
ANNALES MATHÉMATIQUES

BLAISE PASCAL
José Ignacio Cogolludo-Agustín
Braid Monodromy of Algebraic Curves

Volume 18, no 1 (2011), p. 141-209.

<http://ambp.cedram.org/item?id=AMBP_2011__18_1_141_0>

© Annales mathématiques Blaise Pascal, 2011, tous droits réservés.
L’accès aux articles de la revue « Annales mathématiques Blaise Pas-
cal » (http://ambp.cedram.org/), implique l’accord avec les condi-
tions générales d’utilisation (http://ambp.cedram.org/legal/). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques
de l’université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://ambp.cedram.org/item?id=AMBP_2011__18_1_141_0
http://ambp.cedram.org/
http://ambp.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Annales mathématiques Blaise Pascal 18, 141-209 (2011)

Braid Monodromy of Algebraic Curves

José Ignacio Cogolludo-Agustín

Abstract

These are the notes from a one-week course on Braid Monodromy of Algebraic
Curves given at the Université de Pau et des Pays de l’Adour during the Première
Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in
October 2009.

This is intended to be an introductory survey through which we hope we can
briefly outline the power of the concept monodromy as a common area for group
theory, algebraic geometry, and topology of projective curves.

The main classical results are stated in §2, where the Zariski–van Kampen
method to compute a presentation for the fundamental group of the complement
to projective plane curves is presented. In §1 these results are prefaced with a review
of basic concepts like fundamental groups, locally trivial fibrations, branched and
unbranched coverings and a first peek at monodromy. Descriptions of the main
motivations that have lead mathematicians to study these objects are included
throughout this first chapter. Finally, additional tools and further results that are
direct applications of braid monodromy will be considered in §3.

While not all proofs are included, we do provide either originals or simplified
versions of those that are relevant in the sense that they exhibit the techniques
that are most used in this context and lead to a better understanding of the main
concepts discussed in this survey.

Nothing here is hence original, other than an attempt to bring together different
results and points of view.

It goes without saying that this is not the first, and hopefully not the last,
survey on the topic. For other approaches to braid monodromy we refer to the
following beautifully-written papers [73, 20, 6].

We finally wish to thank the organizers and the referee for their patience and
understanding in the process of writing and correcting these notes.
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ish Ministry of Education MTM2007-67908-C02-01 and MTM2010-21740-
C02-02.

Keywords: Fundamental group, algebraic variety, quasi-projective group, pencil of
hypersurfaces.
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Braid Monodromy of Algebraic Curves

1. Settings and Motivations

For the sake of completeness we will define the main objects and will state
the problems that motivate the study of braid monodromy in connection
with algebraic curves.

1.1. Fundamental Groupoids

Consider X a topological space and Γ(X,x0, y0) the set of continuous
paths from x0 to y0, that is,

Γ(X,x0, y0) := {γ : [0, 1]→ X | γ continuous, γ(0) = x0, γ(1) = y0}.

The set of equivalence classes of Γ(X,x0, y0) under homotopy relative to
x0 and y0 will be denoted by π1(X,x0, y0). In other words:

π1(X,x0, y0) := Γ(X,x0, y0)/ ∼

where γ1 ∼ γ2 ⇔ ∃h : [0, 1]× [0, 1]→ X continuous such that:

• h(λ, 0) = γ1(λ),

• h(λ, 1) = γ2(λ),

• h(0, µ) = x0,

• h(1, µ) = y0.

γ1

γ2

x0 y0

The category (X, {π1(X,x0, y0)}x0,y0∈X), where X is the set of objects
and π1(X,x0, y0) is the family of morphisms between x0 and y0, has a
groupoid structure, that is, it satisfies the following properties:
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γ1

γ2
x0 y0 z0

• Associative composition law of morphisms:
if γ1 ∈ π1(X,x0, y0) and γ2 ∈ π1(X, y0, z0), then γ1γ2 ∈ π1(X,x0, z0),
where

γ1γ2(λ) =
{
γ1(2λ) λ ∈ [0, 1

2 ]
γ2(2λ− 1) λ ∈ [1

2 , 1]

Moreover (γ1γ2)γ3 = γ1(γ2γ3) for any three paths γ1 ∈ π1(X,x0, y0),
γ2 ∈ π1(X, y0, z0), and γ3 ∈ π1(X, z0, w0).

• π1(X,x0) := π1(X,x0, x0) has a group structure (with the compo-
sition law):
where 1x0 ≡ x0 ∈ π1(X,x0, x0) and γ−1(λ) = γ(1−λ) ∈ π1(X, y0, x0).

Remark 1.1. In our paper, X will always have a complex manifold struc-
ture and thus any class of paths has a Piecewise Smooth representative.
From now on, all the paths γ will be considered Piecewise Smooth.

