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Fully Invariant Subgroups of n-Summable
Primary Abelian Groups

Peter Danchev

Abstract

We present a number of results concerning fully invariant subgroups of n-
summable groups.

1. Introduction

Throughout this paper suppose all groups are Abelian, p-primary for some
arbitrary but a fixed prime, written additively as is the custom when
exploring Abelian groups. All notions and notations are standard and
follow those from [8] and [9]. For instance, for any element g from a group
G, the letter |g|G will always denote the height of g in G, that is, the
maximal ordinal δ such that g ∈ pδG; whence g ∈ pδG \ pδ+1G.

A problem of interest is to find suitable properties of groups that are in-
herited by special subgroups called fully invariant. Recall that a subgroup
F of a group G is said to be fully invariant if each endomorphism of G
sends F into itself. For some classes of groups (e.g., fully transitive groups
or, in particular, totally projective groups) these subgroups are completely
described - see, for instance, [9] and [11]. Specifically, they have the form
G(α) = {x ∈ G : |pix|G ≥ αi, i < ω}, where α = {αi}i<ω is an increasing
sequence of ordinals and symbols ∞. In addition, for any ordinal γ, pγG
is fully invariant in G.

Moreover, it was shown in [10] and [12] that a group G is totally pro-
jective if, and only if, G(α) and G/G(α) are totally projective; however
whether or not this remains true for some arbitrary fully invariant sub-
group F is still unknown. It is worthwhile noticing that this extends the
classical result of Nunke [13] which says that G is totally projective if, and
only if, both pαG and G/pαG are totally projective.
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The purpose that motivates the writing of the present article is to try
to modify to what extent the quoted above results for totally projec-
tive groups can be proved for summable groups and their generalizations,
named n-summable groups. This continues our recent results in this di-
rections - cf. [5, 2, 4, 3].

2. n-Summable groups and their fully invariant subgroups

Imitating [7], the valuated pn-socle V is said to be n-summable if it is
isometric to the valuated direct sum ⊕i∈IVi of a collection of countable
valuated pn-socles Vi where i ∈ I and I is an index set. A group G is said
to be n-summable if G[pn], as a valuated pn-socle under the valuation
induced by the height function, is n-summable. In particular, a group is
1-summable exactly when it is summable in the usual sense of the term.
For more detailed information about summable and n-summable groups,
we refer the interested reader to [8] and [7].

Due to the importance of Nunke-like theorems, referred to above [13],
we prove the following (see also [1]).

Proposition 2.1. Suppose G is a group and λ is an ordinal.

(a) If G is n-summable, then pλG and G/pλ+nG are n-summable.

(b) If λ is countable and both pλG and G/pλG are n-summable, then
G is n-summable.

Proof. (a): If G[pn] is the valuated direct sum of countable valuated
groups, then the same can clearly be said of (pλG)[pn]. Next, let H be
a pλ+n-high subgroup of G, and let H ′ = [H + pλ+nG]/pλ+nG, so that
H ∼= H ′ are isotype in G and G′ = G/pλ+nG, respectively. It follows that
there are valuated direct sum decompositions

G[pn] = H[pn]⊕X and G′[pn] = H ′[pn]⊕X ′

where pλ+nG ⊆ X ⊆ pλG and X ′ ⊆ pλG′. Note that X ′ is, in fact, n-
summable (see, e.g., [7]). Therefore, since G is n-summable, we can con-
clude H[pn] and X are n-summable. This, in turn, implies that H ′[pn] and
pλ+nG are n-summable, so that G′ and pλ+nG are n-summable. The fact
that pλ+nG is n-summable readily implies that pλG shares this property.
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(b): Let H and X be as in part (a). Since pλG is n-summable, we
can infer that X has this property. We need, therefore, to show that H[pn]
is also n-summable. Since G/pλG is n-summable and λ is countable, we
can conclude that (G/pλG)[pn] is n-Honda, i.e., it is the ascending union
of subgroups Ym, for m < ω, such that Sn = {|y|G/pλG : y ∈ Ym} is
finite. If we let Y ′m = {x ∈ H : x + pλG ∈ Ym}, then clearly H[pn] is the
ascending union of the Y ′m and {|x|G : x ∈ Y ′m} ⊆ Sn ∪ [λ, λ + n − 1] is
finite. Therefore, H[pn] is also n-Honda, and hence n-summable. �

There are lots of examples of summable groups G such that G/pωG is
not summable; in fact suppose B is an unbounded direct sum of cyclics
and B is its torsion-completion. Then G = B/B[pn] can easily be seen to
be n-summable, but on the other hand

G/pωG = B/B[pn]/B[pn]/B[pn] ∼= B/B[pn] ∼= pnB

is not even summable. So Proposition 2.1(a) does not hold if λ + n is
replaced by λ.

