ |α−1β|+ |β−1γ−1|)
≤ p− 1− |γ−1| = 0,

(5.7)

where we have only made use of the geodesic inequality

|α|+ |α−1β|+ |β−1γ−1| ≥ |γ−1|, (5.8)

which is saturated for permutations α, β lying on the geodesic id−α−β−
γ−1. Then,

lim
n→∞E

1
kd

Tr(CΓ
n )p

= (tk2)−1 ∑
id−α−β−γ−1

k#(γ−1α)(tk)#(γβ)k−p−|α
−1β|Mob(α−1β)

= (tk2)−1 ∑
id−α−β−γ−1

k1+e(α)(tk)1+|β|k−#α−|β|Mob(α−1β)

=
∑

id−β−γ−1

t|β|
∑

id−α−β
ke(α)−#α Mob(α−1β).

(5.9)

Above, e(·) denotes the number of cycles of even size of a permutation,
and we use the fact [6, Lemma 2.1] that

1 + e(α) = #(γ−1α) (5.10)

for permutations α ∈ Sp lying on the geodesic id−α− γ−1.
Next, we shall identify a probability measure µ(CΓ)

k,t having moments as
in equation (5.9). The main tool here will be the free moment-cumulant
formulas [45, Lecture 11]. Consider the following probability measure

νk := k − 1
2k δ−1 + k + 1

2k δ+1. (5.11)
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Since the α-moment of νk is (‖c‖ denotes the number of elements in a
cycle c of a permutation)

mα(νk) =
∏
c∈α

m‖c‖(νk) =
∏
c∈α

(
k − 1

2k (−1)‖c‖ + k + 1
2k

)
= ke(α)−#α,

(5.12)
we have that

(5.9) =
∑

id−β−γ−1

t|β|
∑

id−α−β
mα(νk) Mob(α−1β)

= tp
∑

id−β−γ−1

t−#βκβ(νk) = tpmp

(
ν
�1/t
k

)
, (5.13)

which is precisely the p-th moment of the probability measure

µ
(CΓ)
k,t = Dt

[
ν
�1/t
k

]
. (5.14)

This proves the first statement.
We now show the second statement. By using Lemma 2.8 we have (recall

that bs = (1− s)δ0 + sδ1 is the Bernoulli distribution)

µ
(CΓ)
k,t = {x 7→ tx}# ({x 7→ 2x− 1}#bs)�1/t

= {x 7→ tx}#{x 7→ 2x− 1/t}# (bs)�1/t

= {x 7→ 2tx− 1}# (bs)�1/t

(5.15)

Therefore, by using Proposition 2.9 with T = 1/t we have

µ
(CΓ)
k,t = max(0, 1− s/t)δ−1 + max(0, 1− (1− s)/t)δ1

+
1/t
√

(γ+ − x+1
2t )(x+1

2t − γ−)
2π(x+1

2t )(1
t − x+1

2t )
1[2tγ−−1,2tγ+−1]

dx

2t (5.16)

where ϕ±(s, t) = tγ±. This completes the proof. �

Remark 5.3. The atoms (possibly) appearing in equation (5.6) can be in-
terpreted as follows. First, note that the partially transposed Choi matrix
CΓ
L is equal, up to a unitary conjugation, to the matrix (Pn ⊗ Ik)(In ⊗

Fk,k)(Pn ⊗ Ik), where Pn ∈ Mnk(C) is an orthogonal projection of rank
d ∼ tnk and Fk,k is the flip operator. Since the eigenvalues of the flip
operator are +1, resp. −1, with multiplicities k(k+ 1)/2, resp. k(k−1)/2,
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by the interlacing theorem for eigenvalues of Hermitian matrices, we get
that the matrix has (among others) eigenvalues

+1 with multiplicity at least nk2 ·max
(
t+ k + 1

2k − 1, 0
)

−1 with multiplicity at least nk2 ·max
(
t+ k − 1

2k − 1, 0
)

values which corresponds, at the limit, to the atoms at ±1 of the measure
µ

(CΓ)
k,t from (5.6).

5.3. Strong convergence
In the previous subsection, we showed that the random variable CΓ

n has
the same asymptotic moments as the probability measure µ(CΓ)

k,t . This type
of convergence is not sufficient for our purposes, since it does not deal
with extremal eigenvalues. We will improve this result with the following
proposition. In particular, we will obtain the convergence of the norm of
the random matrix CΓ

n , which is, ultimately, the quantity we are interested
in (see Proposition 4.4). For an arbitrary probability measure µ, we denote
by ‖µ‖ its L∞ norm, i.e. the L∞ norm of any random variable X having
distribution µ.

We start with a technical lemma, showing the strong convergence (in the
sense of Definition 2.5) for a family of deterministic matrices of growing
dimension.

Lemma 5.4. Let {Eij}ki,j=1 be the matrix units ofMk(C) and define the
orthogonal projection

Mn(C)⊗Mk(C) 3 Pn = diag(1, . . . , 1︸ ︷︷ ︸
dn times

, 0, . . . , 0︸ ︷︷ ︸
nk−dn times

), (5.17)

where k ∈ N and t ∈ (0, 1) are fixed and dn is a multiple of k such that dn ∼
tnk when n → ∞. Then, the k2 + 1 tuple of random variables Pn, {In ⊗
Eij}ki,j=1 converge strongly, as n→∞, towards respectively p, {eij}ki,j=1 ∈
Pt ⊗ Mk(C), where p = πt ⊗ Ik, eij = 1 ⊗ Eij, and Pt is the algebra
generated by a projection πt of trace t and the identity 1.

Proof. The result follows from the block structure of the matrices In⊗Eij
and the fact that Pn respects this block structure (dn is a multiple of k).
We first show the convergence in distribution. In this proof, we denote by tr
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the normalized trace, e.g. trkIk = 1. For a fixed monomial F ∈ C〈p, {eij}〉
in 1 + k2 non-commutative random variables, we have

F (Pn, {In ⊗ Eij}) = F (I⊕dn/kk ⊕ 0⊕n−dn/kk , {E⊕nij })
= F (Ik, {Eij})⊕dn/k ⊕ F (0k, {Eij})⊕n−dn/k, (5.18)

and thus

lim
n→∞[trn ⊗ trk]F (Pn, {Eij})

= t trkF (Ik, {Eij}) + (1− t) trkF (Ik, {Eij})1p/∈F . (5.19)

Note that since F is a monomial, p /∈ F means that F does not contain a
factor p.

On the other hand, we have

F (p, {eij}) =
{
πt ⊗ F (Ik, {Eij}), if p ∈ F,
1⊗ F (Ik, {Eij}), if p /∈ F. (5.20)

If τ is the trace of Pt, then we have

[τ ⊗ trk]F (p, {eij}) = t trkF (Ik, {Eij})1p∈F + trkF (Ik, {Eij})1p/∈F
= t trkF (Ik, {Eij})1p∈F + t trkF (Ik, {Eij})1p/∈F

+ (1− t) trkF (Ik, {Eij})1p/∈F
= t trkF (Ik, {Eij}) + (1− t) trkF (Ik, {Eij})1p/∈F

(5.21)

which, together with (5.19), allows to conclude the proof of the conver-
gence in distribution for monomials, and, using linearity, for arbitrary
non-commutative polynomials.

Let us now show the norm convergence in Definition 2.5, for a fixed
polynomial F . Using again the block structure of the matrices In ⊗ Eij
and of Pn (recall that dn is a multiple of k), we get that

‖F (Pn, {In ⊗ Eij})‖ = max(‖F (Ik, {Eij})‖, ‖F (0k, {Eij})‖) (5.22)
= max(‖(G+H)(Ik, {Eij})‖, ‖G(Ik, {Eij})‖),

where F = G + H is the decomposition of F into monomials which do
not contain the first variable (G) and monomials which do (H). Using the

36



Additivity rates and PPT property

same decomposition, we have

‖F (p, {eij})‖ = ‖1⊗G(Ik, {Eij}) + πt ⊗H(Ik, {Eij})‖
= ‖πt ⊗ (G+H)(Ik, {Eij}) + (1− πt)⊗G(Ik, {Eij})‖
= max(‖(G+H)(Ik, {Eij})‖, ‖G(Ik, {Eij})‖), (5.23)

finishing the proof. �

Theorem 5.5. The random matrix CΓ
n converges strongly towards an

element having distribution µ
(CΓ)
k,t defined in (5.5)-(5.6). Hence, we have

the following norm convergence: almost surely,

lim
n→∞ ‖C

Γ
n‖ = ‖µ(CΓ)

k,t ‖ =
{

2ϕ+(s, t)− 1, if t+ s < 1
1, if t+ s ≥ 1,

(5.24)

where s = (k+1)/(2k) and ϕ+(s, t) was defined in (2.28). More explicitly,
the above quantity is written as

2ϕ+(s, t)− 1 = 1− 2t
k

+ 2
√(

1− 1
k2

)
t(1− t). (5.25)

Proof. Firstly, let εn = | dnnk − t| so that

(t− εn)nk ≤ dn ≤ (t+ εn)nk. (5.26)

Then, we set d−n = bn(t − εn)ck and d+
n = dn(t + εn)ek so that we can

use Lemma 5.4 for d−n and d+
n . Hence, the following proofs are applied to

d−n and d+
n but on the other hand by using interlacing theorem, we can

obtain the desired statement for the original sequence dn.
Secondly, we prove the strong convergence. Recall that the channel L

has the following Stinespring representation

L(X) = [idk ⊗ Trn](V XV ∗)
= [idk ⊗ Trn](UWXW ∗U∗), (5.27)

where U ∈ U(nk) is a unitary operator and W : Cd → Ck ⊗ Cn is the
isometric embedding: W = [Id 0d×(nk−d)]>. With this notation, we have

