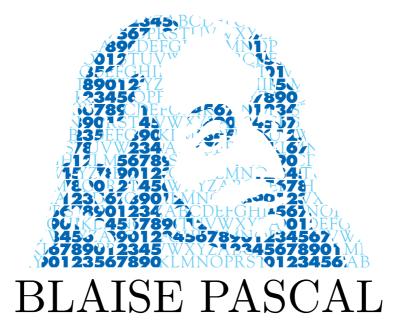
ANNALES MATHÉMATIQUES



Jordan Franks & Alain Valette

On 1-cocycles induced by a positive definite function on a locally compact abelian group

Volume 21, nº 1 (2014), p. 61-69.

<http://ambp.cedram.org/item?id=AMBP_2014__21_1_61_0>

 $\ensuremath{\mathbb O}$ Annales mathématiques Blaise Pascal, 2014, tous droits réservés.

L'accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

> Publication éditée par le laboratoire de mathématiques de l'université Blaise-Pascal, UMR 6620 du CNRS Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

On 1-cocycles induced by a positive definite function on a locally compact abelian group

JORDAN FRANKS Alain Valette

Abstract

For φ a normalized positive definite function on a locally compact abelian group G, let π_{φ} be the unitary representation associated to φ by the GNS construction. We give necessary and sufficient conditions for the vanishing of 1-cohomology $H^1(G, \pi_{\varphi})$ and reduced 1-cohomology $\overline{H}^1(G, \pi_{\varphi})$. For example, $\overline{H}^1(G, \pi_{\varphi}) = 0$ if and only if either Hom $(G, \mathbb{C}) = 0$ or $\mu_{\varphi}(1_G) = 0$, where 1_G is the trivial character of G and μ_{φ} is the probability measure on the Pontryagin dual \hat{G} associated to φ by Bochner's Theorem. This streamlines an argument of Guichardet (see Theorem 4 in [7]).

Sur les 1-cocycles induits par une fonction de type positif sur un groupe abélien localement compact

Résumé

Soit φ une fonction de type positif normalisée sur un groupe localement compact abélien G, et π_{φ} la représentation unitaire de G obtenue par construction GNS. Nous donnons des conditions nécessaires et suffisantes pour l'annulation de la 1-cohomologie $H^1(G, \pi_{\varphi})$ et de la 1-cohomologie réduite $\overline{H}^1(G, \pi_{\varphi})$. Par exemple, $\overline{H}^1(G, \pi_{\varphi}) = 0$ si et seulement si ou bien $\operatorname{Hom}(G, \mathbb{C}) = 0$ ou bien $\mu_{\varphi}(1_G) = 0$, où 1_G est le caractère trivial de G et μ_{φ} est la mesure de probabilité sur le dual de Pontryagin \hat{G} associée à φ par le théorème de Bochner. Cela simplifie un argument de Guichardet (Théorème 4 de [7]).

1. Introduction

The Gel'fand-Naimark-Segal construction (see [1]) provides a correspondence between positive definite functions φ on a locally compact

 $Math.\ classification:\ 43A35.$

Keywords: continuous 1-cohomology, cyclic representation, GNS construction, locally compact abelian group, positive definite function.

group G and cyclic representations π_{φ} on Hilbert space. This allows one to construct a dictionary between the functional-analytic and algebrogeometric pictures of φ and π_{φ} . For example, φ is an extreme point in the cone $\mathcal{P}(G)$ of positive definite functions on G if and only if π_{φ} is an irreducible representation; or, there exists a constant a > 0 such that $\varphi - a$ is again positive definite if and only if π_{φ} has nonzero fixed vectors (see [4]).