In addition, if G is a totally projective group of length λ, where ω1 <
λ < ω1 · 2, then pω1G and G/pω1G are both n-summable, but G is not; so
Proposition 2.1(b) does not hold for uncountable λ.

As an immediate consequence, we yield the following (see [1] too):

Corollary 2.2. A group G is summable iff pω+1G and G/pω+1G are sum-
mable.

The last statement can slightly be extended to the following.

Proposition 2.3. A group G is summable if, and only if, pω+kG and
G/pω+kG are summable for some k < ω.

Proof. First, observe that

G/pω+1G ∼= G/pω+kG/pω+1G/pω+kG = G/pω+kG/pω+1(G/pω+kG).

Moreover, since a group A is summable uniquely when so is pmA for some
natural m, we derive that pω+kG is summable precisely when the same
holds for pω+1G. Henceforth, we apply the above corollary to infer the
wanted claim. �

Lemma 2.4. If L = (pω+1G)[p] and G/L is summable, then G is sum-
mable.
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Proof. First note that
pω+2G = p(pω+1G) ∼= (pω+1G)/(pω+1G)[p] = pω+1G/L = pω+1(G/L)

and, hence, pω+2G is summable. But this plainly implies that pω+1G is
summable, and in view of Corollary 2.2 it remains only to show that
G/pω+1G is also summable. Indeed, since L ⊆ pω+1G, we have

G/pω+1G ∼= G/L/pω+1G/L = G/L/pω+1(G/L)
and the latter group is really summable because G/L is so by hypothesis.

�

We will hereafter assume that all fully invariant subgroups of G are of
the type

G(α) = {x ∈ G : |pix|G ≥ αi, i < ω}
where α = {αi}i<ω is an increasing sequence of ordinals and symbols ∞.

Corollary 2.5. If L = G(α) and G/L is summable, then G/pL is sum-
mable.

Proof. Observe that L/pL = (pα(G/pL))[p] where α = α0 = ω+1. There-
fore, (G/pL)/(L/pL) ∼= G/L is summable and we need only employ the
previous lemma to G/pL. �

So, we come to the following sufficient condition for summability.

Theorem 2.6. Let pω·2G = 0. If α is an increasing sequence of ordinals
and symbols ∞ such that both G(α) and G/G(α) are summable, then G
itself is summable.

Proof. Let L = G(α). If the sequence α contains any symbol∞, then there
is a positive integer j such that pjL = 0. But then repeated applications of
Corollary 2.5 yield the desired conclusion that G/pjL ∼= G is summable.
Thus we may assume that α is an increasing sequence of ordinals that
does not contain symbols of the type ∞, and take λ = sup(α) where
α = {αi}i<ω. It is not hard to see that pωL = pλG where λ ≤ ω · 2.

Foremost, suppose for a moment λ = ω · 2, whence pωL = 0 so that
L is separable summable and thus a direct sum of cyclic groups. In view
of [12], we obtain that G is σ-summable. Furthermore, appealing to [6,
Proposition 6.5], we deduce that pωG is σ-summable, i.e., a direct sum of
cyclic groups and hence summable. Therefore pω+iG is summable for any
natural number i.
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Next, suppose that λ < ω · 2. Consequently, pλG is summable. But
λ = ω+m for some m < ω, so that pω+mG being summable immediately
forces that pω+iG is summable for all i < ω.

Furthermore, in virtue of Proposition 2.3, we need only verify in the
both cases for λ alluded to above that G/pαiG is summable for some
i ≥ 1, where αi = ω + i. But since piL ⊆ pαiG, we have again with this
proposition at hand that

G/pαiG ∼= (G/piL)/pαi(G/piL)

is summable since each G/piL is summable by the subsequent application
i times of Corollary 2.5. �
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