Remark 1.2. Also note that if x0 and y0 are in the same path-connected
component of X, then the groups π1(X,x0) and π1(X, y0) are naturally
isomorphic by an inner automorphism. In case X is path connected, such
groups are denoted by π1(X) and called the fundamental group of X.
Example 1.3. π1(S1) = Z (see the comment after Theorem 1.14).
Example 1.4 (Ordered Configuration Spaces). Let Xn := {(z1, ..., zn) ∈
C n | zi 6= zj , i 6= j}. A path in Xn from x = (x1, ..., xn) to y = (y1, ..., yn)
is nothing but a collection of n paths γi, i = 1, ..., n from xi to yi such
that γi(λ) 6= γj(λ) if i 6= j. Then π1(Xn) = Pn, the pure braid group on n
strings (on C ).
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Example 1.5 (Non-ordered Configuration Spaces). Let Pn := {f(z) ∈
C [z] | deg(f) = n}, Yn := P(Pn \∆n), where

∆n := {f ∈ Pn | f has multiple roots}.

Note that Yn
ϕ∼= Xn/Σn, where Σn represents the action of the symmetric

group of n elements onXn by permuting the coordinates, that is, if σ ∈ Σn,
then σ(z1, ..., zn) = (zσ(1), ..., zσ(n)) (note that the elements of Xn/Σn are
simply sets of n distinct complex numbers). The homeomorphism ϕ is
given as follows: any polynomial f(z) ∈ Yn can be normalized as f(z) =
(z−z1) · · · (z−zn) where zi 6= zj . Thus ϕ(f) := {z1, ..., zn} ∈ Xn/Σn. Con-
versely, given a set of n distinct complex numbers {z1, ..., zn} ∈ Xn/Σn one
can obtain f(z) = zn+an−1z

n−1 + · · ·+a1z+a0 as ai = σn−i(z1, ..., zn) =
the symmetric polynomial of degree n − i on z1, ..., zn. Therefore, if γ is
a path in Yn from f1 = (z − x1) · · · (z − xn) to f2 = (z − y1) · · · (z − yn),
then ϕγ can be seen as a collection of n disjoint paths γi, i = 1, ..., n from
xi to yσ(i) for a certain σ ∈ Σn. Then π1(Yn) = Bn, the (geometric) braid
group on n strings (on C ).

Analogously, if we consider

P̄n := {f(s, t) ∈ C [s, t] | f homogeneous deg(f) = n},

Ȳn := P(Pn \ ∆̄n), where ∆̄n := {f ∈ P̄n | f has multiple roots}. Note
that π1(Ȳn) = Bn(P1), the braid group on n strings on P1 ∼= S2.

In the previous examples fundamental groups are either computed di-
rectly or by finding suitable homomorphisms to other spaces whose fun-
damental group was easier to compute. The idea behind it is that the
fundamental group is a topological invariant, that is, if X

ϕ∼= Y are two
homeomorphic spaces, then the map π1(X;x0, x1)ϕ∗→π1(Y ;ϕ(x0), ϕ(x1))
given by the set-theoretical image by ϕ of paths in X is well defined, it
is a bĳection for any choice of x0, x1 ∈ X, and it preserves the products,
hence it is an isomorphism in the category of groupoids. In particular, ϕ∗
defines isomorphisms of fundamental groups.

However, homeomorphisms are not the only continuous maps that in-
duce isomorphisms of fundamental groups. The following result generalizes
the map ϕ∗ referred to in the previous paragraph and it serves as a way to
introduce notation. Its proof is straightforward from the definitions and
it is left as a useful exercise for the beginners.
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Lemma 1.6. Any continuous map ϕ : X → Y between two topological
spaces induces morphisms ϕx0,x1 : π1(X;x0, x1)→ π1(Y ;ϕ(x0), ϕ(x1)) for
any choice of x0, x1 ∈ X.

Moreover, if ϕ : X → Y and ψ : Y → Z, then (ψ ◦ ϕ)x0,x1 = ψx0,x1 ◦
ϕx0,x1.

To simplify notation, and whenever there is no likely ambiguity, we will
simply refer to ϕx0,x1 as ϕ∗.

Example 1.7. Assume that Y ⊂ X and that there is a surjective continuous
map ϕ : X → Y such that Y i→X ϕ→Y is the identity on Y . Then ϕ∗ is an
epimorphism, since ϕ∗ ◦ i∗ = (IdY )∗ (see 1.6) which is an isomorphism.
Such a map is called a retraction of X onto Y .

The following is a very common way to find maps that induce equivalent
morphisms of fundamental groups.

