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Abstract

Modular and quasimodular forms have played an important role in gravity and
string theory. Eisenstein series have appeared systematically in the determination
of spectrums and partition functions, in the description of non-perturbative ef-
fects, in higher-order corrections of scalar-field spaces, . . . The latter often appear
as gravitational instantons i.e. as special solutions of Einstein’s equations. In the
present lecture notes we present a class of such solutions in four dimensions, ob-
tained by requiring (conformal) self-duality and Bianchi IX homogeneity. In this
case, a vast range of configurations exist, which exhibit interesting modular prop-
erties. Examples of other Einstein spaces, without Bianchi IX symmetry, but with
similar features are also given. Finally we discuss the emergence and the role of
Eisenstein series in the framework of field and string theory perturbative expan-
sions, and motivate the need for unravelling novel modular structures.

Gravité, cordes, formes modulaires et quasimodulaires
Résumé

Les formes modulaires et quasimodulaires ont joué un rôle important dans la
théorie de la gravité et la théorie des cordes. Les séries d’Eisenstein sont appa-
rues de façon systématique dans la détermination des spectres. Les fonctions de
partitions sont apparues de façon systématique dans la description des effets non
perturbatifs, dans les corrections d’ordre supérieur des espaces de champs sca-
laires,... Ces dernières apparaissent souvent comme des instantons gravitationnels,
c’est-à-dire des solutions particulières des équations d’Einstein. Dans ces notes de
cours, nous présentons une classe de telles solutions en dimension quatre, obtenues
en exigeant l’autodualité (conforme) et l’homogénéité Bianchi IX. Dans ce cas, un
large ensemble de configurations existe qui exhibent d’intéressantes propriétés mo-
dulaires. Nous donnons d’autres exemples d’espaces d’Einstein qui bien que n’ayant
pas de symétrie Bianchi IX possèdent des caractéristiques similaires. Enfin, nous
discutons de l’émergence et du rôle des séries d’Eisenstein dans le cadre des déve-
loppements perturbatifs de la théorie des champs et des cordes. Nous motivons le
besoin d’étudier dans ce cadre de nouvelles structures modulaires.
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1. Introduction

Modular forms often appear in physics as a consequence of duality prop-
erties. This comes either as an invariance of a theory or as a relationship
among two different theories, under some discrete transformation of the
parameters. The latter transformation can be a simple Z2 involution or
an element of some larger group like SL(2,Z). The examples are numer-
ous and have led to important developments in statistical mechanics, field
theory, gravity or strings.

One of the very first examples, encountered in the 19th century, is the
electrtic–magnetic duality in vacuum Maxwell’s equations (see e.g. [65]),
which are invariant under interchanging electric and magnetic fields. This
was revived in the more general framework of Abelian gauge theories by
Montonen and Olive in 1977 [79] and culminated in the Seiberg–Witten
duality in supersymmetric non-Abelian gauge theories [94]. There the du-
ality group SL(2,Z) acts on a complex parameter τ = θ

2π + 4πi
g2 , where θ

is the vacuum angle and g is the coupling constant. The modular trans-
formations give thus access to the non-perturbative regime of the field
theory.

In statistical mechanics, the Kramers–Wannier duality [69] predicted
in 1941 the existence of a critical temperature Tc separating the ferro-
magnetic (T < Tc) and the paramagnetic (T > Tc) phases in the two-
dimensional Ising model. The canonical partition function of the model,
computed a few years later by Lars Onsager [81], is indeed expressed in
terms of modular forms.

Over the last 30 years, modular and quasimodular forms have mostly
emerged in the framework of gravity and string theory. At the first place,
one finds (see e.g. [55, 56]) the canonical partition function of a string of
fundamental frequency ω at temperature T :

Z = 1
η(q) , (1.1)

where q = exp 2iπz = exp−~ω/kT and η(q) the Dedekind function (we
refer to the appendix for definitions and conventions on theta functions,
(A.1)–(A.5)). The average energy stored in a string at temperature T is
thus

〈E〉 = −∂ lnZ
∂1/kT

= ~ω
24E2(z), (1.2)
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where E2(z) the weight-two quasimodular form. Again, the modular prop-
erties of these functions translate into a low-temperature/high-tempera-
ture duality, which exhibits a critical temperature, signature of the Hage-
dorn transition.

In the above examples the modular group acts on a modular parameter
related to the temperature. There is a plethora of examples in gravity
and string theory of more geometrical nature, related to gravitational
configurations and in particular to instantons.

An instanton is a solution of non-linear field equations resulting from
an imaginary-time i.e. Euclidean action S[φ] as

δS

δφ
= 0. (1.3)

It should not to be confused with a soliton. The latter is a finite-energy
solution of non-linear real-time equations of motion and appear in a large
palette of phenomena such as the propagation of solitary waves in liquid
media (as e.g. tsunamis1) or black holes in gravitational set ups.

Instantons have finite action and enter the description of quantum-
mechanical processes, which are not captured by perturbative expansions,
as their magnitude is controlled by exp−1/g at small coupling g (in elec-
trodynamics g = e2/~c). These phenomena include quantum-mechanical
tunneling and, more generally, decay and creation of bound states. Their
amplitude is weighted by exp(−S/~), where S is the action of the instanton
solution interpolating between initial and final configurations (see [33] for
a pedagogical presentation of these methods).

All interacting (i.e. non-linear) field theories exhibit instantons. These
emerged originally in Yang–Mills theories [17, 62] as well as in general
relativity [80, 41, 40]. In the latter case, their usefulness for the description
of quantum transitions is tempered by quantum inconsistencies of general
relativity. Such configurations turn out nevertheless to be instrumental
in modern theories of gravity, supergravity and strings for at least two
reasons.

At the first place, some gravitational instantons falling in the class of
asymptotically locally Euclidean (ALE) spaces have the required proper-
ties to serve as compactification set ups for superstring models usually
defined in space–time of dimensions 10. This is the case, for example, of
the Eguchi–Hanson gravitational instanton [41, 40], which appears as a

1A valuable account of these properties can be found in [82].
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blow-up of the C2/Z2 A1-type singularity, or of more general Gibbons–
Hawking multi-instantons [51].

The second reason is that supergravity and string theories contain many
scalar fields called moduli. Their dynamics is often encapsulated in non-
linear sigma models, which happen to have as a target space certain gravi-
tational instantons such as the Taub-NUT, Atiyah–Hitchin, Fubini–Study,
Pedersen or Calderbank–Pedersen spaces [80, 12, 49, 83, 84, 85, 28, 29].
Due to some remarkable underlying duality properties, most of the spaces
at hand are expressed in terms of (quasi) modular forms, and this makes
them relevant in the present context.

It should be finally stressed that in the framework of string and su-
pergravity theories, quasimodular forms do not appear exclusively via
compactification or moduli spaces. Recent developments on the perturba-
tive expansions in quantum field theory reveal how relevant the spaces of
quasimodular forms are for understanding the ultraviolet behaviour and
its connections with string theory acting as a ultraviolet regulator[54].
They also call for introducing new objects, which stand beyond the realm
of Eisenstein series [53].
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who is grateful to the organizers and acknowledges financial support by the
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2. Solving Einstein’s equations

It is a hard task in general to solve Einstein’s equations. In four dimen-
sions with Euclidean signature, following the paradigm of Yang–Mills,
the requirement of self-duality (or of a conformal variation of it) often
leads to integrable equations. Those are in most cases related to self-dual
Yang–Mills reductions, and possess remarkable solutions (see. e.g. [105]).
It should be mentioned for completeness that self-duality can also serve
as a tool in more than four dimensions. In seven or eight dimensions, it
can be implemented using G2 or quaternionic algebras [3, 43, 14, 22]. It
is not clear, at present, whether in those cases some interesting and non-
trivial relationship with quasimodular forms emerge. We will therefore not
pursue this direction here.

2.1. Curvature decomposition in four dimensions
The Cahen–Debever–Defrise decomposition, more commonly known as
Atiyah–Hitchin–Singer [27, 11], is a convenient taming of the 20 indepen-
dent components of the Riemann tensor. In Cartan’s formalism, these are
captured by a set of curvature two-forms (a, b, . . . = 1, . . . , 4)

Rab = dωab + ωac ∧ ωcb = 1
2R

a
bcdθ

c ∧ θd, (2.1)

where {θa} are a basis of the cotangent space and ωab = Γabcθc the set of
connection one-forms obeying the requirement of vanishing torsion

T a = dθa + ωab ∧ θb = 1
2T

a
bcθ

b ∧ θc = 0. (2.2)

The cyclic and Bianchi identities (d ∧ dθa = d ∧ dωab = 0), assuming a
torsionless connection, read:

Rab ∧ θb = 0, (2.3)
dRab + ωac ∧Rcb −Rac ∧ ωcb = 0. (2.4)

We will assume the basis {θa} to be orthonormal with respect to the
metric g

g = δabθ
aθb, (2.5)

and the connection to be metric (∇g = 0), which is equivalent to

ωab = −ωba. (2.6)
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The latter together with (2.2) determine the connection.
The general holonomy group in four dimensions is SO(4), and g is

invariant under local transfromations Λ(x) such that

θa′ = Λ−1 a
bθ
b, (2.7)

under which the connection and curvature forms transform as

ωa′b = Λ−1 a
cω

c
dΛdb + Λ−1 a

cdΛcb, (2.8)
Ra′b = Λ−1 a

cRcdΛdb. (2.9)

Both ωab and Rab are antisymmetric-matrix-valued one-forms, belonging
to the representation 6 of SO(4).