CΓ
n =

d∑
i,j=1

[idk ⊗ Trn](UWEijW
∗U∗)⊗ Eji ∈Mk(C)⊗Md(C). (5.28)
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Define for Dn ∈Mn(C)⊗Mk(C)⊗Mk(C)

Dn = (PdU∗ ⊗ Ik)
In ⊗ k∑

i,j=1
Eij ⊗ Eji

 (UPd ⊗ Ik)

=
k∑

i,j=1
[PdU∗ (In ⊗ Eij)UPd]⊗ Eji,

(5.29)

where Pd = WW ∗ = Id ⊕ 0nk−d is an orthogonal projection of rank d. It
is easy to see that the matrices CΓ

n and Dn have the same spectrum, up
to null eigenvalues, so we will focus on showing the strong convergence
property for Dn. Note that the expression in (5.29) is a polynomial with
Mk(C) coefficients, in the variables Pd, U and In⊗Eij . Using Lemma 5.4
and Proposition 2.6, we conclude that the tuple (U,U∗, Pd, {In⊗Eij}ki,j=1)
converges strongly, as n→∞, to a limit that we choose not to specify. We
then apply Proposition 2.7 to obtain the strong convergence of Dn to a
limit element x. Since the distribution of the random matrix CΓ

n has been
shown to converge to the measure µ(CΓ)

k,t , we conclude that, almost surely

lim
n→∞

∥∥∥CΓ
n

∥∥∥
∞

= ‖µ(CΓ)
k,t ‖. (5.30)

Thirdly, notice that the norm ‖CΓ
n‖ is the maximum between the largest

element of the support of the measure µ(CΓ)
k,t and minus the smallest ele-

ment of the support of µ(CΓ)
k,t . Let us show now that the latter quantity

is smaller than or equal to the former, finishing the proof. Indeed, in the
case where µ(CΓ)

k,t has an atom at −1, t should be larger than s. But in that
case, we also have s + t − 1 > 2s − 1 > 0, since s = (k + 1)/(2k) > 1/2,
so µ

(CΓ)
k,t also has an atom at 1. In the case when t < 1 − s, we have

that t ≤ 1/2 and thus 2ϕ+(s, t)− 1 ≥ −(2ϕ−(s, t)− 1), showing that the
maximum is also attained on the positive part of the support. �

6. Other bounds for random quantum channels

In this section, we compute the remaining four bounds from Section 4, in
the case of random quantum channels. In the first three subsections, we
study respectively the bounds (4.9), (4.11), (4.12), while in the last one
we compare these three bounds with (4.10), which was computed in the
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previous section. Our conclusion is that the bound (4.10) coming from
the partially transposed Choi matrix of the channel L seems to give the
sharpest estimate for minimum p-Rényi output entropies. Moreover, from
a practical standpoint, we have a closed formula for the bound in (4.10)
and we have shown strong convergence of the random matrices towards
the corresponding probability distribution.

The computations in this section are similar to the ones in Section 5, so
we refer the reader to that section for some of the details. We would like to
mention already that in some cases, we are not able to obtain such precise
estimates as in the previous section; in such situations, we state only some
partial results, in the asymptotic limit where the output dimension k is
large.

We consider first the bound (4.13) and we show that, in the case of ran-
dom quantum channels, it is trivial. Hence, we shall not mention it in the
remainder of the paper. Indeed, the (random) channels we are interested
in have input dimension larger than output dimension: L : Md(C) →
Mk(C), with d→∞ and k fixed. Using d ≥ k, we have (see also [26])

‖L(Id)‖ ≥
TrL(Id)

k
= TrId

k
= d/k ≥ 1, (6.1)

and thus the bound in (4.13) reads Hmin
∞ (L⊗r) ≥ 0 ≥ −r log ‖L(Id)‖,

which is a trivial statement.

6.1. Choi matrices
In this section, we discuss on the limiting eigenvalue distributions of the
Choi matrix CL when taken randomly. As before, we consider a sequence
of random quantum channels Ln as in (5.1), where the parameters scale
as in Section 5.2. We denote by Cn ∈ Mk(C) ⊗Md(C) the Choi matrix
of Ln, which is a random quantum channel.

Proposition 6.1. The random Choi matrix Cn converges strongly to-
wards an element having distribution

µ
(C)
k,t = Dkt

[
b
�1/t
k−2

]
. (6.2)

Hence, we have the following norm convergence: almost surely,

lim
n→∞ ‖Cn‖ = ‖µ(C)

k,t ‖ =
{
kϕ+(k−2, t) if t+ k−2 < 1
k if t+ k−2 ≥ 1,

(6.3)
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where the function ϕ+ was defined in (2.28).
Proof. The starting point of the proof is the following moment formula
for the random matrix Cn, obtained by graphical Weingarten calculus
(see Theorem 2.4). The powers of n, d ∼ tkn and k in the formula below
count loops and can be inferred from Figure 6.1. For any integer p ≥ 1, we
have (remember that γ ∈ Sp denotes the full cycle permutation i 7→ i− 1)

Cn

Un U∗
n

=

Un

i
α(i)

i− 1
β(i)

i− 1
α(i)

Figure 6.1. Diagrams for the Choi matrix Cn and for the
i-th Un box in the graphical expansion of Tr [Cpn].

(kd)−1 ETr [Cpn] = (kd)−1 ∑
α,β∈Sp

n#αk#(γ−1α)d#(γ−1β) Wgkn(α−1β). (6.4)

In the above equation, the surviving terms as n→∞ are the ones which
contain the largest power of n (we use below d ∼ tkn and the Weingarten
function asymptotic from (2.16)):

power of n in (6.4) = −1 + #α+ #(γ−1β)− p− |α−1β|
≤ p− 1− (|α|+ |α−1β|+ |β−1γ|) ≤ 0. (6.5)

The above bound is saturated if and only if the triangle inequality |α| +
|α−1β| + |β−1γ| ≥ |γ| is saturated, i.e. the permutations α, β are on the
geodesic id− α− β − γ. This implies that

lim
n→∞(kd)−1 ETr [Cpn]

= (tk2)−1 ∑
id−α−β−γ

tp−|γ
−1β| k2p−|γ−1α|−|γ−1β|−p−|α−1β| Mob(α, β)

= k−p
∑

id−α−β−γ
t|β| k2|α| Mob(α, β)

= (tk)p
∑

id−α−β−γ
t−#β k−2#α Mob(α, β). (6.6)
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Above, we have used some properties of geodesics, for example, |γ−1β| =
|γ| − |β| = p− 1− |β|.

Next, we fix β ∈ Sp and use the moment-cumulant formula [45, Propo-
sition 11.4 (2)] in free probability:∑

id−α−β
k−2#α Mob(α, β) =

∑
id−α−β

mα(bk−2) Mob(α, β) = κβ(bk−2), (6.7)

where bk−2 is the Bernoulli distribution bk−2 = (1−k−2)δ0 +k−2δ1. Hence,
using the multi-linearity of the free cumulant, we have

lim
n→∞(kd)−1 ETr [Cpn] = (tk)p

∑
id−β−γ

t−#βκβ(bk−2)

= (tk)p
∑

id−β−γ
κβ(b�1/t

k−2 )

= (tk)pmp

(
b
�1/t
k−2

)
= mp

(
Dkt

[
b
�1/t
k−2

])
, (6.8)

which shows that the random matrices Cn converge in moments to the
probability measure µ(C)

k,t defined in (6.2). The statement about the sup-
port of µ(C)

k,t follows from Proposition 2.9 with T = 1/t and s = k−2. The
proof of the strong convergence is identical to the one from Theorem 5.5,
up to the occasional flipping of indices, due to the partial transposition
(e.g. in (5.29), one should replace the matrix element Eji by Eij); we leave
the details to the reader. �

Note that the limiting probability measure µ(C)
k,t from (6.2) is supported

on [0,∞); this is a consequence of the fact that the Choi matrices Cn
are positive semidefinite, since the quantum channels Ln are completely
positive.

6.2. Partially transposed Choi matrices of complementary
channels

In this subsection, we discuss the limiting eigenvalue distributions of the
partially transposed Choi matrix of the complementary channel CΓ

Lc , our
goal being to estimate the quantity (4.11) in the case where L is a ran-
dom quantum channel. More precisely, we consider a sequence of random
quantum channels Ln and we denote by CcΓn the corresponding partially
transposed Choi matrices of the channels Lcn. Unfortunately, we are not
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able to identify, at fixed k and t, the limiting eigenvalue distribution of
the random matrix CcΓn when n → ∞; we have to settle in this case for
another asymptotic regime, where 1� k � n. This regime is obtained by
taking first the limit n→∞, followed by the limit k →∞.

Before stating the result, we recall the notion of Kreweras complement
for non-crossing partitions. The Kreweras complement of α ∈ NC(p) is
another non-crossing partition, denoted αKr ∈ NC(p), defined in the fol-
lowing way [45, Definition 9.21]. First, expand the domain of partitions to
{1̄, 1, 2̄, 2 . . . , p̄, p}; let then αKr ∈ NC(1̄, 2̄, . . . , p̄) ∼= NC(p) be the largest
non-crossing partition such that α∪αKr is still a non-crossing partition on
{1̄, 1, 2̄, 2 . . . , p̄, p}. Given a geodesic permutation id−α−γ, we define the
geodesic permutation αKr ∈ Sp by identifying, as usual, geodesic permu-
tations with non-crossing partitions; more precisely, we have αKr = α−1γ
(see [45, Remark 23.24]). Note that the above construction of Kreweras
complement is slightly different from the one in [45, Definition 9.21] in
that ī is left to i for i = 1, . . . , p because γ = (p, p−1, . . . , 1) in our paper.