Definition 1.8. Let f, g : X → Y two continuous maps. We say that
f and g are two homotopic maps if there exists H : X × [0, 1] → Y a
continuous map such that, if x ∈ X then H(x, 0) = f(x) and H(x, 1) =
g(x). The map H is called a homotopy from f to g and it is denoted as
f H∼ g.

Two topological spaces X and Y are called homotopy equivalent if there
exist maps f : X → Y and g : Y → X such that f◦g ∼ IdY and g◦f ∼ IdX

Example 1.9. If two topological spaces X and Y are homotopy equivalent,
then their groupoid fundamental groups are isomorphic.

Note, in particular, that a homotopy equivalence ϕ : X → Y induces
isomorphisms of fundamental groups π1(X;x)ϕ∗→π1(Y ;ϕ(x)). Moreover, if
both spaces are connected, then one can simply say that π1(X)ϕ∗→π1(Y ) is
an isomorphism.

Example 1.10. Assume the hypothesis of Example 1.7 and also assume
that the retraction ϕ is homotopic to the identity in X. Then X and Y are
homotopy equivalent and the retraction ϕ is an equivalence of homotopies.
Such retractions are called deformation retract.

Example 1.11. π1(C \{0}) = Z is a consequence of Examples 1.3 and 1.10,
since the normalization map C \{0} → S1 given by z 7→ z

|z| is a deformation
retract.
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1.2. The Seifert–van Kampen Theorem
One of the basic tools to compute fundamental groups (and fundamental
groupoids) is the Seifert–van Kampen Theorem. This was first proved by
H. Seifert [70] and later on, and independently, by E.R. van Kampen [41].
Originally van Kampen wrote this paper in an attempt to prove that the
construction O. Zariski [76] built in order to compute the fundamental
group (aka Poincaré group) of the complement of a plane curve in P2 was
correct.

In order to state this result we will need to define the amalgamated
product of two groups.

Definition 1.12. Let G12
i1→G1 and G12

i2→G2 be two group homomor-
phisms. The amalgamated free product of G1 and G2 w.r.t. G12 is a group
G that fits in a commutative diagram

G12
i1→ G1

↓ i2 ↓ j1G
G2

j2G→ G

(1.1)

and has the following universal property: for any other such G′ there
exists a homomorphism G

ϕ→G′ that commutes with both diagrams, that
is, ϕj1G = j1G′ and ϕj2G = j2G′ .

This can also be described by saying that the diagram (1.1) is a pushout
(in the category of groups).

In more down-to-earth terms, if G12, G1, and G2 are groups is as in
the previous definition with morphisms i1, i2 respectively, then the amal-
gamated free product of G1 and G2 w.r.t. G12, commonly denoted by
G1 ∗G12 G2, can be described as the quotient

(G1 ∗G2)/N,
where N is the smallest normal subgroup of the free product G1 ∗ G2
generated by i1(γ)i2(γ)−1 for all γ ∈ G12.

Example 1.13. For instance, if Gi, G12 admit presentations 〈x̄i : R̄i(x̄i)〉
and 〈ȳ : R̄12(ȳ)〉, then

G1 ∗G12 G2 = 〈x̄1, x̄2 : R̄1(x̄1), R̄2(x̄2), i1(y) = i2(y), y ∈ ȳ〉.
Therefore, if Gi, are finitely presented, and G12 is finitely generated,

then G1 ∗G12 G2 is finitely presented.
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We will give the following version of the main theorem.

Theorem 1.14 (Seifert–van Kampen Theorem). Let U1 and U2 path-
connected open subsets of X such that:

• U1 ∪ U2 = X and

• U12 := U1 ∩ U2 is also path-connected.

Then
π1(X) = π1(U1) ∗π1(U12) π1(U2).

In other words, the commutative diagram given by the inclusions:
π1(U12) i1→ π1(U1)
↓ i2 ↓ j1

π1(U2) j2→ π1(X)
is a pushout.

Originally van Kampen considered the general case scenario, where the
open sets U1, U2 and U12 are not necessarily path-connected. In this case,
the result above generalizes claiming that π1(X,x0, y0) is a pushout of
π1(U1, x0, y0) and π1(U2, x0, y0) in the category of groupoids (see [13,
6.7.2]).

This theorem gives a very simple proof of Example 1.3 (see [13, 6.7.5]).

Example 1.15. Consider X and Y two path connected topological spaces,
and x ∈ X, y ∈ Y points on them. One can define X∨Y , the bouquet of X
and Y as the quotient space X t Y/{x, y} of the disjoint union of X and
Y by {x, y}. Note that, since X and Y are path connected, the homotopy
type of the space X ∨ Y does not depend on the choice of x and y.

In order to compute S1 ∨ S1 one can consider U1 := (S1 \ {x}) ∨ S1

and U2 := S1 ∨ (S1 \ {y}). If {x, y} is not the set of points chosen to
quotient by, then U1 and U2 are open subsets of S1 ∨ S1. Moreover, U12 =
(S1 \ {x}) ∨ (S1 \ {y}) is contractible and hence π1(S1 ∨ S1) = F2 the free
product of rank 2.