In view of their importance for rigidity questions and Kazhdan's property (T),¹ it seems natural to try to fit 1-cohomology and reduced 1cohomology of π_{φ} in that dictionary. Two examples show that the answer will depend heavily on the underlying group G: if φ is the constant function 1, then π_{φ} is the trivial 1-dimensional representation 1_G of G, and $H^1(G, 1_G) = \text{Hom}(G, \mathbb{C})$; the vanishing of this group depends on the structure of the abelianized group $G/\overline{[G,G]}$ (e.g. if G is compactly generated, then $\text{Hom}(G, \mathbb{C}) = 0$ if and only if $G/\overline{[G,G]}$ is compact). For a second example, assume that G is discrete, and let $\varphi = \delta_1$ be the Dirac measure at the identity; then π_{φ} is the left regular representation λ_G of G on $\ell^2(G)$, and $H^1(G, \lambda_G) = 0$ if and only if G is non-amenable with vanishing first ℓ^2 -Betti number (see [2]).

In this paper we consider the case where G is a locally compact abelian group. This assumption makes the question more tractable and gives us a powerful tool, Bochner's Theorem: φ is the Fourier transform of a positive Borel measure μ_{φ} on the Pontryagin dual \hat{G} (see [5]). Without relying on the cohomological machinery available in the literature (see [8, 1]), we achieve by completely elementary means the results of this paper, namely, we show that the existence of non-trivial 1-cohomology is determined by two factors: the existence of non-trivial homomorphisms from G to \mathbb{C} and the behavior of μ_{φ} near the trivial character 1_G . This is all delineated in a precise way in Theorem 1.

Ackowledgements. The first author has been supported by a 2012 ThinkSwiss Research Scholarship of the Swiss Confederation and by a 2012-2013 Masters in Mathematics scholarship of the Graduiertenkolleg

¹Recall Shalom's results, see Theorems 0.2 and 6.1 in [10]: for a compactly generated group G, the group G has property (T) if and only if $\overline{H}^1(G,\pi) = 0$ for every unitary representation π of G, if and only if $H^1(G,\sigma) = 0$ for every unitary irreducible representation of G.

1150 "Homotopy and Cohomology" of the Deutsche Forschungsgemeinschaft.

2. Statement of results

For G a locally compact group and π a unitary representation of G on a Hilbert space \mathcal{H}_{π} , recall that the space of *1-cocycles* for π is

 $Z^{1}(G,\pi) = \{b: G \to \mathcal{H}_{\pi} : b \text{ continuous, } b(gh) = \pi(g)b(h) + b(g) \text{ for all } g, h \in G\}.$

The space of *1-coboundaries* for π is:

 $B^{1}(G,\pi) = \{ b \in Z^{1}(G,\pi) : \exists v \in \mathcal{H}_{\pi} \text{ such that } b(g) = \pi(g)v - v \text{ for every } g \in G \}.$

The 1-cohomology of π is then the quotient

$$H^1(G,\pi) = Z^1(G,\pi)/B^1(G,\pi).$$

Endow $Z^1(G,\pi)$ with the topology of uniform convergence on compact subsets of G. The *reduced 1-cohomology* of π is the quotient of the space of 1-cocycles by the closure of the space of 1-coboundaries, i.e.

$$\overline{H}^1(G,\pi) = Z^1(G,\pi) / \overline{B^1(G,\pi)}.$$

From now on, let G be a locally compact *abelian* group, φ a positive definite function on G. Excluding the zero function, we may without loss of generality take φ to be normalized ($\varphi(e) = 1$). Let μ_{φ} be the probability measure on the Pontryagin dual \hat{G} provided by Bochner's Theorem, i.e. $\varphi(x) = \int_{\hat{G}} \xi(x) d\mu_{\varphi}(\xi)$ for $x \in G$. Let $(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$ be the cyclic representation of G associated to φ through the GNS construction, so that the cyclic vector $\xi_{\varphi} \in \mathcal{H}_{\varphi}$ satisfies $\langle \pi_{\varphi}(x)\xi_{\varphi}|\xi_{\varphi}\rangle = \varphi(x)$. Let also ρ_{φ} be the representation of G on $L^2(\hat{G}, \mu_{\varphi})$ given by $(\rho_{\varphi}(x)f)(\xi) = \xi(x)f(\xi)$ ($\xi \in \hat{G}, f \in L^2(\hat{G}, \mu_{\varphi})$).