Four dimensions is a special case as SO(4) is factorized into SO(3) ×
SO(3). Both connection and curvature forms are therefore reduced with
respect to each SO(3) factor as 3×1+1×3, where 3 and 1 are respectively
the vector and singlet representations (i, j, . . . = 1, 2, 3):

Σi = 1
2

(
ω0i + 1

2εijkω
jk
)
, Ai = 1

2

(
ω0i −

1
2εijkω

jk
)
, (2.10)

Si = 1
2

(
R0i + 1

2εijkR
jk
)
, Ai = 1

2

(
R0i −

1
2εijkR

jk
)
, (2.11)

while (2.1) reads:

Si = dΣi − εijkΣj ∧ Σk, Ai = dAi + εijkA
j ∧Ak. (2.12)

Usually (Σi,Si) and (Ai,Ai) are referred to as self-dual and anti-self-
dual components of the connection and Riemann curvature. This follows
from the definition of the dual forms (supported by the fully antisymmetric
symbol εabcd2)

ω̃ab = 1
2ε

a d
bc ω

c
d, (2.13)

R̃ab = 1
2ε

a d
bc Rcd, (2.14)

2A remark is in order here for D = 7 and 8. The octonionic structure constants
ψαβγ α, β, γ ∈ {1, . . . , 7} and the dual G2-invariant antisymmetric symbol ψαβγδ allow
to define a duality relation in 7 and 8 dimensions with respect to an SO(7) ⊃ G2,
and an SO(8) ⊃ Spin7 respectively. Note, however, that neither SO(7) nor SO(8) is
factorized, as opposed to SO(4).
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borrowed from the Yang–Mills3. Under this involutive operation, (Σi,Si)
remain unaltered whereas (Ai,Ai) change sign.

Following the previous reduction pattern, the basis of 6 independent
two-forms can be decomposed in terms of two sets of singlets/vectors with
respect to the two SO(3) factors:

φi = θ0 ∧ θi + 1
2ε

i
jkθ

j ∧ θk, (2.15)

χi = θ0 ∧ θi − 1
2ε

i
jkθ

j ∧ θk. (2.16)

In this basis, the 6 curvature two-forms Si and Ai are decomposed as(
S
A

)
= r

2

(
φ
χ

)
, (2.17)

where the 6× 6 matrix r reads:

r =
(
A C+

C− B

)
=
(
W+ C+

C− W−

)
+ s

6 I6. (2.18)

The 20 independent components of the Riemann tensor are stored inside
the symmetric matrix r as follows:

• s = Tr r = 2TrA = 2TrB = R/2 is the scalar curvature.

• The 9 components of the traceless part of the Ricci tensor Sab =
Rab − R

4 gab (Rab = Rcacb) are given in C+ = (C−)t as

S00 = TrC+, S0i = ε jki C−jk, Sij = C+
ij + C−ij − TrC+δij . (2.19)

• The 5 entries of the symmetric and traceless W+ are the compo-
nents of the self-dual Weyl tensor, while W− provides the corre-
sponding 5 anti-self-dual ones.

3Note the action of the duality on the components, as ω̃ab = Γ̃abcθc, R̃ab = 1
2 R̃

a
bcdθ

c∧
θd:

Γ̃abc = 1
2 ε
a f
be Γefc,

R̃abcd = 1
2 ε
a f
be R

e
fcd,

and similarly for the Weyl part or the Riemann.
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In summary,

Si = W+
i + 1

12sφi + 1
2C

+
ijχ

j , (2.20)

Ai = W−i + 1
12sχi + 1

2C
−
ijφ

j , (2.21)

where
W+
i = 1

2W
+
ij φ

j , W−i = 1
2W

−
ij χ

j (2.22)

are the self-dual and anti-self-dual Weyl two-forms respectively.
Given the above decomposition, some remarkable geometries emerge

(see e.g. [39] for details):

Einstein: C± = 0 (⇔ Rab = R
4 gab)

Ricci flat: C± = 0, s = 0

Self-dual: Ai = 0⇔ {W− = 0, C± = 0, s = 0}

Anti-self-dual: Si = 0⇔ {W+ = 0, C± = 0, s = 0}

Conformally self-dual: W− = 0

Conformally anti-self-dual: W+ = 0

Conformally flat: W+ = W− = 0

Note that self-dual and anti-self-dual geometries are called half-flat in the
mathematical literature, whereas self-dual and anti-self-dual is meant to
be conformally self-dual and anti-self-dual.

2.2. Einstein spaces
The self-dual and anti-self-dual geometries have a special status as they
are automatically Ricci flat:

Ai = 0 or Si = 0⇒ C± = 0, s = 0. (2.23)
They provide therefore special solutions of vacuum Einstein’s equations,
which include gravitational instantons already quoted in the introduc-
tion such as Eguchi–Hanson, Taub–NUT or Atiyah–Hitchin. More general
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solutions are obtained by demanding conformal self-duality on Einstein
spaces

W+ = 0 or W− = 0 and C± = 0 (2.24)
with non-vanishing scalar curvature4

s = 2Λ. (2.25)
Those are the quaternionic spaces and include other remarkable instantons
such as Fubini–Study, Pedersen or Calderbank–Pedersen.

Conditions (2.24) and (2.25) can be elegantly implemented by intro-
ducing the on-shell Weyl tensor

Ŵab = Rab − Λ
3 θ

a ∧ θb. (2.26)

These 6 two-forms can be decomposed into self-dual and anti-self-dual
parts:

Ŵ+
i = Si −

Λ
6 φi =W+

i + 1
12(s− 2Λ)φi + 1

2C
+
ijχ

j , (2.27)

Ŵ−i = Ai −
Λ
6 χi =W−i + 1

12(s− 2Λ)χi + 1
2C
−
ijφ

j . (2.28)

Quaternionic spaces are therefore obtained by demanding
Ŵ+
i = 0 or Ŵ−i = 0. (2.29)

Furthermore, using the on-shell Weyl tensor (2.26), the Einstein–Hilbert
action reads:

SEH = 1
32πG

∫
M4

εabcd

(
Ŵab + Λ

6 θ
a ∧ θb

)
∧ θc ∧ θd. (2.30)

3. Self-dual gravitational instantons in Bianchi IX

Inspired by applications to homogeneous cosmology (see e.g. [91]), spaces
M4 topologically equivalent to R×M3 have been investigated extensively
in the cases whereM3 are homogeneous of Bianchi type. These foliations
admit a three-dimensional group of motions acting transitively on the
leavesM3.

The study of all Bianchi classes (I–IX) has been performed (for van-
ishing cosmological constant) in [67, 72, 73] and more completed recently

4Requiring vanishing C± amounts to demanding the space to be Einstein (Rab =
R
4 gab), which implies that its scalar curvature is constant.
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in [20]. It turns out that only Bianchi IX exhibits a relationship with
quasimodular forms.

3.1. Bianchi IX foliations
Under the above assumptions, a metric on M4 can always be chosen as
(see e.g. [98])

ds2 = dt2 + gij(t)σiσj , (3.1)
where σi, i = 1, 2, 3 are the left-invariant Maurer–Cartan forms of the
Bianchi group, satisfying

dσi = 1
2c

i
jkσ

j ∧ σk. (3.2)

This geometry admits three independent Killing vectors ξi, tangent toM3
and such that

[ξi, ξj ] = cijkξk. (3.3)
In the case of Bianchi IX, the group is SU(2). Using Euler angles, the

Maurer–Cartan forms read:
σ1 = sinϑ sinψ dϕ+ cosψ dϑ
σ2 = sinϑ cosψ dϕ− sinψ dϑ
σ3 = cosϑ dϕ+ dψ

(3.4)

with 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 4π. The structure constants are
cijk = −εijk = −δi`ε`jk with ε123 = 1. Similarly the Killing vectors are

ξ1 = − sinϕ cotϑ∂ϕ + cosϕ∂ϑ + sinϕ
sinϑ ∂ψ

ξ2 = cosϕ cotϑ∂ϕ + sinϕ∂ϑ − cosϕ
sinϑ ∂ψ

ξ3 = ∂ϕ.

(3.5)

Although for some Bianchi groups it is necessary to keep gij in (3.1)
general, for Bianchi IX it is always possible to bring it into a diagonal form,
without loosing generality (for a systematic analysis of this, see [20]). We
will make this assumption here, introduce three arbitrary functions of
time Ωi as well as a new time coordinate defined as dt =

√
Ω1Ω2Ω3dT ,

and write the most general metric (3.1) on a Bianchi IX foliation as

ds2 = δab θ
a θb = Ω1Ω2Ω3 dT 2 + Ω2Ω3

Ω1

(
σ1
)2

+ Ω3Ω1

Ω2

(
σ2
)2

+ Ω1Ω2

Ω3

(
σ3
)2
.

(3.6)
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For this metric, the two-form basis (2.15) and (2.16) reads:

φi = ΩjΩkdT ∧ σi + Ωiσj ∧ σk, (3.7)
χi = ΩjΩkdT ∧ σi − Ωiσj ∧ σk, (3.8)

where i, j, k are a cyclic permutation of 1, 2, 3 without over i. Using Eqs.
(2.2), (2.6) and (2.10), one finds for the corresponding Levi–Civita con-
nection

Σi = 1
4
√

Ω1Ω2Ω3

(
Ω̇i + ΩjΩk

Ωi
− Ω̇j + ΩkΩi

Ωj
− Ω̇k + ΩiΩj

Ωk

)
θi,(3.9)

Ai = 1
4
√

Ω1Ω2Ω3

(
Ω̇i − ΩjΩk

Ωi
− Ω̇j − ΩkΩi

Ωj
− Ω̇k − ΩiΩj

Ωk

)
θi,(3.10)

where ḟ stands for df/dT (as previously, i, j, k are a cyclic permutation of
1, 2, 3 and no sum over i is assumed) .

3.2. First-order self-duality equations

From now on, will focus on self-dual solutions of Einstein vacuum equa-
tions (anti-self-dual solutions are related to the latter e.g. by time rever-
sal). Following (2.10), self-duality equations (2.23) read:

dAi + εijkA
j ∧Ak = 0. (3.11)

Equations (3.11) are second-order. They admit a first integral, algebraic
in the anti-self-dual connection Ai:

Ai = λij
2 σj with λij = 0 or δij . (3.12)

Put differently, vanishing anti-self-dual Levi–Civita curvature can be re-
alized either with a vanishing anti-self-dual connection, or with a spe-
cific non-vanishing one that can be set to zero upon appropriate local
SO(3) ⊂ SO(4) frame transformation (see [39] for a general discussion,
[50] for Bianchi IX, or [20] for a more recent general Bianchi analysis).
These two possibilities lead to two distinct sets of first-order equations. In
the present case, using (3.10) one obtains:

Ai = 0⇔
{

Ω̇1 = Ω2Ω3, Ω̇2 = Ω3Ω1, Ω̇3 = Ω1Ω2
}
, (3.13)
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and

Ai = δij
σj

2 ⇔


Ω̇1 = Ω2Ω3 − Ω1 (Ω2 + Ω3)
Ω̇2 = Ω3Ω1 − Ω2 (Ω3 + Ω1)
Ω̇3 = Ω1Ω2 − Ω3 (Ω1 + Ω2) . (3.14)

Historically, both systems were studied in the 19th century in the search
of integrals lines of vector fields. The first is the Lagrange system, appear-
ing as an extension of the rigid-body equations of motion. It is algebraically
integrable and was solved à la Jacobi. The second set is called Darboux–
Halphen and appeared in Darboux’s work on triply orthogonal surfaces
[36]. Generically, it does not possess any polynomial first integral, and was
solved by Halphen in full generality using Jacobi theta functions [59, 58].