By induction, if
∨n S1 := S1 ∨ ... ∨ S1 is the bouquet of n spheres, then

π1(
∨n S1) = Fn.

Example 1.16. Let z1, ..., zn ∈ C , Zn := {z1, ..., zn}. Then π1(C \Zn) = Fn.
The case n = 1 is shown in Example 1.11. The case n = 2 is given in
Figure 1.1 by describing S1 ∨ S1 as a deformation retract of C \ {±1}. In
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general, one can describe
∨n S1 as a deformation retract of C \ Zn, and

hence the result will follow from Examples 1.10 and 1.15.

Figure 1.1. Deformation retract from C \ {±1} to S1 ∨ S1.

Example 1.17. Let z1, ..., zn ∈ P1, Zn := {z1, ..., zn}. Then π1(P1 \ Zn) =
〈γ1, . . . , γn : γn · · · γ1 = 1〉 = Fn−1. Since P1 \ {z1} ∼= C and applying
Example 2.20.

1.3. Locally Trivial Fibrations
Definition 1.18. A surjective smooth map π : X → M of smooth man-
ifolds is a locally trivial fibration if there is an open cover U of M and
diffeomorphisms ϕU : π−1(U) → U × π−1(pU ), with pU ∈ U , such that
ϕU is fiber-preserving, that is pr1 ◦ ϕU = π. The diffeomorphisms ϕU are
called trivializations of π. The submanifold π−1(p) ⊂ X is called the fiber
of π at p and usually denoted by Fp.

Two fibrations π : X → M , π′ : X ′ → M are said to be equivalent if
there exists a diffeomorphism ϕ : X → X ′ such that

Xyπ ↘ ϕ X ′
↙ π′

M
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is a commutative diagram.

Remark 1.19. Note that, if U is a trivialization open set, then π−1(p1) ∼
π−1(p2) for any two points p1, p2 ∈ U , simply considering ϕU |−1

π−1(p1) ◦
ϕU |π−1(p1). Therefore, the existence of the points pU ∈ U in Definition 1.18,
might be replaced by the same property at any point of U . Hence all the
fibers of a locally trivial fibration are all diffeomorphic to Fp as long as X
is connected.

Example 1.20. Any product X := M × F produces a locally trivial fibra-
tion just by projecting onto a component, say π : X = M × F → M ,
where π(x, y) = x. The open cover of M that trivializes the fibration is
given simply by the total space M . The fiber of this fibration at any point
is isomorphic to F . Such a fibration is called a trivial fibration.

One of the main properties of locally trivial fibrations, which will be
extensively used here, is the fact that homotopies on the base can be lifted.
A precise statement is the following (cf. [75, p. 45]):

Theorem 1.21 (Homotopy Lifting Property). Let π : X →M be a locally
trivial fibration, consider:

(1) γ : [0, 1]→M a continuous map,

(2) γ̃ : [0, 1] → X a lifting of γ (that is, a continuous map such that
γ = π ◦ γ̃), and

(3) h : [0, 1]× [0, 1]→M a homotopy from γ (that is h(λ, 0) = γ(λ)).

Then h can be lifted to a homotopy h̃ : [0, 1]× [0, 1]→ X from γ̃.
Moreover, if two paths ω1, ω2 : [0, 1] → X are given such that π ◦

ω1(µ) = h(0, µ) and π ◦ ω2(µ) = h(1, µ), then h̃ can be found such that
h̃(0, µ) = ω1(µ) and h̃(1, µ) = ω2(µ).

Example 1.22. Note that any locally trivial fibration π : X → [0, 1] has
a section s : [0, 1] → X such that s(0) = x0 for any x0 ∈ π−1(0) ⊂ X.
Consider the constant map γ(λ) = 0 and fix a lifting γ̃(λ) = x0. The
retraction h : [0, 1] × [0, 1] → [0, 1], h(λ, µ) = λµ can be lifted using the
Homotopy Lifting Property 1.21. Then s(λ) = h̃(λ, 1) is a section such
that s(0) = h̃(0, 1) = γ̃(0) = x0.
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Example 1.23. Any locally trivial fibration π : X → [0, 1] is in fact a trivial
fibration. In order to prove this, note that one can patch trivializations as
follows. Suppose that ϕ1 : π−1([a, b]) → [a, b] × F and ϕ2 : π−1([b, c]) →
[b, c] × F are trivializations of π (resp.) on U1 ⊃ [a, b] and U2 ⊃ [b, c]
restricted to [a, b] ⊂ [0, 1] and [b, c] ⊂ [0, 1] (resp.). Note that ψa :=
ϕ1 ◦ ϕ−1

2 |{b}×F is an automorphism of F . One can build the following
isomorphism ϕ : π−1([a, c])→ [a, c]× F such that:

ϕ(x) :=
{
ϕ1(x) if x ∈ π−1([a, b])
(ϕ2,1(x), ψa ◦ ϕ2,2(x)) if x ∈ π−1([b, c]).