If λ_G denotes the left regular representation of G, then $(\lambda_G(x)h)(\xi) = \int_{\hat{G}} h(x^{-1}g)\overline{\xi(g)}dg = \overline{\xi(x)}\hat{h}(\xi)$ for $h \in L^1(G)$. From Plancherel's Theorem, it follows that the composition of the Fourier transform with conjugation is a unitary equivalence between the regular representation on $L^2(G)$ and the unitary representation defined by $(f(\xi) \mapsto \xi(x)f(\xi))$ on $L^2(\hat{G})$. This, together with Bochner's Theorem, intuits our introduction of ρ_{φ} , as well as the following proposition which we prove in Section 3.

Proposition 1. The representations π_{φ} and ρ_{φ} are unitarily equivalent.

We assume from now on that φ is not the constant function 1, so that μ_{φ} is not the Dirac measure at the trivial character 1_G of G. This is still equivalent to $\mu_{\varphi}(1_G) < 1$. Let μ_{φ}^{\perp} be the probability measure on \hat{G} defined by $\mu_{\varphi} = \mu_{\varphi}(1_G)\delta_{1_G} + (1 - \mu_{\varphi}(1_G))\mu_{\varphi}^{\perp}$.

Let π_{φ}^{0} be the (trivial) subrepresentation of π_{φ} on the subspace $\mathcal{H}_{\varphi}^{0}$ of π_{φ} -fixed vectors, and π_{φ}^{\perp} be the subrepresentation on the orthogonal complement, so that $\pi_{\varphi} = \pi_{\varphi}^{0} \oplus \pi_{\varphi}^{\perp}$. A simple computation in the ρ_{φ} -picture shows that $\mathcal{H}_{\varphi}^{0} \neq 0$ if and only if $\mu_{\varphi}(1_{G}) > 0$, and in this case $\mathcal{H}_{\varphi}^{0} = \mathbb{C}\delta_{1_{G}}$. Moreover, the map $L^{2}(\hat{G} \setminus \{1_{G}\}, \mu_{\varphi}^{\perp}) \to L^{2}(\hat{G}, \mu_{\varphi}) : f \mapsto \frac{f}{\sqrt{1-\mu_{\varphi}(1_{G})}}$ is isometric and identifies π_{φ}^{\perp} with the restriction of ρ_{φ} to $L^{2}(\hat{G} \setminus \{1_{G}\}, \mu_{\varphi}^{\perp})$.

Our main result is:

Theorem 1. Let φ be a nonconstant, normalized positive definite function on a locally compact abelian group G.

- 1) Consider the following statements:
 - i) $H^1(G, \pi_{\varphi}) = 0;$
 - ii) Both of the following properties are satisfied:
 a) μ_φ(1_G) = 0 or Hom(G, C) = 0;
 b) 1_G ∉ supp(μ[⊥]_φ).

Then $(ii) \Rightarrow (i)$, and the converse holds if G is σ -compact.

- 2) The following are equivalent:
 - i) $\overline{H}^1(G, \pi_{\varphi}) = 0;$ ii) $\mu_{\varphi}(1_G) = 0 \text{ or } Hom(G, \mathbb{C}) = 0.$

This result will be proved in Section 4. It is essentially equivalent to Theorem 4 in [7], but we emphasize the fact that our proof is direct and based on explicit construction of cocycles and coboundaries. Theorem 1 is sharp in the sense that the implication $(i) \Rightarrow (ii)$ in Part 1 fails in general if G is not assumed σ -compact (see Example 1 below).

3. Proof of Proposition 1

Lemma 1. The constant function $1 \in L^2(\hat{G}, \mu_{\varphi})$ is a cyclic vector for ρ_{φ} .