In the late seventies, integrable systems of equations such as Lagrange
or Darboux–Halphen emerged in a systematic manner in self-dual Yang–
Mills reductions [105]. This has led many authors to investigate these
equations in great detail and, in particular, to unravel their rich integra-
bility properties (see e.g. [99, 74, 1] as a sample of the dedicated literature).
It took a long time, however, to realize that these systems were actually
related with gravitational instantons, foliated by squashed spheres.

When all three Ωis are identical, the leaves of the foliation are isotropic
three-spheres with SU(2) × SU(2) isometry generated by the above left
Killing vectors ξi, i = 1, 2, 3 (3.5), as well as by three right Killing vectors

e1 = − sinψ cotϑ∂ψ + cosψ ∂ϑ + sinψ
sinϑ ∂ϕ

e2 = − cosψ cotϑ∂ψ − sinψ ∂ϑ + cosψ
sinϑ ∂ϕ

e3 = ∂ψ.

(3.15)

Lagrange and Darboux–Halphen systems are equivalent in this case (ac-
tually related by time reversal), Ω̇ = ±Ω2, and the solutions lead to flat
Euclidean four-dimensional space.

More interesting is the case where Ω1 = Ω2 6= Ω3. Here, the leaves are
axisymmetric squashed three-spheres, invariant under an SU(2) × U(1)
isometry group generated by ξi, i = 1, 2, 3 and e3. On the one hand, the
Lagrange system leads to two distinct gravitational instantons known as
Eguchi–Hanson I and II [41, 40], out of which the first has a naked singu-
larity and is usually discarded. On the other hand, the Darboux–Halphen
equations deliver the celebrated Taub–NUT instanton [80].

Thanks to the algebraic integrability properties of Lagrange system, it
took only a few months to Belinski et al. to generalize the Eguchi–Hanson
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solution to the case where Ω1 6= Ω2 6= Ω3 [18] – the symmetry is strictly
SU(2) but the solution is plagued with naked singularities. A similar gen-
eralization of the Taub–NUT solution turned out much more intricate,
and after some fruitless attempts [50], Atiyah and Hitchin reached a reg-
ular solution, eligible as a gravitational instanton and expressed in terms
of elliptic functions [12]. It was only realized in 1992 by Takhtajan [99]
that first-order self-duality equations for Bianchi IX gravitational instan-
tons were in fact Lagrange and Darboux–Halphen systems, and that the
Atiyah–Hitchin instanton was a particular case of the general solution
found by Halphen in 1881 [59, 58].

It is finally worth mentioning that the above systems of ordinary dif-
ferential equations also appear in the framework of geometric flows in
three-dimensional Bianchi IX homogeneous spaces. The original mention
on that matter can be found in [34]; later and independently it was also
quoted in [97]. At that original stage, this relationship was limited to the
case of Bianchi IX with diagonal metric. It was proven recently to hold in
full generality in all Bianchi classes [21, 90].

4. The Darboux–Halphen system

The Darboux–Halphen branch of the self-duality first-order equations of
Bianchi IX foliations in vacuum is the most interesting for our present
purpose as it is the one related with quasimodular forms.

4.1. Solutions and action of SL(2,C)
Consider the system in the complex plane: ωi(z), z ∈ C satisfying

dω1

dz = ω2ω3 − ω1 (ω2 + ω3)
dω2

dz = ω3ω1 − ω2 (ω3 + ω1)
dω3

dz = ω1ω2 − ω3 (ω1 + ω2) . (4.1)

The general solutions of this system have the following properties [59, 58,
99]:

• The ωs are regular, univalued and holomorphic in a region with
movable boundary (i.e. a dense set of essential singularities). The
location of this boundary accurately determines the solution.
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• If ωi(z) is a solution, thus

ω̃i(z) = 1
(cz + d)2ω

i
(
az + b

cz + d

)
+ c

cz + d
,

(
a b
c d

)
∈ SL(2,C) (4.2)

is another solution5 with singularity boundary moved according to
z → az+b

cz+d .

The resolution of the equations and the nature of the solutions strongly
depend on whether the ωs are different or not. In the case where ω1 =
ω2 = ω3, the solution is simply

ω1,2,3 = 1
z − z0

(4.3)

with z0 an arbitrary constant. Under SL(2,C), the new solution ω̃i(z) is
of the form (4.3) with the pole displaced according to

z̃0 = −dz0 − b
cz0 − a

. (4.4)

If ω1 = ω2 6= ω3 the solutions are still algebraic:

ω1,2 = 1
z − z0

, ω3 = z − z∗
(z − z0)2 (4.5)

with two arbitrary constants: z0, z∗. A simple pole for ω1,2, and double for
ω3 appears at z0, whereas z∗ is a root for ω3. Acting with SL(2,C) keeps
the structure (4.5) with new parameters:

z̃0 = −dz0 − b
cz0 − a

, z̃0 − z̃∗ = z0 − z∗
(cz0 − a)2 . (4.6)

The fully anisotropic case is our main motivation here. In this case no
algebraic first integrals exist and the general solution (see [59, 58, 99, 74])
is expressed in terms of quasimodular forms, ωi ∈ QM1

2 (Γ(2)), where Γ(2)
is the level-2 congruence subgroup of SL(2,Z) (the subset of elements of
the form

(
a b
c d

)
= ( 1 0

0 1 ) mod 2) . Concretely

ωi(z) = −1
2

d
dz log E i(z) (4.7)

5The same property holds for the Lagrange system (3.13), limited to the subgroup
of transformations of the form

(
a b
0 1/a

)
. This solution-generating pattern based on the

SL(2,R) is closely related to the Geroch method [46, 19].
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with E i(z) triplet6 of holomorphic weight-2 modular forms of Γ(2). Again,
the SL(2,C) action (4.2) generates new solutions

{
ωi
}
→

{
ω̃i
}
with a

displaced set of singularities in C, whereas the SL(2,Z) ⊂ SL(2,C) acts
as a permutation on ωs.

Note for completeness that real solutions of the real coordinate T are
obtained from the general solutions as

Ω`(T ) = iω`(iT ) = −1
2

d
dT log E`(iT ). (4.8)

According to (4.2), new real solutions are generated as

Ω̃i(T ) = 1
(CT +D)2 Ωi

(
AT +B

CT +D

)
+ C

CT +D
,

(
A B
C D

)
∈ SL(2,R).

(4.9)

4.2. Relationship with Schwartz’s and Chazy’s equations
Anisotropic solutions of the Darboux–Halphen system (ω1 6= ω2 6= ω3)
exhibit relationships with other remarkable equations. Define

λ = ω1 − ω3

ω1 − ω2 . (4.10)

For ωi solving Darboux–Halphen equations, λ is a solution of of Schwartz’s
equation

λ′′′

λ′
− 3

2

(
λ′′

λ′

)2
= −1

2

( 1
λ2 + 1

(λ− 1)2 −
1

λ(λ− 1)

) (
λ′
)2
. (4.11)

Conversely, any solution of the latter equation provides a solution for the
Darboux–Halphen system as the following triplet:

E1 =
dλ/dz

λ
, E2 =

dλ/dz

λ− 1 , E3 =
dλ/dz

λ(λ− 1) , (4.12)

from which it is straightforward to show that
E1 − E2 + E3 = 0. (4.13)

6Notice their general transformations as generated by z → −1/z and z + 1 :

z → −1/z :
(
E1 E2 E3

)
→ z2 (E2 E1 −E3

)
z → z + 1 :

(
E1 E2 E3

)
→ −

(
E3 E2 E1

)
.
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We also quote for completeness

1
1− λ = ω1 − ω2

ω3 − ω2 ,
1− λ
λ

= ω3 − ω2

ω1 − ω3 . (4.14)

Define now
y = −2

(
ω1 + ω2 + ω3

)
. (4.15)

Again, for solutions of Darboux–Halphen equations ωi, y a solution of
Chazy’s equation [30, 31]

y′′′ = 2yy′′ − 3(y′)2. (4.16)

The first and second derivatives of y provide the remaining symmetric
products

y′ = 2
(
ω1ω2 + ω2ω3 + ω3ω1

)
, (4.17)

y′′ = −12ω1ω2ω3. (4.18)

The Jacobian relating {ω1, ω2, ω3} to {y, y′, y′′},

J = (ω1 − ω2)(ω2 − ω3)(ω3 − ω1) (4.19)

is regular for ω1 6= ω2 6= ω3. The latter are alternatively obtained by
solving the cubic equation

ω3 + 1
2yω

2 + 1
2y
′ω + 1

12y
′′ = 0, (4.20)

for any solution y of Chazy’s equation.

4.3. The original Halphen solution

A particular solution of the Darboux system (3.14) is the original Halphen
solution [59, 58]. In this language, it corresponds to λH = ϑ4

2/ϑ4
3:

E1
H = iπϑ4

4
E2

H = −iπϑ4
2

E3
H = −iπϑ4

3

⇔


ω1

H = π
6i
(
E2 − ϑ4

2 − ϑ4
3
)

ω2
H = π

6i
(
E2 + ϑ4

3 + ϑ4
4
)

ω3
H = π

6i
(
E2 + ϑ4

2 − ϑ4
4
)
.