Consider a finite covering U := {U1 = [α1 = 0, β1), U2 = (α2, β2), ..., Un =
(αn, βn = 1]}, where the fibration trivializes and define a0 = 0, βi < ai <
αi+1, (i = 2, . . . , n − 1), an = 1. Using the paragraph above, one can
patch the trivializations to obtain the trivialization ϕ : π−1([0, 1]) = X →
[0, 1]× F .

Even though it is true that every locally trivial fibration has homeo-
morphic fibers, the converse is not true, as we will see later. In general,
proving that a certain map with homeomorphic fibers is a locally trivial
fibration is not an easy task. The main tool in our context is the following
fundamental result (cf. [28, 49]).

Theorem 1.24 (Ehresmann’s Fibration Theorem). Any proper submer-
sion π : X → M is a locally trivial fibration. Moreover, if B ⊂ X is a
closed submanifold such that π|B is still a proper submersion, then π|X\B
is also a locally trivial fibration.

1.4. Unbranched Coverings, Branched Coverings, and Mon-
odromy

We will briefly discuss the notion of unbranched and branched coverings as
both, a motivation and a first approximation to braid monodromy. Condi-
tions for the existence of branched coverings of smooth lines and surfaces
ramified along a given locus has been a classical problem that becomes a
common place for (low dimensional) Topology, Algebraic Geometry, (in-
verse) Galois Theory, and Geometry. The main results of this section can
be found in much more detailed in [59].
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1.4.1. Unbranched Coverings

Definition 1.25. An unbranched covering is a locally trivial fibration
whose fiber is a discrete subset.

Example 1.26. The map π : B∗ → B∗, defined as π(z) = ze from the
punctured disc to itself is a finite unbranched covering whose fiber is a
finite set of e elements. In particular, π−1(ze) = {ξiez | i = 0, ..., e − 1},
where ξ := exp

(
2π
√
−1
e

)
. Analogously, the map π : Bn−1 × B∗ → Bn−1 ×

B∗ defined as π(z1, ..., zn−1, zn) = (z1, ..., zn−1, z
e
n) is also an unbranched

covering whose fiber is a finite set of e elements.

The following result classifies unbranched coverings.

Theorem 1.27. Let M be a locally contractible topological space. Then
the following holds:

(1) For any unbranched covering π : X → M , the induced morphism
π∗ : π1(X,x0)→ π1(M,π(x0)) is a monomorphism.

(2) Conversely, for any subgroup G < π1(M) there exists a covering
π : X →M such that G = π∗(π1(X)).

(3) Two coverings π : X → M , π′ : X ′ → M are equivalent if and
only if π∗(π1(X,x0)) < π1(M, q0) and π′∗(π1(X ′, x′0)) < π1(M, q0)
are conjugate of each other (for some x0 ∈ X and x′0 ∈ X ′ such
that q0 = π(x0) = π′(x′0)).

(for a proof of Theorem 1.27 see any basic textbook on Algebraic Topol-
ogy, for instance see [75]).

Example 1.28. Note that Example 1.26 induces the following:
π1(B \ {0}) = Zγ π∗↪→ = π1(B \ {0}) = Zγ,

where the map is given by π∗(γ) = eγ. This corresponds to the inclusion
Ze < Z. Analogously, the map π : Bn−1 × B∗ → Bn−1 × B∗ defined as
π(z1, . . . , zn) = (z1, . . . , zn−1, z

e
n) induces the following:

π1(Bn−1 × B∗) = Zγ π∗↪→ = π1(Bn−1 × B∗) = Zγ,

where the map is also given by π∗(γ) = eγ. This corresponds to the
inclusion Ze < Z as shown below.

152



Braid Monodromy of Algebraic Curves

(z1, . . . , zn−1, zn)

7→

(z1, . . . , zn−1, z
e
n)

zn = 0

γ

1.4.2. Monodromy of Unbranched Coverings

Any unbranched covering π : X → M is, by definition, a locally trivial
fibration whose fiber is a discrete set S := π−1(q0). There is a monodromy
action of π1(M, q0) on S as follows.

Let γ : [0, 1]→M be a closed path in π1(M, q0). One has the following
diagram

π−1(γ) = X̃ ↪→ X

↓ π̃ ↓ π
[0, 1] γ−→ M

According to Example 1.23, π̃ is a trivial fibration. The trivialization
of π̃ defines a bĳection γ : S → S. In other words, for any given x0 ∈ S
one can construct a section sx0 : [0, 1] → X̃ such that sx0(0) = x0 (see
Example 1.22), then π̃(x0) = sx0(1) ∈ S.