Proof: Consider the associated $L^1(G)$ -representation of ρ_{φ} acting on $L^2(\hat{G}, \mu_{\varphi}^{\perp})$ and given by $\rho_{\varphi}(f) := \int_G f(x)\rho_{\varphi}(x) dx$, $f \in L^1(G)$. Then $(\rho_{\varphi}(f).1)(\xi) = \int_G f(x)\xi(x) dx = \hat{f}(\bar{\xi}).$

Denote by $C_0(\hat{G})$ the space of continuous functions vanishing at infinity on \hat{G} , and recall that $\hat{f} \in C_0(\hat{G})$ (the Riemann-Lebesgue Lemma). It is classical that the Fourier transform $L^1(G) \to C_0(\hat{G})$ is a continuous algebra homomorphism with dense image (a consequence of Stone-Weierstrass). Now compose this homomorphism with the continuous inclusion $C_0(\hat{G}) \to L^2(\hat{G}, \mu_{\varphi}) : h \mapsto h.1$. Since continuous functions with compact support are dense in $L^2(\hat{G}, \mu_{\varphi})$, this inclusion has dense image. Since the map $L^1(G) \to L^2(\hat{G}, \mu_{\varphi}) : f \mapsto \rho_{\varphi}(f).1$ is the composition of the previous maps, it has dense image, meaning that 1 is a cyclic vector for the $L^1(G)$ -representation ρ_{φ} . Then 1 is also a cyclic vector for the unitary G-representation ρ_{φ} by a Dirac sequence argument (see [4]). \Box

Observe that $\langle \rho_{\varphi}(x).1|1 \rangle = \int_{\widehat{G}} \xi(x) d\mu_{\varphi}(\xi) = \varphi(x)$, so Proposition 1 follows from Lemma 1 and the uniqueness statement of the GNS construction. \Box

4. Proof of Theorem 1

Since $\pi_{\varphi} = \pi_{\varphi}^0 \oplus \pi_{\varphi}^{\perp}$, we have $H^1(G, \pi_{\varphi}) = H^1(G, \pi_{\varphi}^0) \oplus H^1(G, \pi_{\varphi}^{\perp})$ and analogously for \overline{H}^1 . As $B^1(G, \pi_{\varphi}^0) = 0$, we see that $H^1(G, \pi_{\varphi}^0) = 0$ if and only if $\overline{H}^1(G, \pi_{\varphi}^0) = 0$, if and only if either $\mu_{\varphi}(1_G) = 0$ or $\operatorname{Hom}(G, \mathbb{C}) = 0$: this proves the implications $(i) \Rightarrow (ii)(a)$ in part 1 of Theorem 1, and $(i) \Rightarrow (ii)$ in part 2 of Theorem 1; moreover, it reduces the main result to:

Theorem 2. Let φ be a nonconstant, normalized positive definite function on a locally compact abelian group G.

- 1) If $1_G \notin supp(\mu_{\varphi}^{\perp})$, then $H^1(G, \pi_{\varphi}^{\perp}) = 0$. The converse holds if G is σ -compact.
- 2) $\overline{H}^1(G, \pi_{\varphi}^{\perp}) = 0.$

Remark: As was pointed out by the referee of a previous version, when G is separable, combining Corollary 1 and Proposition 2 in [6], one gets an explicit description of $Z^1(G, \pi_{\varphi}^{\perp})$: it identifies with the space of

measurable functions u on \hat{G} such that, for every $g \in G$, the integral $\int_{\hat{G}} |\xi(g) - 1|^2 |u(\xi)|^2 d\mu_{\varphi}^{\perp}(\xi)$ is finite, and it tends to zero for g tending to the identity of G (in this picture, $B^1(G, \pi_{\varphi}^{\perp})$ identifies with $L^2(\hat{G}, \mu_{\varphi}^{\perp})$). We will, however, not need that result.

Example 1. In Part 1 of Theorems 1 and 2, the converse implications are false when G is not assumed to be σ -compact. Indeed, let G be an uncountable abelian group with the discrete topology, and take $\varphi = \delta_1$. Then π_{φ} is the left regular representation λ_G on $\ell^2(G)$, while $\mu_{\varphi} = \mu_{\varphi}^{\perp}$ is the Haar measure on the compact group \hat{G} . Since μ_{φ} has full support, in particular 1_G lies in its support. On the other hand $H^1(G, \lambda_G) = 0$ by Proposition 4.13 in [3].

To prove the implication " \Rightarrow " in part 1 of Theorem 2, we will need:

Lemma 2. Let F be a closed subset of \hat{G} , with $1_G \notin F$.