(4.21)

This is also the solution found by Atiyah and Hitchin [12] as the Bianchi IX
gravitational instanton solution relevant for describing the configuration
space of two slowly moving BPS SU(2) Yang–Mills–Higgs monopoles [75,
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48]. The corresponding Chazy’s solution and derivatives are combinations
of (holomorphic) Eisenstein series (see appendix, Eqs. (A.6)):

yH = iπE2

y′H = iπ
6
(
E2

2 − E4
)

y′′H = − iπ3

18
(
E3

2 − 3E2E4 + 2E6
)
.

(4.22)

Starting from (4.21) all solutions are obtained by SL(2,C) action (4.2).

5. Back to Bianchi IX self-dual solutions

Any real solution {Ωi(T )} of the Darboux–Halphen system provides a
four-dimensional self-dual solution of Einstein vacuum equations in the
form (3.6). Not all these solutions are however bona fide gravitational
instantons as some regularity requirements must be fulfilled.

5.1. Some general properties

An elementary consistency requirement is that the metric (3.6) should not
change sign along T . In particular, a simple root of a single Ωi turns out
to be a genuine curvature singularity. Assuming e.g. linearly vanishing Ω1

and introducing as time coordinate the proper time τ around the root,
the metric locally reads:

ds2 ≈ dτ2 + Ξ
τ 2/3

(
σ1
)2

+ Υτ 2/3
((
σ2
)2

+
(
σ3
)2
)

(5.1)

with Ξ,Υ constants. This metric has a curvature singularity at τ = 0.
Other pathologies can appear, which do not necessarily affect the consis-

tency of the solution. Poles of some Ωs or multiple roots are potential nat-
ural boundaries or (non-)removable coordinate singularities such as bolts
or nuts. The latter are fixed points of some Killing vectors ξ (∇(νξµ) = 0),
for which the matrix ∇[νξµ] is respectively of rank 2 and 4. A general, com-
plete and detailed presentation of these properties is beyond the scope of
these notes and is available in the original paper [47]. For our purpose
here, we recall two generic situations, where again we present the metric
in local proper time τ around a fixed point at τ = 0:
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Rank 2 – bolt: This singularity is removable if the metric behaves
as

ds2 ≈ dτ2 + ζ2
((
σ1)2 +

(
σ2)2)+ n2τ2

4
(
σ3)2

= dτ2 + n2τ2

4 (dψ + cosϑdϕ)2 + ζ2 (dϑ2 + sin2 ϑdϕ2) , (5.2)

and provided nψ/2 ∈ [0, 2π[. Locally the geometry is thus R2 × S2.

Rank 4 – nut: This singularity is removable if the metric behaves
as

ds2 ≈ dτ2 + τ2

4

((
σ1)2 +

(
σ2)2 +

(
σ3)2)

= dτ2 + τ2

4

(
dϑ2 + sin2 ϑdϕ2 + (dψ + cosϑdϕ)2

)
.

(5.3)

For a nut, the local geometry is R4 (here in polar coordinates).

5.2. Behaviour of Darboux–Halphen solutions
As already pointed out, there are thee distinct cases to consider: Ωi all
equal, Ω1 = Ω2 6= Ω3 or Ω1 6= Ω2 6= Ω3. In the first case,

Ωi = 1
T − T0

∀i, (5.4)

and the four-dimensional solution corresponds to flat space. When only
two Ωs are equal, the isometry group is extended to SU(2) × U(1) and
real solutions read:

Ω1,2 = 1
T − T0

, Ω3 = T − T∗
(T − T0)2 . (5.5)

There are 3 special points: T = T∗, T0 and T →∞. One can analyze their
nature by zooming around them, using proper time:

• At T → ∞ one recovers the behaviour (5.3) and this point is a
nut.

• Around T = T0 one finds

ds2 ≈ dτ2 + τ2
(
dϑ2 + sin2 ϑdϕ2

)
+ 1
T0 − T∗

(dψ + cosϑdϕ)2 . (5.6)

This is an S1 fibration over R3, the fiber being dψ + cosϑdϕ.
It is called Taubian infinity (see [47]) and appears as a natural
“boundary”.
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• At T = T∗ there is a curvature singularity as the metric behaves
like (5.1) with Ξ =

(
2

3(T0−T∗)2

)2/3
, Υ =

(
3

2(T0−T∗)

)2/3
.

One therefore concludes that in order to avoid the presence of naked sin-
gularities, the singular point T = T∗ should be hidden behind the Taubian
infinity i.e. T∗ < T0 (see Fig. 5.1). Under this assumption, the self-dual so-
lution at hand is well behaved and provides the Taub–NUT gravitational
instanton [80, 39]. It is most commonly written as:

ds2 = r +m

r −m
dr2

4 + 1
4
(
r2 −m2

)((
σ1
)2

+
(
σ2
)2
)

+m2 r −m
r +m

(
σ3
)2
,

(5.7)
where m2 = 1

T0−T∗ > 0 and m(r −m) = 2
T−T0

.

�2 �1 1 2

�4

�2

2

4

6

nut

boundary

singularity

Figure 5.1. Generic solution Ω1 = Ω2 < Ω3.

The case where Ω1 6= Ω2 6= Ω3 is the most interesting in the present
context since it involves quasimodular forms. The real Halphen solution
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(see Eq. (4.21) with z = iT or q = exp−2πT )) reads:
Ω1

H(T ) = π
6
(
E2 − ϑ4

2 − ϑ4
3
)
< 0

Ω2
H(T ) = π

6
(
E2 + ϑ4

3 + ϑ4
4
)

Ω3
H(T ) = π

6
(
E2 + ϑ4

2 − ϑ4
4
)
< Ω2

H.

(5.8)

It is defined for T > 0 with a pole at T = 0:

Ω1
H ≈ −

π

2T 2 , Ω2,3
H ≈ 1

T
. (5.9)

Around this pole, the behaviour of the metric is

ds2 ≈ −
(

dτ2 + τ2
((
σ3
)2

+
(
σ2
)2
)

+ 2
π

(
σ1
)2
)
, (5.10)

and we recover a Taubian infinity (S1 fiber over R3). The large-T be-
haviour is exponential towards a constant

Ω1,3
H ≈ ∓4π exp−πT , Ω2

H ≈ π/2 + 4π exp−2πT (5.11)
with

ds2 ≈ −
(

dτ2 + π

2

((
σ1
)2

+
(
σ3
)2
)

+ 4τ2
(
σ2
)2
)
. (5.12)

This is precisely a bolt as in Eq. (5.2) with n = 4, ζ =
√
π/2 and per-

mutation of principal directions 2 and 3. All this is depicted in Fig. 5.2.

As already quoted, the self-dual vacuum geometry corresponding to
Halphen’s original solution is the Atiyah–Hitchin gravitational instanton
[12]. Using modular transformations (4.9), one constructs all other real
solutions with strict SU(2) isometry (i.e. with all Ωi different):

Ωi(T ) = 1
(CT +D)2 Ωi

H

(
AT +B

CT +D

)
+ C

CT +D
. (5.13)

Are those well behaved?
The answer is no because a root of one Ω always appears between the

Taubian infinity and the bolt. This root is a curvature singularity, which
spoils the regularity of the solution. In order to elaborate on that, we first
observe that in Eq. (5.13), AT+B

CT+D must be positive, as real Ωi
H are only

defined for positive argument. Assume for concreteness that

lim
T→∞

AT +B

CT +D
= A

C
> 0. (5.14)
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Taubian infinity

bolt

1.0 1.5 2.0 2.5 3.0

�2

�1

1

2

3

4

Figure 5.2. Halphen original solution (Ω1
H < 0 < Ω3

H < Ω2
H).

On the one hand, at large T

Ωi = 1
T

+ O (1/T 2) , (5.15)

and trading T for the local proper time one finds a nut (see (5.3)). On the
other hand, the values T∞ = −D/C < T0 = −B/A correspond to two poles,
and Ωi(T ) are defined for T < T∞ or T0 < T with reflected behaviour.
For T0 / T

Ω1 ≈ − π

2A2
1

(T − T0)2 , Ω2,3 ≈ 1
T − T0

(5.16)

(note the sign flip in Ω1) and

− ds2 ≈ dτ2 + τ2
((
σ2
)2

+
(
σ3
)2
)

+ 2A2

π

(
σ1
)2
. (5.17)

Therefore T = T0 is a Taubian infinity (S1 fiber over R3), and as T
moves from T = T0 to T → +∞ one moves from the Taubian infinity
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(“boundary”) to a nut. A similar conclusion is reached when scanning T
from T∞ to −∞.

The problem arises because there is always a value T∗ such that T0 <
T∗ < ∞ with Ω1

∗ = 0 < Ω3
∗ < Ω2

∗ (see Fig. 5.3). This unavoidable
root is a genuine curvature singularity of the metric. Because of this, no
anisotropic solution of the Darboux–Halphen system other than the origi-
nal one ((4.21) or (5.8)) provides a well-behaved Bianchi IX gravitational
instanton.

2 4 6 8 10 12 14

0.2

0.3

0.4

0.5

singularity
nutboundary

Figure 5.3. Generic solution for T0 < T and 0 < Ω1 <
Ω3 < Ω2.

5.3. A parenthesis on Ricci flows
Ricci flows describe the evolution of a metric on a manifold, governed by
the following first-order equation:

∂gij
∂t

= −Rij , (5.18)
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where Rij stands for the Ricci tensor of the Levi–Civita connection asso-
ciated with gij (see e.g. [32]). It was introduced by Hamilton in 1981 [60]
in order to gain insight into the geometrization conjecture of Thurston
(see e.g. [101]), a generalization of Poincaré’s 1904 conjecture for three-
manifolds, finally demonstrated by Perel’man in 2003 [87, 89, 88]. Ricci
flows are also important in modern physics as they describe the renormal-
ization group evolution in two-dimensional sigma-models [44].