Example 1.29. Finally, in order to understand the monodromy of the map
given in Examples 1.26 and 1.28 consider the path γ given by γ(λ) :=
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ze exp(2π
√
−1λ) ∈ π(B∗, ze) which generates this fundamental group.

Note that sz(λ) = z exp
(

2π
√
−1λ
e

)
is the section constructed above and

hence

sz(1) = z exp
(

2π
√
−1
e

)
= ξz

is the image of z by the monodromy of γ. Analogously, note that sξiz(λ) =
ξiz exp

(
2π
√
−1λ
e

)
and hence

γ : S = {ξiz | i = 0, ..., e− 1} → S

ξiz 7→ ξi+1z

defines the monodromy of γ on S, which is just a cyclic transformation of
order e.

1.4.3. Branched Coverings

In this section we will focus on the study of branched coverings of complex
manifolds.

Definition 1.30. Let M be an m-dimensional (connected) complex man-
ifold. A branched covering of M is an m-dimensional irreducible normal
complex space X together with a surjective holomorphic map π : X →M
such that:

• every fiber of π is discrete in X,

• the set Rπ := {x ∈ X | π∗ : Oπ(x),M → Ox,X is no isomorphism}
called the ramification locus, and Bπ = π(Rπ) called the branched
locus, are hypersurfaces of X and M , respectively,

• the map π| : X \π−1(Bπ)→M \Bπ is an unramified (topological)
covering, and

• for any q ∈ M there is a connected open neighborhood W q ⊂ M
such that for every connected component U of π−1(W ):
(1) π−1(q) ∩ U has only one element, and
(2) π|U : U →W is surjective and proper.

A branched cover π : X → M will be called Galois, (resp. finite) if
π∗(π1(X\π−1(Bπ)) is a normal (resp. finite index) subgroup of π1(M\Bπ).
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Example 1.31. The map π : B → B defined by π(z) = ze is a branched
covering ramified at Bπ = {0}. Analogously, the map π : Bn → Bn defined
by π(z1, . . . , zn) = (z1, . . . , zn−1, z

e
n) is a branched covering ramified at

Bπ = {zn = 0}.
Remark 1.32. In the context of complex manifolds, Example 1.31 is the
only local situation that one can encounter (cf. [59, Theorem 1.1.8]).

The purpose of this section is to study Theorem 1.27(2) for branched
coverings, that is, what are the conditions, in terms of the monodromy
or in terms of fundamental groups for the existence of branched coverings
ramified along a given divisor. In order to do so, let us develop the key
concept of meridian.

1.4.4. Meridians

Let M be a complex manifold, B′ an irreducible component of a hypersur-
face B ⊂ M , and b ∈ B′ a smooth point on B. By definition, this means
that there exists an open neighborhood U of b in M and a holomorphic
function f on U such that B ∩ U = {z ∈ U | f(z) = 0}. As a simple
application of the Implicit Function Theorem on f and U , there exists a
change of coordinates such that U can be chosen to be V × B where V is
a polydisk and B ∩ U = V × {0}. Hence the point b ∈ B ∩ U will have
coordinates b = (b0, 0). Let γb = {b0} × {exp(2π

√
−1λ)} be a closed path

centered at b̃ = (b0, 1).
Definition 1.33. Under the above conditions, a closed path in π1(M \
B, q0) is called a meridian of B′ if there is a representative γ in its homo-
topy class that can be written as γ = α ·γb ·α−1 where α ∈ π1(M \B, q0, b̃)
for a certain b ∈ B′ as above (see Figure 1.2).

Proposition 1.34. Any two meridians, say γ1, γ2 ∈ π1(M \B, q0), of the
same irreducible component B′ are conjugated, that is, γ2 = ωγ1ω

−1 for a
certain ω ∈ π1(M \B, q0).

Moreover, the conjugacy class of a meridian coincides with the set of
homotopy classes of meridians around the same irreducible component.
Proof. The main ingredient of this proof is that B′ \ Sing(B) is a path
connected space as long as B′ is irreducible since Sing(B) has real codi-
mension 2 in B. Therefore consider δ a path in B′ from b̃2 to b̃1, where
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zn = 0

γb

b̃

b

q0
α

Figure 1.2. Meridian

γi = αi ·γbi ·α
−1
i , i = 1, 2 and γi are paths around bi ∈ B. One can deform

δ along the normal bundle so that δ connects b̃2 and b̃1. This way, note
that γ2 = ωγ1ω

−1 where ω = α2 · δ · α−1
1 (see Figure 1.3).