- a) There exists a regular Borel probability measure ν_0 on G such that the Fourier transform $\widehat{\nu_0}$ vanishes on F.
- b) For every $\varepsilon > 0$, there exists a compactly supported regular Borel probability measure ν on G such that $|\hat{\nu}| < \varepsilon$ on F.

Proof: (a) See Section 1.5.2 in [9].

(b) Let ν_0 be a probability measure on G as in (a). Let δ be a number $0 < \delta < 1$, to be determined later. Let C be a compact subset of G such that $\nu_0(C) > 1 - \delta$. Let ν be the probability measure on G defined by $\nu(B) = \frac{\nu_0(B \cap C)}{\nu_0(C)}$, for every Borel subset $B \subseteq G$. By taking δ small enough, the total variation distance $|\nu_0 - \nu|(G)$ between ν_0 and ν can be made arbitrarily small. For any finite signed measure μ on G, we have the classical inequality $|\int_G f(x) d\mu(x)| \leq ||f||_{\infty} |\mu|(G)$; applied to $\mu = \nu_0 - \nu$ and $f(x) = \xi(x)$ with $\xi \in \hat{G}$, it gives $|\hat{\nu}_0(\xi) - \hat{\nu}(\xi)| \leq |\nu_0 - \nu|(G)$, so that $||\hat{\nu}_0 - \hat{\nu}||_{\infty} < \varepsilon$ for δ small enough. \Box

Proof of "⇒" in part 1 of Theorem 2: We assume that 1_G is not in the support of μ_{φ}^{\perp} , and prove that $H^1(G, \pi_{\varphi}^{\perp}) = 0$. Let $b \in Z^1(G, \pi_{\varphi}^{\perp})$ be a 1-cocycle. Expanding b(xy) = b(yx) using the cocycle relation, we get:

$$(1 - \pi_{\varphi}^{\perp}(x))b(y) = (1 - \pi_{\varphi}^{\perp}(y))b(x) \quad (x, y \in G).$$

In the realization of π_{φ}^{\perp} on $L^2(\hat{G}, \mu_{\varphi}^{\perp})$, this gives:

$$(1 - \xi(x))b(y)(\xi) = (1 - \xi(y))b(x)(\xi)$$
(4.1)

almost everywhere in ξ (w.r.t. μ_{φ}^{\perp}). By Lemma 2, we can find a compactly supported probability measure ν on G such that $|1 - \hat{\nu}| \geq \frac{1}{2}$ on $\operatorname{supp}(\mu_{\varphi}^{\perp})$. Define an element $v \in L^2(\hat{G}, \mu_{\varphi}^{\perp})$ by $v := \int_G b(y) \, d\nu(y)$: since b is continuous and ν is compactly supported, the integral exists (in the weak sense) in $L^2(\hat{G}, \mu_{\varphi}^{\perp})$. Integrating (4.1) w.r.t. ν in the variable y, we get:

$$(1 - \xi(x))v(\xi) = (1 - \hat{\nu}(\xi))b(x)(\xi)$$
(4.2)

almost everywhere in ξ . Since $|1 - \hat{\nu}| \geq \frac{1}{2}$ on $\operatorname{supp}(\mu_{\varphi}^{\perp})$, the function $w(\xi) := \frac{v(\xi)}{\hat{\nu}(\xi)-1}$ belongs to $L^2(\hat{G}, \mu_{\varphi}^{\perp})$, and by (4.2) its coboundary is exactly $b. \square$

Lemma 3. Let H be a locally compact group. Let $(\sigma_n)_{n\geq 0}$ be a sequence of unitary representations of H without nonzero fixed vectors, with σ_n acting on a Hilbert space \mathcal{H}_n . Assume that, for each $n \geq 0$, there exists a unit vector $\eta_n \in \mathcal{H}_n$ such that the series $\sum_{n=0}^{\infty} \|\sigma_n(x)\eta_n - \eta_n\|^2$ converges uniformly on compact subsets of H. Set $\sigma = \bigoplus_{n=0}^{\infty} \sigma_n$. Then $b(x) := \bigoplus_{n=0}^{\infty} (\sigma_n(x)\eta_n - \eta_n)$ defines a nonzero element in $H^1(G, \sigma)$.