The case of homogeneous three-manifolds is important as it appears in
the final stage of Thurston’s geometrization. Homogeneous three-manifolds
include all 9 Bianchi groups plus 3 coset spaces, which are H3, H2 × S1,
S2 × S1 (Sn and Hn are spheres and hyperbolic spaces respectively)
[77, 93]. The general asymptotic behaviour was studied in detail in [63].
A remarkable and already quoted result [34, 97, 21, 90] is the relationship
between the parametric evolution of a metric

ds̃2 =

√
Ω2Ω3

Ω1

(
σ1
)2

+

√
Ω3Ω1

Ω2

(
σ2
)2

+

√
Ω1Ω2

Ω3

(
σ3
)2

(5.19)

on M3 of Bianchi type7, and the time evolution inside a self-dual grav-
itational instanton on M4 = R × M3 as given in (3.6): the equations
are the same (t in (5.18) and T in (3.6) are related as dt =

√
Ω1Ω2Ω3dT ).

Ricci flow on three-spheres is therefore governed by the Darboux–Halphen
equations (3.14).

Solutions of the Darboux–Halphen system describe Ricci-flow evolution
if ∀i Ωi(T ) > 0, assuming that this holds at some initial time T0. It is
straightforward to see that this is always guaranteed. Indeed, it is true
when at least two Ωs are equal, as one can see directly from the algebraic
solutions (5.4) and (5.5). More generally, suppose that 0 < Ω1

0 < Ω2
0 < Ω3

0
(the subscript refers to the initial time T0) and that Ω1 has reached at
time T1 the value Ω1

1 = 0, while Ω2
1,Ω3

1 > 0. From Eqs. (3.14) we conclude
that at time T1, Ω̇1

2 = Ω̇1
3 = −Ω1

2 Ω1
3 < 0 and Ω̇1

1 = Ω1
2 Ω1

3 > 0. This
latter inequality implies that Ω1 vanishes at T1 while it is increasing,
passing therefore from negative to positive values. This could only happen
if Ω1

0 were negative, which contradicts the original assumption. However,
if indeed Ω1

0 < 0 and Ω2
0,Ω3

0 > 0, there is a time T1 where Ω1 becomes

7The precise statement is actually formulated for more general, non-diagonal metrics,
as explained in detail in [90], and is valid in all Bianchi classes. For Bianchi IX, the
diagonal ansatz exhausts, however, all possibilities.
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positive and remains positive together with Ω2 and Ω3 until they reach
the asymptotic region.

Solutions (5.4) and (5.5) show that the asymptotic behaviour of Ωs is
clearly 1/T , when at least two Ωs are equal. In the more general case, the
large-T behaviour is readily obtained thanks to the quasimodular proper-
ties of the solutions (see footnote 6):

Ω1,2,3(T ) = − 1
T 2 Ω2,1,3

( 1
T

)
+ 1
T
. (5.20)

Therefore, for finite and positive Ωi
0 ≡ Ωi(0),

Ωi = 1
T

+ subleading at large T, (5.21)

as one observes in Fig. 5.4. Note that this does not hold for the solution
(5.8) because for the latter T = 0 is a pole and Ωi

0 ≡ Ωi(0) is neither finite,
nor positive for all i. The behaviour at large T is not 1/T , but exponential
(see Eq. (5.11) and Fig. 5.2).

As a consequence of the generic behaviour (5.21) of Ωs for positive and
finite initial conditions, the late-time geometry on the S3 under the Ricci
flow is

ds2 ≈ 1√
T

((
σ1
)2

+
(
σ2
)2

+
(
σ3
)2
)
. (5.22)

This is an isotropic (round) three-sphere of shrinking radius8. It is worth
stressing that this universal behaviour is specifically due to the quasimod-
ular properties of the solution, reflected in the non-covariant 1/T term of
(5.20).

8At large times, the original SU(2) or SU(2) × U(1) isometry group gets enhanced
to SU(2)×SU(2), while the volume shrinks to zero. These are generic properties along
the Ricci flow: the isometry groups may grow in limiting situations, whereas the volume
is never preserved, but shrinks for positive-curvature geometries:

dV
dt = 1

2

∫
dDx

√
det ggij ∂gij

∂t
= −1

2

∫
dDx

√
det gR.

402



Gravity, strings and (quasi)modular forms

T-1

2 4 6 8 10 12 14

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 5.4. Generic behaviour for 0 < Ω1
0 < Ω2

0 < Ω3
0.

6. Bianchi IX foliations and conformal self-duality

So far, we have considered self-dual solutions of Einstein’s equations.
These satisfy Eqs. (2.23) and are Ricci flat. Solutions of the Darboux–
Halphen system involving quasimodular forms are relevant in particular
when Bianchi IX foliations are considered. The Lagrange and Darboux–
Halphen systems, and more general modular and quasimodular forms
emerge, however, in set ups where no self-duality and/or Bianchi IX foli-
ation is assumed. Einstein conformally (anti-)self-dual spaces i.e. quater-
nionic spaces turn out to exhibit such interesting relationships.

Conformally self-dual Einstein spaces satisfy (see Eqs. (2.29))

Ŵ−i = 0. (6.1)

This two–form is defined in (2.28) as the anti-self-dual part of the on-
shell Weyl tensor (2.26). The latter includes a cosmological constant Λ
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and (6.1) implies that this space is Einstein (Rab = Λgab) on top of being
conformally self-dual (W− = 0).

6.1. Conformally self-dual Bianchi IX foliations

Assuming the four-dimensional space be a foliation M4 = R ×M3 with
M3 a general homogeneous three-sphere invariant under SU(2) isometry,
we can in general endow it with a metric (3.6). The Levi–Civita connection
one–forms of the latter are given in (3.9) and (3.10)). Conformal self-
duality condition (6.1) does not require the flatness of the anti-self-dual
component of the connection Ai as in (3.11). Hence, no first integral like
(3.12) is available.

In order to take advantage of the conformal self-duality condition (6.1)
and reach first-order differential equations as in the case of pure self-
duality, we can parameterize the connection Ai and Σi and demand that
(6.1) be satisfied. This is usually done by setting both Ai and Σi propor-
tional to σi, as in (3.12), with a T -dependent coefficient though (see e.g.
[64]):

Σi = − Bi
2Ωi

σi, (6.2)

Ai = ∆i

2Ωi
σi. (6.3)

Using Eqs. (3.9) and (3.10), one obtains a relationship between
{

Ω̇i
}
and

{Bi,∆i}:

Ω̇i = ΩjΩk − Ωi (∆j + ∆k) = −ΩjΩk + Ωi (Bj +Bk) . (6.4)
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Furthermore, Eqs. (2.27) and (2.28) lead to the following expressions for
the on-shell Weyl tensor:

Ŵ+
i = −

{ 1
4Ω1Ω2Ω3

(
Ḃi +BjBk −Bi (Bj +Bk)

)
+ Λ

6

}
φi

−
{

1
4Ω1Ω2Ω3

(
Ḃi −BjBk −Bi (Bj +Bk)

)
+ Bi

2 (Ωi)2

}
χi,(6.5)

Ŵ−i =
{

1
4Ω1Ω2Ω3

(
∆̇i + ∆j∆k + ∆i (∆j + ∆k)

)
− ∆i

2 (Ωi)2

}
φi

+
{ 1

4Ω1Ω2Ω3

(
∆̇i −∆j∆k + ∆i (∆j + ∆k)

)
− Λ

6

}
χi. (6.6)

The additional (with respect to (6.4)) first-order equations for {Bi} or
{∆i} are obtained by imposing on-shell conformal self-duality. The canon-
ical method for that is to demand that both coefficients of φi and χi in
(6.6) vanish. This guarantees (see (2.27)) a conformally self-dual, Einstein
manifold with scalar curvature R = 4Λ, in other words a quaternionic
space.

Solving the system of equations obtained for conformally self-dual, Ein-
stein manifolds depends drastically on whether or not the isometry is
strictly SU(2), i.e. the leaves of the Bianchi IX foliation are anisotropic,
triaxial spheres. When the isometry is extended to SU(2)×U(1) (two equal
Ωs), the equations are algebraically integrable (as in the Darboux–Halphen
system (3.14)) and no relationship appears with modular or quasimodu-
lar forms. This leads to a variety of well known biaxial solutions (see
[49, 83, 64] as well as [35] for a detailed presentation of the resolution) such
as (anti-)de Sitter–Taub–NUT, (anti-)de Sitter–Eguchi–Hanson, (pseudo-
)Fubini–Study – CP2, Pedersen (the parentheses correspond to negative
Λ) . . .When all Ωs are equal, the leaves are round, uniaxial three-spheres,
and the only four-geometries are the symmetric S4 orH4 (depending again
on the sign of Λ).

Although straightforward, the above approach leads for the triaxial case
to equations which are not known to be integrable. Hence, their resolution
is not systematic and general. An alternative strategy has been proposed
by Tod and Hitchin [103, 61], based on twistor spaces and isomonodromic
deformations (see also [104, 71]). In a first step, one sets Λ to zero in (6.6)
and demands the coefficient of χi to vanish. This is equivalent to demand-
ing conformal self-duality and zero scalar curvature (W− = s = 0) without
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setting C−ij to zero. Thus, the space is not Einstein and has zero scalar
curvature. The final step is to perform a conformal transformation, which
allows to restore a non-vanishing scalar curvature, while simultaneously
setting C−ij = 0. One thus obtains a quaternionic space.

Explaining the details of this procedure is beyond our present scope,
and we will therefore limit our presentation to the issues involving modular
forms, which stem out of conditions W− = s = 0. These are imposed by
demanding that the coefficient of χi vanishes in (6.6) and setting Λ = 0:

I


∆̇1 = ∆2∆3 −∆1 (∆2 + ∆3)
∆̇2 = ∆3∆1 −∆2 (∆3 + ∆1)
∆̇3 = ∆1∆2 −∆3 (∆1 + ∆2) .

(6.7)

They are supplemented with Eqs. (6.4), which read for {∆i}:

II


Ω̇1 = Ω2Ω3 − Ω1 (∆2 + ∆3)
Ω̇2 = Ω3Ω1 − Ω2 (∆3 + ∆1)
Ω̇3 = Ω1Ω2 − Ω3 (∆1 + ∆2) .