Lemma 6.2. For γ2q = (2q, 2q − 1, . . . , 1) ∈ S2q, γ1 = (2q − 1, 2q −
3, . . . , 1) and γ2 = (2q, 2q − 2, . . . , 2), take α̃i ∈ S2q two permutations on
the geodesics id− αi − γi with i = 1, 2 (in particular, α1 acts only on odd
numbers, while α2 acts only on even numbers). Then,

#
(
γ−1

2q (α̃1 ⊕ α̃2)
)

= #(α1γ
−1
q α2) = #

(
α1
(
αKr

2
)−1

)
, (6.9)

where the permutations α1,2 ∈ Sq are associated with α̃1,2 by deleting the
trivial fixed points, via the correspondences (2i− 1)→ i, resp. 2i→ i, for
i = 1, 2, . . . , q.

Proof. We show #
(
γ−1

2q (α̃1 ⊕ α̃2)
)

= #(α1γ−1
q α2), the other equality fol-

lowing from the definition of the Kreweras complement for geodesic per-
mutations. First, note that the respective actions on α̃1,2 are α̃1(2i) = 2i,
α̃1(2i − 1) = 2α1(i) − 1, resp. α̃2(2i) = 2α2(i), α̃2(2i − 1) = 2i − 1, for
i = 1, 2, . . . , q. An arbitrary element i ∈ [q] is mapped by the permutation
α1γ−1

q α2 to α1(α2(i) + 1). Let us compute the image of the corresponding
element 2i ∈ [2q] through the permutation γ−1

2q (α̃1 ⊕ α̃2):

2i α̃1⊕α̃2−−−−→ 2α2(i)
γ−1

2q−−→ 2α2(i) + 1, (6.10)
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which is an odd number. Another application of γ−1
2q (α̃1 ⊕ α̃2) yields

2α2(i) + 1 = 2(α2(i) + 1)− 1 α̃1⊕α̃2−−−−→ 2α1(α2(i) + 1)− 1
γ−1

2q−−→ 2α1(α2(i) + 1),
(6.11)

which establishes a bijection between the cycles of γ−1
2q (α̃1 ⊕ α̃2) and

α1γ−1
q α2, finishing the proof. �

Remark 6.3. In the proof of Lemma 6.2, γ−1
2q (α̃1 ⊕ α̃2) is the number of

loops in meanders [24] constructed by the two non-crossing partitions α1,2,
see [29, 25].

To state the next result, we introduce the “symmetric square root”
operator R acting on probability measures supported on the positive real
line:

R[µ] := 1
2(
√
x)#µ+ 1

2(−√x)#µ. (6.12)

Proposition 6.4. In the asymptotic regime 1 � k � n, the random
matrix CcΓn converges in moments to the probability measure

µ
(CcΓ)
t = (R ◦Dt)

[
b
�1/t
t

]
, (6.13)

for which we have

‖µ(CcΓ)
t ‖ =

{
2
√
t(1− t) if t ≤ 1/2

1 if t > 1/2.
(6.14)

Proof. As usual, the first step in the proof is a moment formula, valid at
any fixed dimensions n, k, d. Using the graphical Weingarten formula (see
Figure 6.2), we have

1
nd

ETr
[(
CcΓn

)p]
= 1
nd

∑
α,β∈Sp

n#(γ−1α)k#αd#(γβ) Wgkn(α−1β). (6.15)

We compute the asymptotic moments of CcΓn by taking two successive
limits, first in n and then in k. The power of n in the moment formula
above reads

power of n in (6.15) = −2 + p− |γ−1α|+ p− |γβ| − p− |α−1β|
= p− 2− (|γβ|+ |β−1α|+ |α−1γ|)
≤ p− 2− |γ2| ≤ 0, (6.16)
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CcΓ
n

Un U∗
n

=

Un
i+ 1
β(i)

i− 1
α(i)

i
α(i)

Figure 6.2. Diagrams for the partially transposed Choi
matrix CcΓn of the complementary channel and for the i-th
Un box in the graphical expansion of Tr

[
(CcΓn )p

]
.

where we have used the triangle inequality and the fact that γ2 has either
one or two cycles, depending on whether p is respectively odd or even.
The above bound is saturated if and only if p is an even number and the
permutations α, β lie on the geodesic γ−1 − β − α − γ. Hence, for even
integers p = 2q, q ≥ 1, we have

lim
n→∞(nd)−1 ETr

[(
CcΓn

)p]
= (tk)−1 ∑

γ−1−β−α−γ
k2p−|α|−|γβ|−p−|α−1β| tp−|γβ|Mob(α, β)

= (tk)−1 ∑
γ−1−β−α−γ

kp−|α|−|γα| tp−|γβ|Mob(α, β)

= (tk)−1 ∑
γ−1−β−α−γ

k#α−|γα| t#(γβ) Mob(α, β). (6.17)

Then, we shift our permutations and work on the geodesic: id − γβ −
γα − γ2. Importantly, γ2 decomposes as γ2 = γ1 ⊕ γ2 with γ1 = (2q −
1, 2q− 3, . . . , 1) and γ2 = (2q, 2q− 2, . . . , 2). Permutations on the geodesic
id−γβ−γα−γ2 admit the same decomposition, so we write γα = α1⊕α2
and γβ = β1⊕ β2. Using the moment-cumulant formula, we obtain (6.17)
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as

1
tk

∑
id−β1−α1−γ1
id−β2−α2−γ2

k#(γ−1(α1⊕α2))−|α1⊕α2| t#(β1⊕β2) Mob(α1, β1) Mob(α2, β2)

= 1
tk

∑
id−α1−γ1
id−α2−γ2

k#(γ−1(α1⊕α2))−|α1|−|α2|

 ∑
id−β1−α1

t#β1 Mob(α1, β1)



×
 ∑

id−β2−α2

t#β2 Mob(α2, β2)


= 1
tk

∑
id−α1−γ1
id−α2−γ2

k#(γ−1(α1⊕α2))−|α1|−|α2| κα1(bt)κα2(bt). (6.18)

Unfortunately, we are not able to identify a probability measure having
these moments. One of the reasons for this is the relation between the
sum above and the combinatorics of meanders [24], see Remark 6.3. We
are thus taking the second limit, k →∞. To do so, we calculate the power
of k in (6.18) by using Lemma 6.2. In what follows, we abuse notation
by writing, as in Lemma 6.2, α1,2 for the permutations in Sq obtained by
restricting the previous α1,2 ∈ S2q on odd, resp. even numbers; note that
by doing this, the quantities |α1,2| remain invariant. We get:

power of k in (6.18) = −1 + #(α1(αKr
2 )−1)− |α1| − |α2|

= |αKr
2 | − (|α1|+ |α−1

1 αKr
2 |) ≤ 0, (6.19)

where the bound is saturated if and only if α1, α2 ∈ Sq are on the geodesic
id−α2−αKr

1 . Therefore, using repeatedly the moment cumulant formula,
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we obtain
lim
k→∞

(6.18) = t−1 ∑
id−α1−αKr

2 −γq
κα1(bt)κα2(bt) (6.20)

= t−1 ∑
id−αKr

2 −γq
mαKr

2
(bt)κα2(bt)

= tq
∑

id−αKr
2 −γq

t−#(α2) κα2(bt)

= tq
∑

id−αKr
2 −γq

κα2(b�1/t
t )

= mq

(
Dt

[
b
�1/t
t

])
.

Finally, we have, for all integers q ≥ 1,

lim
k→∞

lim
n→∞(nd)−1 ETr

[(
CcΓn

)2q
]

= mq

(
Dt

[
b
�1/t
t

])
, (6.21)

and

lim
k→∞

lim
n→∞(nd)−1 ETr

[(
CcΓn

)2q+1
]

= 0. (6.22)

To identify the distribution µ(CcΓ)
t as in (6.13), we have to modifyDt

[
b
�1/t
t

]
by (x→ √x)# to have right powers for the moments and make it symmet-
ric as the odd moments vanish. This process is done by (6.12). To specify
the support of Dt

[
b
�1/t
t

]
, we use Proposition 2.9 with T = 1/t and s = t,

and since ϕ+(t, t) = 4t(1− t), we obtain the conclusion about the support
of µ(CcΓ)

t , equation (6.14). �

6.3. Partially transposed random projections
In this subsection, we turn to the study of the bound (4.12) for random
quantum channels. Using the fact thatM = V V ∗ is a (random) projection,
we are actually interested in the operator norm of the partial transposi-
tion of a random projection – this was Montanaro’s point of view in [44],
where this question was studied, in a different asymptotic regime. For a
sequence of random quantum channels Ln, we compute the limiting eigen-
value distribution µ

(MΓ)
k,t of the partially transposed random projection

MΓ
n , which is expressed in a free probabilistic framework. Unfortunately,
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we are not able to compute the support of µ(MΓ)
k,t , so we have to settle

with some partial information: as in the previous section, we consider the
limit µ(MΓ)

t = limk→∞ µ
(MΓ)
k,t , and we compute the support of this simpler

measure. Below, we write µ� ν := µ�D−1[ν].
Recall that the semicircular probability distribution of mean m and

standard deviation σ is given by

SCm,σ =
√

4σ2 − (x−m)2

2πσ2 1[m−2σ,m+2σ](x)dx. (6.23)

Proposition 6.5. The partially transposed random projection MΓ
n con-

verges, in moments, towards the probability measure

µ
(MΓ)
k,t = D1/k

[
b
� k(k+1)

2
t � b

� k(k−1)
2

t

]
. (6.24)

The probability measures µ(MΓ)
k,t converge, in distribution, as k → ∞, to-

wards
lim
k→∞

µ
(MΓ)
k,t = µ

(MΓ)
t = SC

t,
√
t(1−t), (6.25)

a semi-circular distribution with mean t and varaince t(1−t). In particular,
we have

‖µ(MΓ)
t ‖ = t+ 2

√
t(1− t). (6.26)

Proof. We start with a moment formula, obtained via graphical Wein-
garten calculus (see Figure 6.3 for an explanation of the exponents ap-
pearing below): for any integer p ≥ 1,

1
nk

ETr
[
(MΓ

n )p
]

= 1
nk

∑
α,β∈Sp

n#(γ−1α)k#(γα)d#β Wg(α−1β). (6.27)

To obtain the surviving terms as n→∞, we maximize the power of n for
each term in the equation above (recall that d ∼ tkn)

power of n in (6.27) = −1 + #(γ−1α) + #β − p− |α−1β|
= p− 1− (|β|+ |β−1α|+ |α−1γ|)
≤ p− 1− |γ| = 0. (6.28)
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MΓ
n

Un U∗
n=

Un

i− 1
α(i) i

β(i)

i+ 1
α(i)

Figure 6.3. Diagrams for the partially transposed projec-
tionMΓ

n and for the i-th Un box in the graphical expansion
of its p-th moment.