Proof: By assumption b(x) belongs to $\bigoplus_{n=0}^{\infty} \mathcal{H}_n$ and the map $H \to \bigoplus_{n=0}^{\infty} \mathcal{H}_n$: $x \mapsto b(x)$ is continuous. Let $\eta \in \prod_{n=0}^{\infty} \mathcal{H}_n$ be defined as $\eta = (\eta_n)_{n \ge 0}$. Since b is the formal coboundary of η , we have $b \in Z^1(H, \sigma)$. To prove that b is not a coboundary, it suffices to show that the associated affine action $\alpha(x)v = \sigma(x)v + b(x)$ on $\bigoplus_{n=0}^{\infty} \mathcal{H}_n$ has no fixed point. But $\alpha(x)v = v$ translates into $\sigma_n(x)(v_n + \eta_n) = v_n + \eta_n$ for every $x \in H$ and $n \ge 0$. Since σ_n has no nonzero fixed vector, we have $v_n + \eta_n = 0$ so $||v_n|| = 1$, which contradicts $\sum_{n=0}^{\infty} ||v_n||^2 < +\infty$. \Box

Proof of " \Leftarrow " in part 1 of Theorem 2, assuming G to be σ compact: We assume that 1_G is in the support of μ_{φ}^{\perp} , and prove that $H^1(G, \pi_{\varphi}) \neq 0$. Let $(K_n)_{n\geq 0}$ be an increasing sequence of compact subsets of G, with $G = \bigcup_{n=0}^{\infty} K_n$, and $K_0 = \{1\}$. Define a basis $(U_k)_{k\geq 0}$ of open
neighborhoods of 1_G in \hat{G} by $U_k = \{\xi \in \hat{G} : \max_{g \in K_k} | \xi(g) - 1 | < 2^{-k} \}$ (observe that $U_0 = \hat{G}$). Define a sequence $(k_n)_{n\geq 0}$ inductively by $k_0 = 0$ and $k_{n+1} = \min\{k : k > k_n, \, \mu_{\varphi}^{\perp}(U_k) < \mu_{\varphi}^{\perp}(U_{k_n})\}$ (since $\mu_{\varphi}^{\perp}\{1_G\} = 0$ and 1_G is in the support of μ_{φ}^{\perp} , this is well-defined). Set then $C_n := U_{k_n} \setminus U_{k_{n+1}}$

for $n \geq 0$. For each $n \geq 0$ let \mathcal{H}_n be the space of functions in $L^2(\hat{G}, \mu_{\varphi}^{\perp})$ which are μ_{φ}^{\perp} -almost everywhere 0 on $\hat{G} \setminus C_n$. Then \mathcal{H}_n is a closed, ρ_{φ} invariant subspace of $L^2(\hat{G}, \mu_{\varphi}^{\perp})$. Denote by σ_n the restriction of ρ_{φ} to \mathcal{H}_n , so that $L^2(\hat{G}, \mu_{\varphi}^{\perp}) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n$ and $\rho_{\varphi} = \bigoplus_{n=0}^{\infty} \sigma_n$. Let $\eta_n = \frac{\mathbf{1}_{C_n}}{\sqrt{\mu_{\varphi}^{\perp}(C_n)}}$ be the normalized characteristic function of C_n . To appeal to Lemma 3, we still have to check that $x \mapsto \sum_{n=0}^{\infty} \|\sigma_n(x)\eta_n - \eta_n\|^2$ converges uniformly on every compact subset K of G. Clearly we may assume $K = K_{\ell}$. For $n \geq \ell$ and $x \in K_{\ell}$ and $\xi \in C_n$, we have $|\xi(x) - 1| < 2^{-k_n}$, hence