(6.8)

Before pursuing the present investigation any further, it is worth mak-
ing contact with the results of Sec. 3.2 on genuine self-duality equations.
Assuming the system I and II satisfied i.e. W− = s = 0, Ai (Eq. (2.21))
reads:

Ai = 1
2C
−
ijφ

j = 1
2Ωi

(∆j∆k

ΩjΩk
− ∆i

Ωi

)
φi. (6.9)

Purely self-dual Einstein vacuum spaces are obtained by demanding C−ij =
0 (i.e. Rab = 0 since the scalar curvature vanishes). This leads to the two
known possibilities for Bianchi IX vacuum self-dual Einstein geometries
met in Sec. 3.2, and satisfying either one of the following systems:

• Lagrange (3.13) for ∆i = 0,

• Darboux–Halphen (3.14) for ∆i = Ωi.

6.2. Solving I & II with Painlevé VI
Systems I and II (Eqs. (6.7) and (6.8)) describing general conformally self-
dual Bianchi IX foliations with vanishing scalar curvature (W− = s = 0)
were studied e.g. in [86, 102] prior to their uplift to quaternionic spaces.
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Further developments in relation with modular properties can be found in
[76, 13].

As usual it is convenient to move to the complex plane, introduce ω`(z)
and δ`(z) and trade the dot for a prime as derivative with respect to z
in (6.7) and (6.8). Real solutions are recovered as previously: Ω`(T ) =
iω`(iT ) and ∆`(T ) = iδ`(iT ).

The system I is that of Darboux–Halphen for δi(z) (see (3.14)). Given
a solution δi(z) one can solve the system II for ωi(z). Furthermore, the
SL(2,C) solution-generating technique described in (4.2) can be general-
ized in the present case: given a solution δi(z) and ωi(z),

δ̃i(z) = 1
(cz + d)2 δi

(
az + b

cz + d

)
+ c

cz + d
(6.10)

and
ω̃i(z) = 1

(cz + d)2ω
i
(
az + b

cz + d

)
(6.11)

provide another solution if
(
a b
c d

)
∈ SL(2,C).

Assuming δ1 6= δ2 6= δ3 i.e. the triaxial situation (implying automat-
ically ω1 6= ω2 6= ω3), we can readily obtain the general solution of the
system I as in (4.7),

δi(z) = −1
2

d
dz log E i(z), (6.12)

with E i(z) a triplet of weight-two modular forms of Γ(2) ⊂ SL(2,Z). These
can be expressed as in (4.12), where λ is a solution of Schwartz’s equation
(4.11). Define now a new set of functions wi(z) as

wi = ωi√
EjEk

(6.13)

(i, j, k cyclic permutation of 1, 2, 3), and insert the solutions (6.12) in sys-
tem II (6.8). The latter becomes

dw1
dλ = w2w3

λ
,

dw2
dλ = w3w1

λ− 1 ,
dw3
dλ = w1w2

λ(λ− 1) . (6.14)

Notice the first integral w2
1−w2

2+w2
3. Even though the value of this integral

is arbitrary, the uplift of the corresponding conformally self-dual geometry
with zero scalar curvature to an Einstein manifold is possble only if the
constant is 1/4 (see [103, 61]).

407



P.M. Petropoulos & P. Vanhove

The system of equations (6.14) can be solved in full generality with wi
expressed in terms of solutions y(λ) of Painlevé VI equation [66] (see also
[2] for a more general overview):

w2
1 = (y − λ)y2(y − 1)

λ

(
v − 1

2(y − 1)

)(
v − 1

2(y − λ)

)
, (6.15)

w2
2 = (y − λ)y(y − 1)2

λ− 1 ,

(
v − 1

2y

)(
v − 1

2(y − λ)

)
(6.16)

w2
3 = (y − λ)2y(y − 1)

λ(λ− 1)

(
v − 1

2y

)(
v − 1

2(y − 1)

)
. (6.17)

Here,

v = λ(λ− 1)y′

2y(y − 1)(y − λ) + 1
4y + 1

4(y − 1) −
1

4(y − λ) (6.18)

and y is a solution of Painlevé VI equation (f ′ = df/dλ):

y′′ = 1
2

(1
y

+ 1
y − 1 + 1

y − λ

)
(y′)2 −

( 1
λ

+ 1
λ− 1 + 1

y − λ

)
y′

+(y − λ)y(y − 1)2

8λ2(λ− 1)2

(
1− λ

y2 + λ− 1
(y − 1)1 −

3λ(λ− 1)
(y − λ)2

)
. (6.19)

6.3. Back to quasimodular forms

We will for concreteness concentrate on the original solution of system
I, the Halphen solution corresponding to λH = ϑ4

2/ϑ4
3. This is sufficient as

any other can be generated by SL(2,C) transformations. Equations (6.14)
(system II) read now

w′1 = iπϑ4
4w2w3, w′2 = −iπϑ4

2w3w1, w′1 = −iπϑ4
3w2w3. (6.20)

In this form, the system can be solved in terms of Jacobi theta functions
with characteristics [13], as an alternative to the solution (6.15)–(6.17).
This makes it relevant in the present framework.
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The solution with w2
1 − w2

2 + w2
3 = 1/4 – required for the subsequent

promotion to quaternionic geometries – read:

w1(z) = 1
2πϑ2(0|z)ϑ3(0|z)

∂vϑ
[a+1
b

]
(0|z)

ϑ
[a
b

]
(0|z) , (6.21)

w2(z) = e−iπa/2

2πϑ3(0|z)ϑ4(0|z)
∂vϑ

[ a
b+1
]
(0|z)

ϑ
[a
b

]
(0|z) , (6.22)

w3(z) = −e−iπa/2

2πϑ2(0|z)ϑ4(0|z)
∂vϑ

[a+1
b+1
]
(0|z)

ϑ
[a
b

]
(0|z) . (6.23)

Here a, b ∈ C are moduli, mapped under the SL(2,C) transformations
(6.10) and (6.11) to other complex numbers. If a, b are integers and the
transformation is in SL(2,Z), the solution is left invariant, up to permu-
tation of the three components.

It would be interesting to present the geometrical structure of the con-
formally self-dual zero-curvature spaces obtained with the solutions at
hand, following the general procedure used in Sec. 5.2. This would defi-
nitely bring us far from the original goal. The interested reader can find
useful information in the already quoted literature, both for these spaces
and for their quaternionic uplift. Note in that respect that even though
many families of solutions exist (here in the triaxial case, or more gener-
ally for biaxial three-sphere foliations), very few are singularity-free among
which, the Fubini–Study or the Pedersen instanton (SU(2) × U(1) isom-
etry), or the Hitchin–Tod solution (strict SU(2) symmetry).

As a final remark, let us mention that (6.21), (6.22), (6.23) also capture
the self-dual Ricci flat solutions discussed in Sec. 3 and given in Eqs. (4.21)
i.e. the Atiyah–Hitchin gravitational instanton. They correspond to the
choice a = b = 1 mod 2, that must be implemented with care: consider
a = 1 + 2ε, b = 1 + 2z0ε and take the limit ε → 0. One finds (a useful
identity for this computation is given in (A.5):

w1 = − 1
πϑ2

2ϑ
2
3

(
i

z + z0
− π

6
(
E2 − ϑ4

2 − ϑ4
3

))
, (6.24)

w2 = − i

πϑ2
3ϑ

2
4

(
i

z + z0
− π

6
(
E2 + ϑ4

3 + ϑ4
4

))
, (6.25)

w3 = − i

πϑ2
2ϑ

2
4

(
i

z + z0
− π

6
(
E2 + ϑ4

2 − ϑ4
4

))
. (6.26)

409



P.M. Petropoulos & P. Vanhove

A modulus z0 is left in the solution; under SL(2,Z) it transforms as

z0 →
dz0 + b

cz0 + a
. (6.27)

For finite z0 the corresponding metric is Weyl-self-dual with zero scalar
curvature The z0 → i∞ limit corresponds to the Ricci-flat, Atiyah–Hitchin
instanton (Riemann-self-dual).

6.4. Beyond Bianchi IX foliations

We would like to close our overview on conformally self-dual geometries
with another family of quaternionic solutions, related to modular forms
but not of the type M4 = R ×M3 with homogeneous M3. Indeed, self-
duality (Eq. (2.23)) or conformal self-duality (Eqs. (2.24) and (2.25)) can
be demanded outside ot the framework of foliations.

On can indeed assume an ansatz for the metric of the Gibbons–Hawking
type [51]:

ds2 = Φ−1
(
dτ +$idxi

)2
+ Φδijdxidxj . (6.28)

Here Φ and $i depend on x only, and thus ∂τ is Killing. With this ansatz
more general self-dual solutions are obtained with U(1), U(1) × U(1) or
U(1)×Bianchi isometry. Determining quaternionic spaces, i.e. conformally
self-dual and Einstein, is however far more difficult. It is a real tour de force
to find the most general quaternionic solution with U(1)×U(1) isometry
and this was achieved by Calderbank and Pedersen in [29], following the
original method of Lebrun [71]. This will be our last example, where a
new kind of modular forms emerge.

In coordinates {ρ, η, θ, ψ} with frame

α = √ρdρ, β = dψ + ηdθ
√
ρ

, γ = dρ, δ = dη, (6.29)

The metric reads:

ds2 =
4ρ2

(
F 2
ρ + F 2

η

)
− F 2

4F 2ρ2

(
γ2 + δ2

)
+ [(F − 2ρFρ)α− 2ρFηβ]2 + [(F + 2ρFρ)β − 2ρFηα]2

F 2
[
4ρ2

(
F 2
ρ + F 2

η

)
− F 2

] . (6.30)
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Here Fρ = ∂ρF and Fη = ∂ηF , where F (ρ, η) is a solution of

ρ2
(
∂2
ρ + ∂2

η

)
F = 3

4F. (6.31)

The metric (6.30) has generically two Killing vectors, ∂θ, ∂ψ and F (ρ, η)
is a harmonic function on H2 with eigenvalue 3/4. Indeed, the metric on
the hyperbolic plane is

ds2
H2 = dρ2 + dη2

ρ2 (6.32)

and Eq. (6.31) can be recast as
4H2F = 3

4F. (6.33)
Solving (6.33) leads inevitably to modular forms of τ = η+iρ, even though
algebraic solutions are also available.