The bound above is saturated if and only if the permutations α, β ∈ Sp
lie on the geodesic id− β − α− γ. This implies that

lim
n→∞

1
nk

ETr
[(
MΓ
n

)p]
= 1
k

∑
id−β−α−γ

k#(γα)(tk)#βk−p−|α
−1β|Mob(α, β)

= k−p
∑

id−β−α−γ
ke(α)+#αt#(β) Mob(α, β)

= k−p
∑

id−α−γ
ke(α)+#ακα(bt), (6.29)

where we have made use again of the fact that, for a geodesic permutation
id−α−γ, we have #(γα) = 1+e(α), where e(α) denotes the number of cy-
cles of α having even length (see [6, Lemma 2.1] for a proof). Importantly,
the general term in the sum above is a function which is multiplicative on
the cycles of α:

ke(α)+#(α)κα(bt) =
∏
c∈α

f(‖c‖) (6.30)

where ‖c‖ is the length of a cycle c, and f is defined by

f(r) = κr(bt)×
{
k if r is odd
k2 if r is even.

(6.31)

On the other hand, given two probability measures ν1 and ν2, we have
κr(ν1 � ν2) = κr(ν1) + (−1)rκr(ν2) (6.32)
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and we notice in fact that

f(r) = κr

(
b
� k(k+1)

2
t

)
+ (−1)rκr

(
b
� k(k−1)

2
t

)
. (6.33)

Using the moment-cumulant formula, we prove our first claim:

lim
n→∞(nk)−1 ETr

[(
MΓ
n

)p]
= mp

(
D1/k

[
b
� k(k+1)

2
t � b

� k(k−1)
2

t

])
. (6.34)

Since we are not able to analytically describe the support of the measure
µ

(MΓ)
k,t above, we take limit k →∞ in (6.29). For each geodesic permutation

id− α− γ, we claim that

power of k in (6.29) = −p+ e(α) + #(α) ≤ 0.

Indeed, assume that α has q fixed points, 0 ≤ q ≤ p. Then, e(α) ≤ (p−q)/2
and #α ≤ q + (p − q)/2, which proves the inequality. Permutations α
saturating the bound must have exactly q fixed points and (p−q)/2 cycles
of even length, which implies that the non-trivial cycles have length 2. We
denote the set of non-crossing partitions having only blocks of length 1
and 2 by NC1,2(p) (see also [3] for another instance where this set was
related to non-centered semicircular distributions). Then, lim

k→∞
(6.29) is

∑
α∈NC1,2(p)

κα(bt) =
∑

α∈NC(p)
κα

(
SC

t,
√
t(1−t)

)
= mp

(
SC

t,
√
t(1−t)

)
,(6.35)

because the first two free cumulants are respectively
κ1(bt) = κ1

(
SC

t,
√
t(1−t)

)
= t and κ2(bt) = κ2

(
SC

t,
√
t(1−t)

)
= t− t2. �

Remark 6.6. The convergence in distribution in the result above was also
found in [2], using operator-valued free probabilistic methods.

Remark 6.7. Equation (6.25) can also be proved using the free Central
Limit Theorem [45, Theorem 8.10]. Indeed, reorder the terms in µ(MΓ)

k,t to
write

µ
(MΓ)
k,t = D1/

√
2D1/

√
k(k−1)/2

[
(bt � bt)�

k(k−1)
2

]
�D1/k[b�kt ]. (6.36)

The first part above is responsible for the centered semicircular part of
(6.25), while the second term is responsible for the shift t.
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6.4. Comparing the bounds

In the previous three subsections and in Section 5, we have computed the
asymptotic limits of the bounds (4.9)-(4.12) in the case of large dimen-
sional random quantum channels (recall that the bound (4.13) is always
trivial). Since our ultimate goal is to use these quantities and Proposition
4.4 to lower bound minimum output Rényi entropies of quantum chan-
nels, we analyze in this subsection which of the four quantities yields the
tightest bounds. Note that the quantity ‖MΓ

L‖ is different from the other
three, since it provides a lower bound for the p = ∞ minimum output
Rényi entropy of L; however, using the inequality H2 ≥ H∞ (see Lemma
2.1), we shall consider it here as a lower bound for Hmin

2 (L).
Let us start with the two bounds arising from the Choi matrix of the

channel L.

Proposition 6.8. For a sequence of random quantum channels Ln, the
following inequality holds almost surely:

lim
n→∞ ‖C

Γ
n‖ = ‖µ(CΓ)

k,t ‖ ≤ ‖µ
(C)
k,t ‖ = lim

n→∞ ‖Cn‖. (6.37)

Proof. First, note that at fixed k, the two norms in question, (5.24) and
(6.3), are increasing functions of t. Then, note that the value of t where the
norm of the Choi matrix becomes constant (= 1) is smaller: t+ k−2 ≤ t+
(k+1)/(2k). Finally, the following remarkable identity holds: ∀t < 1−k−2,

‖µ(C)
k,t ‖ − ‖µ

(CΓ)
k,t ‖ = kϕ+(k−2, t)− 2ϕ+

(
k + 1

2k , t

)
+ 1 = kt ≥ 0. (6.38)

The proof follows now from the three facts above, see also Figure 6.4 for
the case k = 2. �

In the previous two subsections, we were unfortunately not able to
compute in full generality the asymptotic operator norm for the other
two bounds, ‖CΓ

Lc‖ and ‖MΓ
L‖. We have to settle thus for a partial result,

concerning their asymptotic behaviour in the case 1� k � n (this regime
corresponds to first taking the limit n→∞, followed by the limit k →∞).

Proposition 6.9. For a sequence of random quantum channels Ln, in the
asymptotical regime 1� k � n, the following inequalities hold:

‖µ(CΓ)
t ‖ = ‖µ(CcΓ)

t ‖ ≤ ‖µ(MΓ)
t ‖, (6.39)
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Figure 6.4. For large random quantum channels, the
norm of the Choi matrix (blue) is larger than the norm
of the partially transposed Choi matrix (red), here for k =
2.

where

µ
(CΓ)
t = lim

k→∞
µ

(CΓ)
k,t = Dt

[(1
2 δ−1 + 1

2 δ+1

)�1/t
]
. (6.40)

In the case of the Choi matrices,

lim
k→∞

‖µ(C)
k,t ‖ = +∞. (6.41)

Proof. First, (5.5) shows the equality in (6.40). Then, taking k → ∞ in
Theorem 5.5, ‖µ(CΓ)

t ‖ turns out to be the same as ‖µ(CcΓ)
t ‖, which is given

in (6.14). Next, (6.26) results in the inequality in (6.39). Finally, (6.41) is
obtained by (6.3). �

Remark 6.10. Note that, although the probability measures µ(CΓ)
t and

µ
(CcΓ)
t are both symmetric and have the same support upper bound, they

are different. Indeed, we have

Var[µ(CΓ)
t ] = t2κ2

[(1
2 δ−1 + 1

2 δ+1

)�1/t
]

= tVar
[1

2 δ−1 + 1
2 δ+1

]
= t,

(6.42)
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while
Var[µ(CcΓ)

t ] = t2κ1
[
b
�1/t
t

]
= t2. (6.43)

Finally, we present in Figure 6.5 some numerical result in the case k = 2,
t = 0.1, for all the bounds. In the case of CL, CΓ

L, and MΓ
L , the 10 random

isometries with n = 2000 were used to produce the eigenvalue plot, while
for CΓ

Lc we used 10 random isometries with n = 100 (note that we removed
from the graphs some Dirac masses at zero corresponding to rank-deficient
matrices). The approximations we deduce for the norms of the matrices
are presented in Table 6.1. In the case we consider (k = 2), it seems that
the bound corresponding to CΓ

Lc is the tightest. However, this might be
due simply to the rather small value of n compared to the other cases, so
we do not wish to make any conjectures at this time.
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Figure 6.5. Histograms for the eigenvalue distributions
of, respectively, CL, CΓ

L, and CΓ
Lc , and MΓ

L . For each his-
togram, we have chosen 10 random matrices with k = 2,
t = 0.1 and n = 2000 (except for CΓ

Lc , where n = 100).

We would like to conclude this section with a discussion on the opti-
mality of the four bounds, in the case of random quantum channels. From
a practical point of view, note that we have explicit formulas, at fixed k
and t, only for the two bounds corresponding to Choi matrices, ‖CL‖ and
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Table 6.1. Numerical results for the four bounds, in the
case k = 2 and t = 0.1.