γb1 γb2

b̃1 b̃2

b1 b2

δ

q0

α1
α2

Figure 1.3. Conjugate meridians

The moreover part is obvious by definition of meridian. If γ = α · γb · α−1

is a meridian decomposed as in Definition 1.33, and ω ∈ π1(M \ B, q0)
then (ω · α) · γb · (ω · α)−1 also satisfies the conditions of Definition 1.33,
and hence it is a meridian of M around B′. �
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1.4.5. Existence and construction of branched coverings: smooth
case

Consider B a non-singular hypersurface, B = D1 ∪ ... ∪Dr its decompo-
sition in irreducible components, choose ē := (e1, ..., er) ∈ Nr, ei > 1 and
denote D =

∑
niDi a divisor on M . Let q0 ∈M \B base point.

Let γ1, . . . , γr ∈ π1(M \ B, q0) be meridians of the irreducible compo-
nents of B. The elements γe11 , ..., γ

er
r ∈ π1(M \B, q0) normally generate a

subgroup
Jē := N(γe11 , ..., γ

er
r ) / π1(M \B, q0).

According to Proposition 1.34, Jē does not depend on the choice of the
meridians.

Definition 1.35. Under the above notation, π is said to ramify (resp.
ramify at most) along D if B is the ramification locus of π and ei coincides
with (resp. is a multiple of) the ramification index of π at Di.

A branched cover π ramified along D is said to be maximal if it factors
through any other branched cover π′ ramified at most along D, that is,
there exists a holomorphic map ϕ : X → X ′ such that:

Xyπ ↘ ϕ X ′
↙ π′

M

is a commutative diagram.

Remark 1.36. Note that if π : X → M is a branched covering ramified
along D, then γeii can be lifted to a meridian of π−1(Di) (see Remark 1.32
and Example 1.28). Therefore Jē / π1(X \ π−1(B), q0).

Condition 1.4.6. We say that K < π1(M \B) satisfies this condition if,
given any meridian γi of Di, one has that γdi ∈ K implies d ≡ 0 (mod ei)
∀ 1 ≤ i ≤ r.

The following result can be found in [59, Theorem 1.2.7]. It character-
izes the branched covers of a complex manifold ramified along a smooth
hypersurface with prescribed ramification indices and it is a partial equiv-
alent of Theorem 1.27 (2).
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Theorem 1.37. There is a natural one-to-one correspondence between{
K

f.i
/ π1(M \B) | K ⊃ Jē

satisfying (1.4.6)

}
and{

π : X →M
Galois, finite,

ramified along D

}/
∼ . (1.2)

Moreover, there is a maximal Galois covering XD of M ramified along D
iff

Kπ =
⋂

Kas in (1.37)
K

f.i
/ π1(M \B)

satisfies (1.4.6).

Note that we use K f.i
/ π1(M \B) for finite index normal subgroup. As

a consequence of Theorem 1.37 one has the following classical result, for
compact complex manifolds of dimension 1, part of which is known as the
Riemann Existence Theorem. Consider Mg a compact complex manifold
of dimension 1, that is, a Riemann surface and Zn ⊂Mg a finite set of n
points in Mg.

Theorem 1.38. Any monodromy action π1(Mg\Zn)→ Σs can be realized
by a branched covering of the Riemann surface Mg.

Proof. Let K = ker (π1(Mg \ Zn)
µ→Σs). For any meridian γz of an element

of z ∈ Zn, consider µ(γz) ∈ Σs. Since Σs is finite, the order of µ(γz), say
ez, is also finite. Define B = {z ∈ Zn | ez > 1} and D =

∑
z∈B ezz.

Note that K f.i
/ π1(M \ B) and K ⊃ Jē by construction. All one needs

to check is condition (1.4.6), but this is also immediate. If γdz ∈ K, then
µ(γz)d = 1. Therefore ez|d, since ez is the order of µ(γz). Finally, one can
apply Theorem 1.37, since B is a smooth hypersurface. �

1.4.7. Existence and construction of branched coverings: general
case

We will follow the notation introduced in the previous item. Consider B
a (possibly singular) hypersurface, B = D1 ∪ ...∪Dr its decomposition in
irreducible components, choose ē := (e1, ..., er) ∈ Nr, ei > 1 and denote
D =

∑
niDi a divisor on M . Let q0 ∈M \B base point.
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Let γ1, . . . , γr ∈ π1(M \B) be meridians of the irreducible components
of B and define Jē as above.

In addition, for any q ∈ SingB one can consider the inclusion of a local
neighborhood of q in B, say iq : W q \B ↪→M \B. By the special structure
of analytic singularities (see [55, Theorem 2.10]), it turns out that iq does
not depend on W q for a small enough neighborhood. Therefore, given any
subgroup K < π1(M \B) one can define Kq := i−1

q (K).