Let us mention for example

F =
√
ρ+ η2

ρ
, (6.34)

which leads to a metric on CP2 with U(1)× SU(2) isometry [84], or

F = ρ2 − ρ2
0

2√ρ (6.35)

with U(1) × Heisenberg9 symmetry [9]. Solutions for F (ρ, η) with strict
U(1)×U(1) isometry open Pandora’s box for non-holomorphic Eisenstein
series such as (see (A.9))

F = E3/2(τ, τ̄), (6.36)
which has a further discrete residual symmetry SL(2,Z) ⊂ SL(2,R).
These will be discussed in Sec. 7 and we refer to the appendix for some
precise definitions. Very little is known at present on the geometrical prop-
erties of the corresponding quaternionic spaces, or on the fields of appli-
cation these spaces could find in physics. In string theory, they are known
to describe the moduli space of hypermultiplets in compactifications on
Calabi–Yau threefolds [42]. The relevance of the Calderbank and Peder-
sen metrics in this context was recognized in [10]. For further considera-
tions on the role of modular and quasimodular foms as string instantonic
contributions to the moduli spaces of these compactifications, we refer
to [6, 7, 15, 16, 5, 8] and in particular to the recent review [4].

9Heisenberg algebra is Bianchi II.
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7. Beyond the world of Eisenstein series

To end up this review we would like to elaborate on some connections
between quantum field theory and modular forms. This originates from
the specific structure of the perturbative expansions in string and field
theory, and calls for develping more general modular functions than the
non-holomorphic Eisenstein series discussed earlier in these notes.

7.1. The starting point: perturbation theory

Perturbative expansions in quantum field theory are expressed as sums of
multidimensional integrals, obtained by applying Feynman rules or uni-
tarity constraints. These integrals are plagued by various divergences that
need to be regulated. It was remarked in [23, 24] that the coefficients of
these divergences are given by multiple zeta values in four dimensions.
Since this original work, it has become more and more important to fur-
ther investigate the relationship between quantum field theory and the
structure of multiple zeta values. This connection has fostered important
mathematical results as in instance [25, 26], which have been reviewed in
the recent Séminaire Bourbaki by Pierre Deligne [37].

The next observation is that the above mentioned field-theory Feynman
integrals arise as certain limits of string-theory integrals defined on higher-
genus Riemann surfaces. They are actually obtained from the boundary
of the moduli of higher-genus punctured Riemann surfaces. This bridge to
string theory sets a handle to the world of modular functions.

There are indeed two motivations for embedding the analysis into a
string theory framework. The first is of physical nature: perturbative string
theory is free of ultraviolet divergences, so it provides a well-defined pre-
scription for regularizing field-theory divergences. In other words, string
theory acts as a specific regularization from which we expect to learn more
on the fundamental structure of the quantum field theories. The second
motivation is directly related to the topic of this text: string theory is the
ideal arena for exploring the number theoretic considerations of quantum
field theory and their close connection with modular forms.

In the present notes we will focus on the case of the tree level and genus
one, following the string analysis in [57, 54] and the mathematical analysis
in [52]. We will explain in particular that (non-holomorphic) Eisenstein
series are not enough for capturing all available information carried by the
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integrals under consideration. The presentation will be schematic, aiming
at conveying a message rather that providing all technical details. For the
latter, the interested reader is referred to the quoted literature.

Let us consider the following integral defined on the moduli space of
the genus-g Riemann surface with four marked points:

A(g)(s, t, u) =
∫
Mg

dµ
∫

Σg

4∏
i=1

d2zi exp

 ∑
1≤i<j≤4

2α′ki · kjP (zi, zj)

 ,
(7.1)

whereMg is the moduli space of the closed Riemann surface Σg of genus
g. There are four punctures whose positions zi are integrated over. We
have introduced k1 + k2 + k3 + k4 = 0 with ki · ki = 0 representing ex-
ternal massless momenta flowing into each puncture. We will also set the
Mandelstam variables s = 2k1 · k2 = 2k3 · k4, t = 2k1 · k4 = 2k2 · k3 and
u = 2k1 · k3 = 2k2 · k4, obeying s + t + u = 0 for the massless states at
hand. The physical scale is the inverse tension of the string α′.

The propagator or Green’s function P (z, w) is defined on this Riemann
surface by

0 =
∫

Σg
d2z
√
−g P (z, w), (7.2)

∂z∂̄z̄P (z, w) = 2πδ(2)(z)− 2πgzz̄∫
Σg d2z

√
−g

, (7.3)

∂z∂̄w̄P (z, w) = −2πδ(2)(z) + π
g∑
I=1

ωI(z)(=mΩ)−1
IJ ωJ(w), (7.4)

where the ds2 = gzz̄dzdz̄ is the metric on the Riemann, Ω the period
matrix, and ωI with 1 ≤ I ≤ g the first Abelian differentials.

7.2. Genus zero: the Eisenstein series

At genus 0, i.e. for the Riemann sphere, the propagator is simply given
by

P (0)(z, w) = log |z − w|2, (7.5)
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and the integral in (7.1) can be evaluated to give

A(0)(s, t, u) = 1
α′3stu

Γ (1 + α′s) Γ (1 + α′t) Γ (1 + α′u)
Γ (1− α′s) Γ (1− α′t) Γ (1− α′u)

= 1
α′3stu

exp
(
−
∞∑
n=1

2ζ(2n+ 1)
2n+ 1

[
(α′s)n + (α′t)n + (α′u)n

])
. (7.6)

The masses of string theory excitations are integer, quantized in units of
1/α′. It is therefore expected that the α′ expansion of the string amplitude
in (7.6) is given by multiple sums over the integers, but it is remarkable
that this expansion involves only odd zeta values of depth one. For α′ � 1
a series expansion representation reads:

A(0)(s, t, u) =
∑

q≥−1,p≥0
c(p,q) σ

p
2σ

q
3, (7.7)

where we have introduced σ2 = (α′s)2 + (α′t)2 + (α′u)2 and σ3 = 3α′3stu.
Since σ1 = (α′s) + (α′t) + (α′u) = 0, we immediately see that all σn =
(α′s)n + (α′t)n + (α′u)n with n ≥ 2 are given by [57]

σn
n

=
∑

2p+3q=n

(p+ q − 1)!
p!q!

(
σ2
2

)p (σ3
3

)q
. (7.8)

The coefficients c(p,q) are polynomial in odd zeta values of weight 2p +
3q − 3. It is notable that at a given order n = 2p + 3q − 3, the space
of these coefficients has dimension dn = b(n+ 2)/2c − b(n+ 2)/3c, which
coincides with the dimension of the space of the holomorphic Eisenstein
series of weight n (see appendix). This hint calls for further investigation,
and we would like to mention the recent work connecting the α′ expansion
in (7.7) and the motivic multiplet zeta values [92].

One can expand the integrand of (7.7) and obtain each coefficient
c(p,q) as a linear combination of the multiple integrals of the propagator
P (0)(zi, zj) (given in (7.5)):

cn12,n13,n14,n23,n24,n34 =
∫
S2

∏
1≤i<j≤4

d2zi
∏

1≤i<j≤4
P (0)(zi, zj)nij . (7.9)

The integrand of this expression is the product of the propagators con-
necting the punctures with multiplicities nij , 1 ≤ i < j ≤ 4, as depicted on
Fig. 7.1. The contributions in (7.7) are the lowest-order to the full string-
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1

2

3

4

n12

n13

n14

n23

n24

n34

Figure 7.1. Graph of a vacuum Feynman diagram on
the Riemann surface Σg. The punctures are connected by
nij ≥ 0 links representing the number of two-dimensional
propagators.

theory amplitude of the four-point (four punctures) processes described
here.

In Eqs. (7.6)–(7.7), we encountered the zeta values

ζ(s) =
∑
n≥1

1
ns
. (7.10)

Extending the sum over the integers n to a lattice like p = m + τn ∈
Λ(1) = Z + τZ, where10 τ ∈ h = {z ∈ C,=m(z) ≥ 0}, one gets the
(non-holomorphic) Eisenstein series

Ês(τ, τ̄) =
∑

p∈Z+τZ

1
|p|2s , (7.11)

10The modular parameter τ is expressed in alternative ways throughout these notes:
τ = <e(τ) + i=m(τ) = τ1 + iτ2 = η + iρ.
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where |p|2 = (m + nτ)(m + nτ̄) is the natural Euclidean norm on the
lattice Λ(1). This expression can be made modular-invariant in a trivial
way by multiplying by =m(τ)s,

Es(τ, τ̄) =
∑

p∈Z+τZ

=m(τ)s

|p|2s . (7.12)

This Eisenstein series is an eigenfunction of the hyperbolic Laplacian
(6.31) with eigenvalue s(s− 1):

4H2Es(τ, τ̄) = s(s− 1)Es(τ, τ̄). (7.13)

The case s = 3/2 was discussed in Sec. 6.4, Eqs. (6.34)–(6.36), from a
different physical perspective.

7.3. Genus one: beyond

At this stage of the exposition the reader may wonder how the above
generalization of the zeta values (7.10) into modular forms (7.12) arises in
string theory. We will sketch how this goes and show that new automorphic
forms are actually needed, standing beyond the well known Eisenstein
series. This requires going beyond the sphere (7.5)–(7.7).

At genus one, the Green’s function is given by

P (1)(z, 0) = −1
4 log

∣∣∣∣ϑ1(z|τ)
ϑ′1(0|τ)

∣∣∣∣2 + π=m(z)2

2τ2
. (7.14)

The amplitude in (7.1) reads:

A(1)(s, t, u) =
∫
F

d2τ

τ2
2

∫
T

∏
1≤i<j≤4

d2zi
τ2
W(1) e−

∑
1≤i<j≤4 2α′ki·kj P̂ (1)(zi−zj),

(7.15)
where F =

{
τ ; |<e(τ)| ≤ 1

2 ,=m(τ) > 0,<e(τ)2 + =m(τ)2 ≥ 1
}

is a fun-
damental domain for SL(2,Z), and

T =
{
z; |<e(z)| ≤ 1

2 , 0 ≤ =m(z) ≤ =m(τ)
}
.