Bound Numerical estimate Theoretical value

‖CL‖ 1.12360 1.11962
‖CΓ

L‖ 0.91990 0.91961
‖CΓ

Lc‖ 0.85758 –
‖MΓ

L‖ 0.94548 –

‖CΓ
L‖; among the two, Proposition 6.8 shows that the bound for the partial

transposition is always tighter. In the asymptotical regime where t is fixed
and k → ∞, in Proposition 6.9 we show that the bound ‖CΓ

L‖ is tighter
than ‖MΓ

L‖ (which is the bound used by Montanaro in [44]), while the
two bounds corresponding to partially transposed Choi matrices, ‖CΓ

L‖
and ‖CΓ

Lc‖, perform equally well. Numerical simulations for k = 2 and
t = 0.1 seem to suggest that ‖CΓ

Lc‖ performs better in this particular
case; however, we do not consider this numerical data conclusive, because
of the small value of the parameter n that was used to obtained them, due
to machine memory limitations.

For these reasons, we choose to work in the next sections with the bound
‖CΓ

L‖, corresponding to the partial transposition of the Choi matrix, see
(5.24)-(5.25).

7. Minimum output entropies for a single random quantum
channel

In this section we recall some upper bounds for minimum output entropies
of random quantum channels we shall use in what follows. The following
fact is a collection of results from [9, 17]:

Theorem 7.1. For all p ∈ [0,∞] and for almost all sequences of random
quantum channels (Ln)n, we have

lim sup
n→∞

Hmin
p (Ln) ≤ Hp(xk,t) =: hp,k,t, (7.1)
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where

xk,t =

y, 1− y
k − 1 , . . . ,

1− y
k − 1︸ ︷︷ ︸

k−1 times

 (7.2)

with

y = max supp(bt � b1/k) = max(1, ϕ+(t, 1/k))

= min
[
1, t+ 1

k
− 2 t

k
+ 2

√
t(1− t) 1

k

(
1− 1

k

)]
. (7.3)

This statement also holds for the sequence of complementary channels
(LCn )n.

Moreover, for p ∈ [1,∞], the above inequality is an equality, and lim sup
can be replaced by lim in (7.1).

Proof. In [17, Theorem 4.1] it is shown that the largest eigenvalue of an
output of a random quantum channel is at most y, and that the value y is
almost surely attained. Given this partial information, the upper bound
(7.1) follows from the concavity of p-Rényi entropies for p ∈ [0,∞] (to
maximize entropy, the smaller eigenvalues should be identical). The second
part of the statement follows from the finer analysis in [8, Theorem 5.2],
where it is shown that the eigenvalue vector xk,t above is the one which
achieves the minimum entropy among outputs of the random quantum
channel, in the case where p ≥ 1. �

Let us now study the asymptotics of the above upper bound, in the
regime k →∞. Let us remind the reader that these results concern quan-
tities for which the limit n→∞ has already been taken; in other words,
we are considering the asymptotical regime 1� k � n.

Corollary 7.2. In the setting of Theorem 7.1, for fixed p ∈ [0,∞], asymp-
totically as k →∞, we have:
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i) When 0 < t < 1 is a fixed constant,

hp,k,t = o(1) +



p

1− p log t, if p > 1

(1− t) log k − t log t− (1− t) log(1− t), if p = 1

log k + p

1− p log(1− t), if 0 ≤ p < 1.
(7.4)

ii) When t � k−τ for some constant τ > 0,

hp,k,t = o(1) +


τp

p− 1 log k, if 0 < τ ≤ 1− 1
p

log k, if 1− 1
p
< τ.

(7.5)

Proof. First, note that since we are in the large k regime, y = ϕ+(t, 1/k) <
1. In the case where t is fixed, we have y = t+O(k−1/2) so that, depending
on the value of p, the main contribution to the quantity ‖xk,t‖pp is given
either by y (when p > 1), (1 − y)/(k − 1) (when p < 1), or by the whole
vector xk,t (when p = 1). In the second case, where t scales like k−τ , we
have that y � k−τ + k−1, which implies that

‖xk,t‖pp � k−pτ + k−p+1. (7.6)

We conclude by taking logarithms of the expressions above. �

Remark 7.3. In Corollary 7.2 the case when τ = 1 can be derived from
[5]. Also, the case τ ≥ 1 can be treated via max

X∈M1,+
d
‖L(X)− I/k‖2 �√

t
k + t [28] which means that all the output states are highly mixed.

8. Additivity rates of random quantum channels

This section contains one of the main results of our work, lower bounds for
the additivity rates of random quantum channels. We shall use Proposition
4.4 and the estimates from Sections 5. Indeed, in the following sections we
will only consider the bound given by the operator norm of the partially
transposed Choi matrix of a quantum channel, for the reasons discussed
in Section 6.4.
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8.1. Minimum output Rényi entropy
The following result is a direct consequence of the bound in Proposition
4.4, the strong convergence result in Theorem 5.5 and Lemma 2.1.
Theorem 8.1. Fix a positive integer r and a Rényi entropy parameter
p ∈ [0, 2]. Then, almost surely, as n→∞,

lim
n→∞H

min
p (L⊗rn ) ≥ −r log ‖µ(CΓ)

k,t ‖, (8.1)

where ‖µ(CΓ)
k,t ‖ was given in (5.24)-(5.25). This statement also holds for

the sequence of complementary channels (LCn )n.
Remark 8.2. In the case p > 2, the inequality ‖x‖p ≤ ‖x‖2 must be used,
and thus a correction factor appears in the bound:

lim
n→∞H

min
p (L⊗rn ) ≥ −r log ‖µ(CΓ)

k,t ‖ ·
p

2(p− 1) . (8.2)

Next, we investigate how the quantity ‖µ(CΓ)
k,t ‖ behaves when k → ∞

(recall that we write xn � yn when limn→∞ xn/yn ∈ (0,∞)).
Corollary 8.3. In the setting of Theorem 5.5 we have the following as-
ymptotic behaviors as k →∞.

i) When t ≥ 1/2 is a constant, we have, for any k,

‖µ(CΓ)
k,t ‖ = 1. (8.3)

ii) When 0 < t < 1/2 is a constant, we have

‖µ(CΓ)
k,t ‖ = 2

√
t(1− t) + o(1). (8.4)

iii) When t � k−τ and 0 < τ ≤ 2, we have

‖µ(CΓ)
k,t ‖ � k−

τ
2 . (8.5)

iv) When t � k−τ and τ > 2, we have

‖µ(CΓ)
k,t ‖ � k−1. (8.6)

Finally, Theorems 8.1, 7.1, and Corollaries 8.3, 7.2 immediately give one
of the main results of this paper. The constants αΓ

p,k,t below are almost
sure limits of the lower bounds αΓ

p (Ln) defined in Proposition 4.6.

56



Additivity rates and PPT property

Theorem 8.4. For any p ∈ [0, 2], almost surely as n → ∞, the p-
additivity rates of random quantum channels Ln are lower bounded by
the constants

αp(Ln) ≥ αΓ
p,k,t :=

− log ‖µ(CΓ)
k,t ‖

hp,k,t
. (8.7)

where ‖µ(CΓ)
k,t ‖ and hp,k,t are given in (5.24)-(5.25) and (7.1). For example,

in the case of the von Neumann entropy (p = 1), we obtain

α1(Ln) ≥
− log

[
1−2t
k + 2

√(
1− 1

k2

)
t(1− t)

]
−y log y − (1− y) log 1−y

k−1
1t<(k−1)/(2k), (8.8)

where y = ϕ+(t, 1/k).
Again, these statements hold for the sequence of complementary chan-

nels (LCn )n.

Corollary 8.5. The additivity rate lower bounds αΓ
p,k,t obtained in the

theorem above have the following behaviour as k →∞:

I) When t ≥ 1/2 is a constant, then αΓ
p,k,t = 0 for all p and, actually,

for all k.

II) When 0 < t < 1/2 is a constant,

αΓ
p,k,t = o(1) + p− 1

2p

[
1 + 2 log 2 + log(1− t)

log t

]
· 1(1,2]. (8.9)

III) When t � k−τ with τ > 0,

αΓ
p,k,t = o(1) +


p−1
2p if 0 < τ ≤ 1− 1/p
τ/2 if 1− 1/p ≤ τ ≤ 2
1 if τ ≥ 2.

(8.10)

The above result can be summarized using the “phase diagram” in
Figure 8.1, in which the asymptotical behavior (k → ∞) of the lower
bound αΓ

p,k,t is presented as a function of p and τ = log(1/t)/ log k.

Remark 8.6. The above lower bound is non-trivial (i.e. αΓ
p,k,t > 0) if and

only if ‖µ(CΓ)
k,t ‖ < 1, which is equivalent to the condition t < 1 − s =

(k − 1)/(2k) < 1/2.
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Figure 8.1. Phase diagram for the additivity rate lower
bound αΓ

p,k,t as a function of p and the scaling parameter
τ , for large k. In the region denoted by (∗), αΓ

p,k,t behaves
like (p− 1)/(2p), while the red curve in the plot is defined
by p = 1/(1− τ).

8.2. Additivity rates versus weak multiplicativity exponents

In this section, we compare the additivity rates from Theorem 8.4 with
Montanaro’s results from [44]. First, let us comment on some major dif-
ferences between the two approaches. First and foremost, the asymptotic
regimes for random quantum channels are different: whereas we consider
sequences of random quantum channels with fixed output dimension, in
[44] the author assumes that both the input and the output dimensions of
the channels grow to infinity; for this reason, it is impossible to compare
the results from a strictly mathematical perspective. Second, Montanaro’s
approach is to bound the additivity rate of a channel in terms of the matrix
MΓ defined in (4.12); in this work, we introduce three additional bounds
and we argue that in the fixed output dimension regime, the bound corre-
sponding to the partial transposition of the Choi matrix outperforms the
one from [44]. The new quantities we introduce are interesting also for the
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reason that they bound the 2 Rényi entropy, whereas the quantity from
[44] bounds the ∞-Rényi entropy. Finally, we not only compute the lim-
iting operator norms of the relevant random matrices, but in most cases
we compute also the limiting eigenvalue distributions (see Section 10 for
an application).