$$\max_{x \in K_{\ell}} \sum_{n=\ell}^{\infty} \|\sigma(x)\eta_n - \eta_n\|^2 = \max_{x \in K_{\ell}} \sum_{n=\ell}^{\infty} \frac{1}{\mu_{\varphi}^{\perp}(C_n)} \int_{C_n} |\xi(x) - 1|^2 d\mu_{\varphi}^{\perp}(\xi)$$
$$\leq \sum_{n=\ell}^{\infty} 4^{-k_n} \leq \sum_{n=0}^{\infty} 4^{-n} = \frac{4}{3}$$

and

$$\max_{x \in K_{\ell}} \sum_{n=0}^{\infty} \|\sigma(x)\eta_n - \eta_n\|^2 \leq (\max_{x \in K_{\ell}} \sum_{n=0}^{\ell-1} \|\sigma(x)\eta_n - \eta_n\|^2) + \frac{4}{3} \leq 4\ell + \frac{4}{3} < +\infty.$$

So the result follows from Lemma 3. \Box

Proof of part 2 of Theorem 2: Let $b \in Z^1(G, \pi_{\varphi}^{\perp})$ be a 1-cocycle. We must show that b is a limit of 1-coboundaries (uniformly on compact subsets of G). Since $\mu_{\varphi}^{\perp}(1_G) = 0$, by the regularity of μ_{φ}^{\perp} , we can find a decreasing sequence of relatively compact open neighborhoods $(V_n)_{n\geq 0}$ of 1_G , such that $\mu_{\varphi}^{\perp}(V_n) \to 0$ for $n \to \infty$.

Set $\mathcal{H}_n := \{f \in L^2(\hat{G}, \mu_{\varphi}^{\perp}) : f = 0 \text{ a.e. on } V_n\}$; then \mathcal{H}_n is a closed, ρ_{φ} -invariant subspace, and the sequence $(\mathcal{H}_n)_{n\geq 0}$ is increasing with dense union in $L^2(\hat{G}, \mu_{\varphi}^{\perp})$. Let ρ_n denote the restriction of ρ_{φ} to \mathcal{H}_n , and let b_n denote the projection of b onto \mathcal{H}_n . Then $b_n \in Z^1(G, \rho_n)$, and $\lim_{n\to\infty} b_n = b$ (uniformly on compact subsets of G). Since 1_G does not belong to the closed subset $\hat{G} \setminus V_n$, by Lemma 2 and by repeating the proof of the forward direction of part 1 of Theorem 2, we obtain that b_n is a coboundary for each $n \geq 0$. \Box

References

- [1] B. BEKKA, P. DE LA HARPE and A. VALETTE Kazhdan's property (T), Cambridge University Press, 2008.
- [2] B. BEKKA and A. VALETTE "Group cohomology, harmonic functions and the first l²-Betti number", *Potential Analysis* 6 (1997), p. 313–326.
- [3] Y. CORNULIER, R. TESSERA and A. VALETTE "Isometric group actions on Banach space and representations vanishing at infinity", *Transform. Groups* 13 (2008), p. 125–147.
- [4] J. DIXMIER Les C*-algèbres et leurs représentations, Gauthier-Villars, 1969.
- [5] G. FOLLAND A course in abstract harmonic analysis, CRC Press, 1995.
- [6] A. GUICHARDET "Sur la cohomologie des groupes topologiques", Bull. Sc. Math 95 (1971), p. 161–176.
- [7] _____, "Sur la cohomologie des groupes topologiques II", Bull. Sc. Math. 96 (1972), p. 305–332.
- [8] _____, Cohomologie des groupes topologiques et des algèbres de Lie, CEDIC, 1980.
- [9] W. RUDIN Fourier analysis on groups, John Wiley and Sons, 1962.
- [10] Y. SHALOM "Rigidity of commensurators and irreducible lattices", Invent. Math. 141 (2000), p. 1–54.

JORDAN FRANKS Mathematisches Institut Universität Bonn Endenicher Allee 60 53115 Bonn Germany franks@uni-bonn.de ALAIN VALETTE Institut de Mathématiques Université de Neuchâtel Unimail, 11 Rue Emile Argand CH-2000 Neuchâtel Switzerland alain.valette@unine.ch