No closed form for the integral in (7.15) is known, in particular because
of the presence of non-analytic contributions in the complex (s, t)-plane.
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For a rigorous definition of this integral we refer to [38]. The expression
for the genus-one propagator in (7.14) has an alternative representation:

P (1)(z, 0) = 1
2π

∑
p∈Z+τZ

τ2
|p|2 e−π

=m(z̄p)
τ2 + C(τ, τ̄), (7.16)

where C(τ, τ̄) = log |
√

2πη(τ)| is a modular anomaly. Since the latter is
z-independent, it drops out of the sum in (7.15) because of the momentum-
conservation condition

∑4
i=1 ki = 0. The integrand of (7.15) is there-

fore modular-invariant. From now on we will only consider the modular-
invariant part of the propagator

P̂ (1)(z, 0) = 1
2π

∑
p∈Z+τZ

τ2
|p|2 e−π

=m(z̄p)
τ2 . (7.17)

Following the developments on the sphere, we can analyze the expansion
of the amplitude (7.15) for α′ � 1. In this regime one gets integrals of the
type (7.9), but this time with the genus-one propagator

Dn12,n13,n14,n23,n24,n34(τ, τ̄) =
∫
T

∏
1≤i<j≤4

d2z1
τ2

∏
1≤i<j≤4

P̂ (1)(zi, zj)nij .

(7.18)
The product runs over the entire set of links with multiplicities nij , 1 ≤
i < j ≤ 4, of the graph Γ depicted in Fig 7.1. By construction these
integrals are modular functions for SL(2,Z). Performing the integration
over the position of the punctures one gets an alternative form for the
modular function Dn12,...,n34(τ, τ̄) given by

Dn12,...,n34(τ, τ̄) =
∑
pi∈Γ

4∏
i=1

δ

∑
j→vi

pj

 ∏
prop∈Γ

=m(τ)
|pi|2

, (7.19)

where the sum is over all the propagators pi of the graph Γ. If there are
n12 propagators connecting the vertices 1 and 2, we have n12 different
elements of the lattice pi = mi + τni ∈ Z + τZ, 1 ≤ i ≤ n12. At each
vertex vi of the graph we impose momentum conservation by demanding
that the sum of the incoming momenta pj flowing to this vertex (j → vi)
be zero. This is represented by the delta function constraint δ(

∑
j→vi pj)

with δ(m+ τn) ≡ δ(m)δ(n).
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The above sums Dn12,...,n34(τ, τ̄), introduced in [54], are generalizations
of the Eisenstein series, that we will call Kronecker–Eisenstein follow-
ing [52]. With each modular functionDn12,...,n34(τ, τ̄) we associate a weight
given by the sum of the integer-valued indices nij . Let us focus for con-
creteness on the particular case of n propagators between two punctures,
and refer to [54] for the general case. We define

Dn(τ, τ̄) :=
∑

pi∈Z+τZ
δ

(
n∑
i=1

pi

)
n∏
i=1

=m(τ)
4π|pi|

. (7.20)

The special cases n = 2 and 3 are given11 in [54, appendix B]

D2(τ, τ̄) = E2(τ, τ̄)
(4π)2 , (7.21)

D3(τ, τ̄) = E3(τ, τ̄)
(4π)3 + ζ(3)

64 . (7.22)

However, in general these modular functions do not reduce to Eisenstein
series, as it can easily be seen by evaluating the constant terms. For n ≥ 2
it is always possible to decompose the modular form Dn(τ, τ̄) as [54]

Dn(τ, τ̄) = Pn(Es(τ, τ̄)) + δn(τ, τ̄) (7.23)
with Pn(Es(τ, τ̄)) a polynomial in the Eisenstein series Es(τ, τ̄) (see Equa-
tions. (7.12) and (A.9)) of the form

Pn(Es(τ, τ̄)) = pn(ζ(2n+ 1))

+ b1
(4π)n En(τ, τ̄) +

∑
r+s=n

cr,s
(4π)nEr(τ, τ̄)Es(τ, τ̄), (7.24)

where pn(ζ(2n+ 1)) is polynomial of degree two in the odd zeta values of
total weight n. The remainder δn(τ, τ̄) in (7.23) is a modular form whose
constant Fourier coefficient does not vanish but tends to zero for τ2 →∞.

Although the definition of the modular functions Dn12,...,n34(τ, τ̄) given
in (7.20) looks similar to the double-Eisenstein series introduced in [45],
one finds that, as opposed to the latter, their constant term involves depth-
one zeta values [54] only. Hence, they provide a natural modular-invariant
generalization of the polynomials in the odd zeta values met in (7.9). One
way to obtain multiple zeta values is to insert in (7.20) the generalized

11The case n = 3 has been worked out by Don Zagier.
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propagator used by Goncharov in [52]. Whether the generalization intro-
duced by Goncharov does appear in string theory is an open question.
From the original physical perspective, this question is relevant because
it translates into the (im)possibility of appearance of multiple zeta values
as counter-terms to ultraviolet divergences in quantum field theory. This
might have important consequences in supergravity.

As a final comment, let us mention that although our discussion was
confined to the case of modular functions for SL(2,Z), most of the above
can be generalized to the framework of automorphic functions for higher-
rank group [53].

8. Concluding remarks

In the present lecture notes we have given a partial – in all possible senses
– review of the emergence of (quasi)modular forms in the context of grav-
itational instantons and string theory. These forms often appear as the
consequence of remarkable, explicit or hidden symmetries, and turn out
to be valuable tools for unravelling a great deal of properties in a variety of
physical set ups. The latter include monopole scattering, Ricci flows, non-
perturbative (instantonic) corrections to string moduli spaces (via their
Fourier coefficients), or perturbative expansions in quantum field theory
(via string amplitudes).

We have described how the classical holomorphic Eisenstein series,
whose theory is nicely presented in [96, 68], occurs in the context of grav-
itational instantons or in studying non-perturbative effects. We have also
encountered the non-holomorphic Eisenstein series, the analytic properties
of which are described in [70, 78]. This whole analysis has led us to ar-
gue that one needs novel types of modular functions, standing beyond the
usual Eisenstein series. Although the analytic properties of these series are
still poorly understood, they seem to be a corner stone for understanding
the challenging nature of interactions in string theory and its consequences
in quantum field theory.
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Appendix A. Theta functions and Eisenstein series

We collect here some conventions for the modular forms and theta func-
tions used in the main text. General results and properties of these objects
can be found in [96, 68].

Introducing q = exp 2iπz, we first define

η(z) = q
1/24

∞∏
n=1

(1− qn) , (A.1)

E2(z) = 12
iπ

d
dz log η, (A.2)

as the Dedekind function and the weight-two quasimodular form, whereas

ϑ2(z) =
∑
p∈Z

q
1/2(p+1/2)2

, ϑ3(z) =
∑
p∈Z

q
p2/2, ϑ4(z) =

∑
p∈Z

(−1)p qp
2/2

(A.3)
are the Jacobi theta functions. More generally, one introduces

ϑ

[
a

b

]
(v|z) =

∑
m∈Z

exp
(
iπz(m+ a/2)2 + 2iπ(v + b/2)(m+ a/2)

)
(A.4)

with ϑ
[1
1
]

= ϑ1, ϑ
[1
0
]

= ϑ2, ϑ
[0
0
]

= ϑ3, ϑ
[0
1
]

= ϑ4. Let us also mention the
following relation

ϑ

[
α+ 2w
β + 2v

]
(0|z) = ϑ

[
α+ 2w
β

]
(v|z) = eiπw(w+1+2v)ϑ

[
α

β

]
(v+wz|z). (A.5)

The first holomorphic Eisenstein series are
E2(z) = 1− 24

∑∞
m=1

mqm

1−qm

E4(z) = 1 + 240
∑∞
m=1

m3qm

1−qm

E6(z) = 1− 504
∑∞
m=1

m5qm

1−qm .

(A.6)

Notice that E4(z) and E6(z) are modular forms of weight 4 and 6, whereas
E2(z) is the already quoted weight-two quasimodular form. The modular-
invariant of weight two is the non-holomorphic combination E2(z)− 3

π=m(z) .
It is a classical result that the space of modular forms of weight k is
spanned by Ea4E

b
6 with 2a + 3b = k. The dimension of this space is

dk = b(k + 2)/2c − b(k + 2)/3c.
In the main text we also consider non-holomorphic Eisenstein series

Es(z, z̄) with z = x + iy, y > 0 and x ∈ R. These are defined as
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modular-invariant eigenfunctions of the hyperbolic Laplacian (see Eqs.
(6.31), (7.12) and (7.13))

y2(∂2
x + ∂2

y)Es(z, z̄) = s(s− 1)Es(z, z̄), (A.7)
with polynomial growth at the cusps (y →∞):

Es(z, z̄) =
∑

(m,n)6=(0,0)

ys

|mz + n|2s
, (A.8)

for s ∈ C with large enough real part for convergence. One can extend the
definition by analytic continuation [70] for all s 6= 1 using the functional
equation Γ(s)π−sEs(z, z̄) = Γ(1/2 − s)π1/2−sE1−s(z, z̄). These series have
the following Fourier expansion:

2ξ(2s)Es(z, z̄) = 2ξ(2s) ys + 2ξ(2s− 1) y1−s

+ 4y1/2
∑
n 6=0

σ2s−1(|n|)
|n|s−1/2

Ks−1/2(2π|n|y) e2πinx (A.9)

where ξ(s) = ζ(s)Γ(s/2)π−s/2 is the completed zeta function, Ks−1/2 is the
K-Bessel function and σα(n) =

∑
d|n d

α (see e.g. [100] for details).
Finally, let us mention how the non-holomorphic series are connected to

the holomorphic ones. For that, one considers the following generalization
of the non-holomorphic Eisenstein functions:

E(w,w̄)
s (z, z̄) =

∑
(m,n)6=(0,0)

ys+w+w̄

(mz + n)s+w(mz̄ + n)s+w̄ . (A.10)

These series transform under a modular transformation γ =
(
a b
c d

)
∈

SL(2,Z) as

E(w,w̄)
s (γ · z, γ · z̄) = (cz + d)w(cz̄ + d)w̄ E(w,w̄)

s (z, z̄). (A.11)
Chosing s = n ∈ N and w̄ = −n, we recover the holomorphic Eisenstein
series E(0,−n)

n (z, z̄) = En(z).
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