In spite of the fact that the current paper and [44] consider different
asymptotic regimes, we would like to perform a heuristic benchmark of
the additivity rates obtained. The following result is an adaptation of [44,
Theorem 3] for the p = 2 Rényi entropy.

Proposition 8.7. We follow the notations in Section 2.1. Suppose k ≤ n,
min{d, k} ≥ 2(log2 n)3/2 and d = o(kn). Then, typically the additivity rate
is bounded: 1

rH
min
2 (L⊗r) ≥ βHmin

2 (L) where

β ∼
{

1/4 if d ≥ n/k
1/2 if d ≤ n/k (8.11)

In this proposition, if we take n = 2(k/2)2/3 this brings it to our setting
1 � k � n; note however that we are taking the two limits separately
(first n → ∞ and then k → ∞) whereas in [44] the author considers the
more general situation where both k and n grow at the same time (but at
different speeds). By solving the equation (we have t = k−τ in our mind)

d = n

k
= k−τkn (8.12)

we get τ = 2. Hence, d ≥ n/k and d ≤ n/k can be compared with
our regimes 0 < τ ≤ 2 and τ ≥ 2, respectively. Our method yields an
improvement by a factor of two in this case.

In the case of the von Neumann entropy (p = 1), Montanaro obtains in
[44, Section 1.3] additivity rates of 1 for τ = 1 and 1/2 for τ ≥ 2, which
are precisely the values we obtain in Corollary 8.5. This can be explained
by the fact that in the case where t ∼ k−τ , the norm ‖MΓ‖ from equation
(6.26) behaves like 2

√
t, which is also the value from [44, Theorem 8].

Using the monotonicity of the Rényi entropies as functions of p, one could
improve the results in [44] for other values of p, as in the case p = 1.
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8.3. Additivity rates for tensor products of conjugate ran-
dom channels

Besides the constructive counterexamples already discussed in the current
work (see Examples 3.5, 3.6), the most successful technique to construct
quantum channels that violate the additivity relation consists of taking
random conjugate channels (recall that for a channel L as in (2.3), its
conjugate channel is obtained by replacing V by V̄ ). In this subsection, we
investigate how the additivity violations of the minimum output p-entropy
allow to improve the additivity rate of the product channel αp(L⊗L̄) with
respect to the additivity rate of one channel αp(L). These considerations
are related to a conjecture by Hastings [33] that the quantum channels
L ⊗ L̄ should be generically additive. Although there is some evidence
supporting this claim [30], the conjecture is open to this date. We would
like to bring further evidence to support this claim, by showing that, in
some cases, the additivity rate of L⊗L̄ is larger than that of L, for random
quantum channels L.

The idea of considering conjugate channels when trying to expose ad-
ditivity violations is due to Hayden and Winter [34, Lemma 3.3], and it
revolves around using the maximally entangled state (2.5) as a test input
for the tensor product between a channel and its conjugate:

Lemma 8.8. Consider a quantum channel L : Md(C) → Mk(C) which
is defined via an isometry V : Cd → Cn ⊗ Ck. Then, the output state
[L⊗ L̄](Ed) cannot be too mixed, in the sense that

‖[L⊗ L̄](Ed)‖ ≥
d

nk
. (8.13)

The same bound holds for the complementary settings: [LC ⊗ LC ](Ed).

Since, obviously, the channels L and L̄ have the same additivity rates,
the additivity rates of their product can be lower bounded using Proposi-
tion 4.8 as follows:

αΓ
p (L⊗ L̄) ≥ vp(L, L̄)αΓ

p (L). (8.14)

It is intuitive now that the larger the entropy violation quotient vp is, the
larger the additivity rate of the product channel will be, when compared
to that of a single channel. Moreover, in order to get explicit lower bounds
on the additivity rates αp(L⊗L̄), we can lower bound the relative violation
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of additivity vp as follows:

vp(L, L̄) ≥ 2Hmin
p (L)

Hp([L⊗ L̄](Ed))
. (8.15)

It follows that the quality of the lower bound αΓ
p (L⊗L̄) can be in principle

improved by a factor as large as 2 when comparing to the single channel
bound αΓ

p (L).
We study next this phenomenon in the case of random quantum chan-

nels Ln described in Section 5. For our model of random quantum chan-
nels, the Hayden-Winter bound in Lemma 8.8 was refined in [22, Theorem
6.5]:

Lemma 8.9. Consider a sequence of random quantum channels Ln as in
Section 5. Then, almost surely as n →∞, the eigenvalues of the random
quantum state [L⊗ L̄](Ed) converge to the following deterministic vector:

γk,t =
(
t+ 1− t

k2 ,
1− t
k2 , . . . ,

1− t
k2

)
∈M1,+

k2 (C). (8.16)

Using this lemma, we are able to quantify the improvement in the lower
bound of the product channel which is provided by additivity violations.
The following proposition is a direct consequence of the above discussion
and the asymptotic relations already used in this section.

Proposition 8.10. Consider a sequence Ln of random quantum channels
as in Section 5. Almost surely as n→∞, the p-additivity rates of random
quantum channels Ln ⊗ L̄n are lower bounded by the constants

αp(Ln ⊗ L̄n) ≥ vp,k,tαΓ
p,k,t, (8.17)

where αΓ
p,k,t are the single channel bounds from Theorem 8.4, and

vp,k,t = 2hp,k,t
Hp(γk,t)

, (8.18)

where the vector γk,t was defined in (8.16). The same bound holds for the
complementary settings: LC ⊗ LC .

In particular, the parameter vp,k,t behaves like 1 + o(1) when k → ∞,
except in the following cases:

I) When 0 < t < 1/2 is a constant and p > 1, we have vp,k,t = 2+o(1).
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II) When t � k−τ with p > 1 and 0 < τ < 1 − 1/p, we have vp,k,t =
2 + o(1).

III) When t � k−τ with p > 1 and 1− 1/p ≤ τ ≤ 2− 2/p, we have

vp,k,t = 2p− 2
τp

+ o(1). (8.19)

9. Classical capacity for random quantum channels

In this section, we discuss how the additivity rate bounds derived earlier
yield interesting upper bounds for the classical capacity of (random) quan-
tum channels. In general, it is difficult to calculate the classical capacity
for a given quantum channel [10], so upper bounds are important in this
situation.

Let us start with an important relation between the additivity rate for
the von Neumann entropy α1 and the classical capacity Ccl of a quantum
channel.

Proposition 9.1. For any quantum channel L,
Ccl(L) ≤ Hmax

1 (L)− α1(L)Hmin
1 (L). (9.1)

In particular,
Ccl(L) ≤ Hmax

1 (L) + logB, (9.2)
where B = min{‖CL‖, ‖CΓ

L‖, ‖CΓ
Lc‖, ‖MΓ

L‖}.
Proof. The first inequality follows from (1.8) and Proposition 3.2, whereas
the second one follows from Proposition 4.4. �

Let us now analyze in detail the corresponding bounds for random quan-
tum channels by using estimates developed in the previous sections. In our
previous work [21], we have investigated the Holevo quantity χ(·) for ran-
dom quantum channels, but we were not able to analyze Ccl(·) because we
did not have the techniques to treat output entropy of tensor powers of
quantum channels. However, now we use Proposition 9.1 and get bounds
for the classical capacity, as follows.

Theorem 9.2. For random quantum channels defined by (2.3), we have,
almost surely

lim sup
n→∞

Ccl(Ln) ≤ log k − log ‖µk,t‖. (9.3)
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In particular, the capacity admits the following asymptotic bounds as k →
∞.

i) When 0 < t < 1/2 is a constant, we have
t log k − h(t) ≤ lim inf

n→∞ Ccl(Ln)

≤ lim sup
n→∞

Ccl(Ln) ≤ log k + log 2 + 1
2 log t(1− t) + o(1),

(9.4)

where h(t) = −t log t− (1− t) log(1− t) is the binary entropy.

ii) When t � k−τ and 0 < τ ≤ 2, we have

lim sup
n→∞

Ccl(Ln) ≤
(

1− τ

2

)
log k + c (9.5)

for some constant c > 0.

iii) When t � k−τ and τ > 2, we have
lim sup
n→∞

Ccl(Ln) ≤ c (9.6)

for some constant c > 0.

Proof. For the upper bound, one can use Theorem 8.1 and Corollary 8.3
together with (1.8). To show the lower bound, we claim that for our ran-
dom channel Ln almost surely as n→∞

lim
n→∞χ(Ln) = log k − lim

n→∞H
min
1 (Ln) = log k − h1,k,t. (9.7)

Indeed, the almost-sure limit image of Ln is unitarily invariant (see [8, 21]
for details). Hence, we can rotate and average an optimal output to get
the maximally mixed state, whose entropy is log k. Then, Corollary 7.2
gives the lower bounds. �

Note that the constants c appearing in the result above could have been
explicitly computed using Theorem 8.1 and Corollary 8.3.

10. PPT properties for random quantum channels

In this section, we investigate the sequence of random quantum channels
Ln defined in (2.3) and find the threshold for PPT/non-PPT property.
Also, we show existence of PPT channels which violate additivity of Rényi
p entropy.
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Recall that a quantum channel L is said to have the PPT property if its
Choi matrix is PPT, i.e. CΓ

L ≥ 0. This is equivalent to the fact that, for any
bi-partite input state x, the output [id⊗L](xx∗) is a PPT quantum state.
It follows that the class of PPT channels contains as a (strict, for large
enough dimensions) subclass the set of entanglement breaking channels
(for which the Choi matrix is separable).

10.1. Thresholds for PPT property
Theorem 10.1. Let Ln be a sequence of random quantum channels of
parameters k, t as in (2.3), and let s = (k + 1)/(2k) and

tPPT = 1
2 −

√
s− s2 = 1

2

(
1−

√
1− 1

k2

)
. (10.1)

If t ∈ (0, tPPT ) then, almost surely, the sequence λmin(CΓ
n ) converges

to a positive limit (the channels being asymptotic PPT), whereas if t ∈
(tPPT , 1], then, almost surely, the sequence λmin(CΓ

n ) converges to a neg-
ative limit (the channels being asymptotic non-PPT). In other words, the
value tPPT is a threshold for PPT channels: a random quantum channel
is PPT if and only if its relative dimension t of the input space is smaller
than tPPT .

Proof. We use the strong convergence proved in Theorem 5.5. Since the
convergence is strong, the extremal eigenvalues of the partially transposed
Choi matrix CΓ

n converge to the edges of the support of the limiting mea-
sure µk,t defined in equations (5.5)-(5.6). Since we are interested in the
positivity of the support, we only look at the smallest eigenvalue. We have
that, almost surely,

lim
n→∞λmin(CΓ

n ) =
{

2ϕ−(s, t)− 1, if t < s

−1, if t ≥ s. (10.2)

So, for the limiting quantity to be strictly positive, both conditions t < s
and ϕ−(s, t) > 1/2 need to be satisfied. In order to conclude, we need to
show that these conditions are equivalent to the ones in the statement.

For a fixed value of k (and thus s), the function t 7→ ϕ−(s, t) is convex
on [0, 1] and the equation ϕ−(s, t) = 1/2 has solutions t± = 1/2±

√
s− s2.

Obviously, ϕ−(s, t) < 1/2 ⇐⇒ t ∈ [0, t−) ∪ (t+, 1]. A direct computation
shows that t+ > s iff s > 1/2 +

√
2/4, which is equivalent to k >

√
2,
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which is true for all integer k > 1. Hence, s ∈ (t−, t+) for the relevant
values of k, and the conclusion follows. �

Remark 10.2. In the above result, the threshold value tPPT behaves as
k−2/4 + o(k−2) as k → ∞. In that range of parameters (t � k−2 or
smaller), we have also shown in Theorem 8.4 that the channels Ln are
almost additive, i.e. their additivity rate is 1 + o(1), for any p ∈ [0, 2].
Remark 10.3. The above value of the threshold tPPT proves also the claim
that the distribution of the random matrix CΓ

L is not that of a (rescaled)
induced random density matrix [56]. Indeed, for random induced density
matrices, the threshold for the PPT property has been computed in [6,
Theorem 6.2]: tPPT,induced = 1/[4k(k−1)]. In general, the value for random
Choi matrices is smaller than the value for the induced ensemble, tPPT <
tPPT,induced, proving that the two probability distributions are different.
However, let us note that the two thresholds have the same asymptotic
behaviour as k →∞.
Remark 10.4. Let us make one final remark concerning the case of the
complementary channels. Indeed, it has been shown in Section 6.2 that
the limiting spectral distribution of the Choi matrix of the complementary
channel Lcn is symmetric in the regime 1� k � n. Hence, in that regime,
the complementary channel cannot be PPT. This illustrates the fact that,
in general, a quantum channel and its complementary do not share the
PPT property.

10.2. PPT channels violating additivity
In this subsection, we show existence of PPT channels which violate the
additivity of Rényi p entropy with p large. There are two theorems pre-
sented below. Theorem 10.5 looks for the smallest possible dimension k,
while Theorem 10.6 does for the minimum number of p.
Theorem 10.5. Take k ≥ 76 and set d = n

4k , then for large enough n
and p, with high probability, Ln are PPT and we have additivity violation:

Hmin
p (Ln ⊗ L̄n) < 2Hmin

p (Ln). (10.3)
Proof. First,

tPPT = 1
2

[
1−

√
1− 1

k2

]
>

1
4k2 (10.4)
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So, set t = 1/(4k2) so that typical random channels are PPT by Theorem
10.1.

Next, by using the result in [22], almost surely

lim
n→∞max

X

∥∥∥(Ln ⊗ L̄n)(Bn)
∥∥∥
∞

= t+ 1− t
k2 = 5

4k2 −
1

4k4 (10.5)

where Bn are Bell states on Cn ⊗ Cn. On the other hand, by using the
result in [22], almost surely

lim
n→∞max

X
‖Ln(X)‖∞ = t+ 1

k
− 2 t

k
+ 2

√
t(1− t) 1

k

(
1− 1

k

)
(10.6)

≤ 1
k

+ 1
k
√
k

+ 1
4k2 −

1
2k3 (10.7)

This implies that, almost surely,
lim
n→∞H

min
∞ (Ln ⊗ L̄n) < 2 lim

n→∞H
min
∞ (Ln) (10.8)

for large enough k. Indeed, for 76 ≥ k, we have (10.5) > (10.7)2. Note
that since Hmin

∞ (·) = limp→∞Hmin(·) we can extend the above violation of
additivity to large p. The proof is complete by taking the intersection of
two large-probability events. �

Theorem 10.6. Set d = n
4k . Then, for large enough k and n, with high

probability Ln are PPT and we have additivity violation for all p ≥ 30.95:
Hmin
p (Ln ⊗ L̄n) < 2Hmin

p (Ln). (10.9)
Proof. First, by using the second statement of Theorem 7.1, almost surely

lim
n→∞H

min
p (Ln) = hp,k,t (10.10)

which was obtained by the output distribution xk,t in (7.2). For this dis-
tribution with t = 1/(4k2), we have(

‖xk,t‖pp
)2

= k2

k2p + (p2 − p) 1
k2p +O

( 1
k2p+1/2

)
(10.11)

where the approximation is given by Wolfram Mathematica. Similarly, for
γk,t in (8.16),

‖γk,t‖pp = 1
(k2 − 1)p

[
k2 − 1− 5p

4

]
+ 1
k2p

(5
4

)p
+O

( 1
k2p+2

)
= 1
k2p

[
k2 − 1− p

4 +
(5

4

)p]
+O

( 1
k2p+1

)
(10.12)
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A sufficient condition for additivity violation is that (10.11) < (10.12),
which is equivalent. in the regime k →∞, to

p2 − 3p
4 + 1 <

(5
4

)p
(10.13)

Again, solving the equation gives p = 30.9441 via Wolfram Mathematica.
As in the proof of Theorem 10.5, Ln are typically PPT as n → ∞ when
d = n

4k . Therefore, taking the intersection of two high-probability events
completes our proof. �

Acknowledgements. We would like to thank Michael Wolf for useful dis-
cussions, and the referee for a careful reading of our manuscript.

References

[1] G. Amosov, A. Holevo & R. Werner – “On some additivity
problems in quantum information theory”, Problems of Information
Transmission 36 (2000), no. 4, p. 305–313.

[2] O. Arizmendi, I. Nechita & C. Vargas-Obieta – “Block modi-
fied random matrices”, In preparation.

[3] G. Aubrun – “Partial transposition of random states and non-
centered semicircular distributions”, Random Matrices: Theory and
Applications 01 (2012), no. 02, p. 1250001.

[4] G. Aubrun & I. Nechita – “Realigning random states”, J. Math.
Phys. 53 (2012), no. 10, p. 102210, 16.

[5] G. Aubrun, S. Szarek & E. Werner – “Hastings’s additivity
counterexample via Dvoretzky’s theorem”, Comm. Math. Phys. 305
(2011), no. 1, p. 85–97.

[6] T. Banica & I. Nechita – “Asymptotic eigenvalue distributions of
block-transposed Wishart matrices”, J. Theoret. Probab. 26 (2013),
no. 3, p. 855–869.

[7] C. Beck & F. Schlögl – Thermodynamics of chaotic systems,
Cambridge Nonlinear Science Series, vol. 4, Cambridge University
Press, Cambridge, 1993.

[8] S. Belinschi, B. Collins & I. Nechita – “Laws of large numbers
for eigenvectors and eigenvalues associated to random subspaces in a

67



M. Fukuda & I. Nechita

tensor product”, Inventiones Mathematicae 190 (2012), no. 3, p. 647–
697.

[9] , “Almost one bit violation for the additivity of the minimum
output entropy”, http://arxiv.org/abs/1305.1567, 2013.

[10] F. G. S. L. Brandão, J. Eisert, M. Horodecki & D. Yang –
“Entangled inputs cannot make imperfect quantum channels perfect”,
Phys. Rev. Lett. 106 (2011), p. 230502.

[11] M. D. Choi – “Completely positive linear maps on complex matri-
ces”, Linear Algebra and Appl. 10 (1975), p. 285–290.

[12] B. Collins – “Moments and cumulants of polynomial random vari-
ables on unitary groups, the Itzykson-Zuber integral, and free prob-
ability”, Int. Math. Res. Not. (2003), no. 17, p. 953–982.

[13] B. Collins, M. Fukuda & I. Nechita – “Towards a state mini-
mizing the output entropy of a tensor product of random quantum
channels”, J. Math. Phys. 53 (2012), no. 3, p. 032203, 20.

[14] B. Collins, C. Gonzalez-Guillen & D. Perez-Garcia – “Ma-
trix product states, random matrix theory and the principle of max-
imum entropy”, Comm. Math. Phys. 320 (2013), no. 3, p. 663–677.

[15] B. Collins & C. Male – “The strong asymptotic freeness of Haar
and deterministic matrices”, Ann. Sci. Éc. Norm. Supér. (4) 47
(2014), no. 1, p. 147–163.

[16] B. Collins & I. Nechita – “Eigenvalue and entropy statistics
for products of conjugate random quantum channels”, Entropy 12
(2010), no. 6, p. 1612–1631.

[17] , “Random quantum channels II: entanglement of random sub-
spaces, Rényi entropy estimates and additivity problems”, Adv. Math.
226 (2011), no. 2, p. 1181–1201.

[18] B. Collins, I. Nechita & K. Życzkowski – “Random graph
states, maximal flow and Fuss-Catalan distributions”, J. Phys. A 43
(2010), no. 27, p. 275303, 39.

[19] B. Collins & P. Śniady – “Integration with respect to the Haar
measure on unitary, orthogonal and symplectic group”, Comm. Math.
Phys. 264 (2006), no. 3, p. 773–795.

68

http://arxiv.org/abs/1305.1567


Additivity rates and PPT property

[20] B. Collins, M. Fukuda & I. Nechita – “Low entropy output
states for products of random unitary channels”, Random Matrices
Theory Appl. 2 (2013), no. 1, p. 1250018, 36.

[21] , “On the convergence of output sets of quantum channels”,
Journal of Operator Theory 73 (2015), no. 2, p. 333–360.

[22] B. Collins & I. Nechita – “Random quantum channels I: graphical
calculus and the Bell state phenomenon”, Comm. Math. Phys. 297
(2010), no. 2, p. 345–370.

[23] T. Cubitt, A. W. Harrow, D. Leung, A. Montanaro &
A. Winter – “Counterexamples to additivity of minimum output
p-Rényi entropy for p close to 0”, Comm. Math. Phys. 284 (2008),
no. 1, p. 281–290.

[24] P. Di Francesco, O. Golinelli & E. Guitter – “Meander, fold-
ing, and arch statistics”, Math. Comput. Modelling 26 (1997), no. 8-
10, p. 97–147, Combinatorics and physics (Marseilles, 1995).

[25] R. O. W. Franz & B. A. Earnshaw – “A constructive enumeration
of meanders”, Ann. Comb. 6 (2002), no. 1, p. 7–17.

[26] S. Friedland – “Additive invariants on quantum channels and reg-
ularized minimum entropy”, in Topics in operator theory. Volume 2.
Systems and mathematical physics, Oper. Theory Adv. Appl., vol.
203, Birkhäuser Verlag, Basel, 2010, p. 237–245.

[27] M. Fukuda – “Extending additivity from symmetric to asymmetric
channels”, J. Phys. A 38 (2005), no. 45, p. L753–L758.

[28] , “Revisiting Additivity Violation of Quantum Channels”,
Comm. Math. Phys. 332 (2014), no. 2, p. 713–728.

[29] M. Fukuda & P. Śniady – “Partial transpose of random quan-
tum states: Exact formulas and meanders”, Journal of Mathematical
Physics 54 (2013), no. 4, p. 042202.

[30] M. Fukuda & I. Nechita – “Asymptotically well-behaved input
states do not violate additivity for conjugate pairs of random quan-
tum channels”, Comm. Math. Phys. 328 (2014), no. 3, p. 995–1021.

69



M. Fukuda & I. Nechita

[31] A. Grudka, M. Horodecki & L. Pankowski – “Constructive
counterexamples to the additivity of the minimum output Rényi en-
tropy of quantum channels for all p > 2”, J. Phys. A 43 (2010),
no. 42, p. 425304, 7.

[32] M. J. W. Hall – “Random quantum correlations and density oper-
ator distributions”, Phys. Lett. A 242 (1998), no. 3, p. 123–129.

[33] M. Hastings – “Superadditivity of communication capacity using
entangled inputs”, Nature Physics 5 (2009), p. 255.

[34] P. Hayden & A. Winter – “Counterexamples to the maximal p-
norm multiplicity conjecture for all p > 1”, Comm. Math. Phys. 284
(2008), no. 1, p. 263–280.

[35] R. Hildebrand – “Positive partial transpose from spectra”, Phys.
Rev. A 76 (2007), p. 052325.

[36] A. S. Holevo – “The capacity of the quantum channel with general
signal states”, IEEE Trans. Inform. Theory 44 (1998), no. 1, p. 269–
273.

[37] , “Additivity conjecture and covariant channels”, Interna-
tional Journal of Quantum Information 03 (2005), no. 01, p. 41–47.

[38] , “On complementary channels and the additivity problem”,
Prob. Th. and Appl. 51 (2005), p. 133–143.

[39] , “The additivity problem in quantum information theory”, in
International Congress of Mathematicians. Vol. III, Eur. Math. Soc.,
Zürich, 2006, p. 999–1018.

[40] C. King, K. Matsumoto, M. Nathanson & M. B. Ruskai –
“Properties of conjugate channels with applications to additivity and
multiplicativity”,Mark. Proc. Rela. Fiel. 13 (2007), no. 2, p. 391–423.

[41] C. King & M. B. Ruskai – “Minimal entropy of states emerg-
ing from noisy quantum channels”, IEEE Trans. Inform. Theory 47
(2001), no. 1, p. 192–209.

[42] C. King – “Maximal p-norms of entanglement breaking channels”,
Quantum Inf. Comput. 3 (2003), no. 2, p. 186–190.

[43] C. Male – “The norm of polynomials in large random and determin-
istic matrices”, Probab. Theory Related Fields 154 (2012), no. 3-4,
p. 477–532.

70



Additivity rates and PPT property

[44] A. Montanaro – “Weak Multiplicativity for Random Quantum
Channels”, Comm. Math. Phys. 319 (2013), no. 2, p. 535–555.

[45] A. Nica & R. Speicher – Lectures on the combinatorics of free
probability, London Mathematical Society Lecture Note Series, vol.
335, Cambridge University Press, Cambridge, 2006.

[46] B. Schumacher & M. D. Westmoreland – “Sending classical
information via noisy quantum channels”, Phys. Rev. A 56(1) (1997),
p. 131–138.

[47] P. W. Shor – “Additivity of the classical capacity of entanglement-
breaking quantum channels”, J. Math. Phys. 43 (2002), no. 9,
p. 4334–4340.

[48] , “Equivalence of additivity questions in quantum information
theory”, Comm. Math. Phys. 246 (2004), no. 3, p. 453–472.

[49] G. Smith & J. Yard – “Quantum communication with zero-capacity
channels”, Science 321 (2008), no. 5897, p. 1812–1815.

[50] J. M. Steele – Probability theory and combinatorial optimization,
CBMS-NSF Regional Conference Series in Applied Mathematics,
vol. 69, SIAM, Philadelphia, PA, 1997.

[51] W. F. Stinespring – “Positive functions on C∗-algebras”, Proc.
Amer. Math. Soc. 6 (1955), p. 211–216.

[52] D. V. Voiculescu, K. J. Dykema & A. Nica – Free random
variables, CRM Monograph Series, vol. 1, American Mathematical
Society, Providence, RI, 1992.

[53] D. Weingarten – “Asymptotic behavior of group integrals in the
limit of infinite rank”, J. Mathematical Phys. 19 (1978), no. 5, p. 999–
1001.

[54] R. F. Werner & A. S. Holevo – “Counterexample to an additivity
conjecture for output purity of quantum channels”, J. Math. Phys.
43 (2002), no. 9, p. 4353–4357, Quantum information theory.

[55] K. Życzkowski, K. Penson, I. Nechita & B. Collins – “Gen-
erating random density matrices”, J. Math. Phys. 52 (2011), no. 6,
p. 062201, 20.

[56] K. Życzkowski & H.-J. Sommers – “Induced measures in the space
of mixed quantum states”, J. Phys. A 34 (2001), no. 35, p. 7111–7125.

71



M. Fukuda & I. Nechita

Motohisa Fukuda
Zentrum Mathematik, M5
Technische Universität München
Boltzmannstrasse 3
85748 Garching (Germany)
m.fukuda@tum.de

Ion Nechita
Zentrum Mathematik, M5
Technische Universität München
Boltzmannstrasse 3
85748 Garching (Germany)
CNRS, Laboratoire de Physique
Théorique, IRSAMC
Université de Toulouse, UPS
F-31062 Toulouse (France)
nechita@irsamc.ups-tlse.fr

72

mailto:m.fukuda@tum.de
mailto:nechita@irsamc.ups-tlse.fr

	1. Introduction
	1.1. Additivity rates of quantum channels
	1.2. Range of capacity
	1.3. PPT property and additivity violation
	1.4. Structure of the paper

	2. Preliminaries
	2.1. Quantum states and channels
	2.2. The graphical Weingarten integration formula
	2.3. Some elements of free probability

	3. Additivity rates for quantum channels
	3.1. Definition and basic properties
	3.2. Examples: the Werner-Holevo and the antisymmetric channels

	4. Additive bounds for the Rényi entropies via (partial) traces and transpositions
	4.1. Quantities arising from vectorized isometries
	4.2. Additivity and Rényi entropy bounds
	4.3. Bounds for additivity rate
	4.4. Examples: the Werner-Holevo and the antisymmetric channels

	5. Partially transposed random Choi matrices and their norm
	5.1. Exact moments
	5.2. Limiting spectral distribution
	5.3. Strong convergence

	6. Other bounds for random quantum channels
	6.1. Choi matrices
	6.2. Partially transposed Choi matrices of complementary channels
	6.3. Partially transposed random projections
	6.4. Comparing the bounds

	7. Minimum output entropies for a single random quantum channel
	8. Additivity rates of random quantum channels
	8.1. Minimum output Rényi entropy
	8.2. Additivity rates versus weak multiplicativity exponents
	8.3. Additivity rates for tensor products of conjugate random channels

	9. Classical capacity for random quantum channels
	10. PPT properties for random quantum channels
	10.1. Thresholds for PPT property
	10.2. PPT channels violating additivity

	References