Condition 1.4.8. We say K / π1(M \ B) satisfies this condition if, for
any point q ∈ SingB, Kq

f.i
/ π1(W \B).

It is reasonable, but not so obvious anymore, that given a branched
cover π : X → M ramified along D, then K = π∗(π1(X \ π−1(B)))
satisfies 1.4.8 (see [59, Theorem 1.3.8] or [37, p.340] for a proof).

Theorem 1.39. There is a one-to-one correspondence between{
K

f.i
/ π1(M \B) | K ⊃ Jē satisfying

(1.4.6) and (1.4.8)

}
and{

π : X →M
Galois, finite,

ramified along D

}/
∼ . (1.3)

Moreover, there is a maximal Galois covering XD of M ramified along D
iff

Kπ =
⋂

Kas in (1.39)
K

f.i
/ π1(M \B)

satisfies (1.4.6) and (1.4.8).

This will allow for a general study of branched covers of P2 ramified
along plane curves, which is the classical problem, already stated by En-
riques [29], Zariski [76, 77], and many others, known as the multiple plane
problem. The original problem was stated as follows:

Problem 1.4.9. Enriques-Zariski Problem [76] Does an algebraic
function z of x and y exist, possessing a preassigned curve f as branched
curve?

Example 1.40. Consider M = P2, D1 = {ZY 2 = X3}, D2 = {Z = 0}. Let
us study the possible Galois covers of P2 ramified along D = e1D1 +e2D2.
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In order to do so, one needs to compute the fundamental group π1(P2 \
(D1∪D2)). This will be presented in a more systematic way in Chapter §2.
You can go ahead read it and come back, or just bare with me a couple
of calculations and hopefully everything will be understood later.

The space P2 \ (D1 ∪D2) is nothing but C 2 \ {y2 = x3}, where C 2 =
P2 \ D2 is one of the standard affine charts of P2. The identification is
given as (x, y) 7→ [X : Y : 1], whose inverse is [X : Y : Z] 7→

(
X
Z ,
Y
Z

)
.

Avoiding tangencies at infinity will make our life easier in this case, so
one can change the affine coordinate system and simply work with the
curve C := {27y2 = 4(x − y)3}. Since this transformation is continuous.
The fundamental group is not affected by that. First of all note that C
has only one singular point at (0, 0). Consider the projection (x, y) 7→ x,
and note that, when restricted to C, it produces a cover of C branched
along x = 0 (the projection of the singular point) and x = 1 (the tangency
shown by the blue line). Precisely the non existence of vertical asymptotes
will allow us to take big disks Dx, Dy such that (C 2, D1) is a deformation
retract of (Dx×Dy, D ∩ (Dx×Dy)). On the other hand, consider the disk
D := {1

2} × Dy shown below.

y2 = x3 27y2 = 4(x− y)3

γ̃2

γ2

γ1
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Note that D1 ∩ D = {p1 := (1
2 ,−

5
2 + 3

√
3

2 ), p2 := (1
2 ,−

5
2 −

3
√

3
2 ), p̃2 :=

(1
2 ,−

1
4)}. Consider γ1, γ2, γ̃2 meridians around p1, p2, and p̃2 respectively.

One can check that these meridians satisfy the following relations as closed
paths in the total space C 2 \D1:

γ̃2 = γ2
γ2γ1γ2 = γ1γ2γ1 .

Moreover,
π1(P2 \ (D1 ∪D2)) = 〈γ1, γ2, γ∞ : γ2γ1γ2 = γ1γ2γ1 = γ∞〉,

where γ∞ is a meridian of D2, the line at infinity of P2.
According to Theorem 1.39 we need to study subgroups Jē normally

generated by γe11 , γe12 , and γe2∞ for ē = (e1, e2) ∈ N2. Equivalently, one can
study quotients of π1(P2 \ (D1 ∪D2)) of the form

Gē = 〈γ1, γ2, γ∞ : γ2γ1γ2 = γ1γ2γ1 = γ∞, γ
e1
1 = γe12 = γe2∞ = 1〉.

Such subgroups are well known (c.f. [23]) and Gē is finite if and only
if ē = (2, 2), (3, 4), (4, 8), (5, 20) or (6, 2). In which cases one has the
following result (c.f. [59, Propositions 1.3.27 and 1.3.29]):

Theorem 1.41. In the following cases there is a maximal Galois covering
of P2 ramified along D:

(e1, e2) G = π1(P2 \D)/Jē |G|
(2, 2) Σ3 6
(3, 4) SL(2,Z/3Z) 24
(4, 8) Σ4 n Z/4Z 96
(5, 20) SL(2,Z/5Z)× Z/5Z 600

However, there is no maximal Galois cover of P2 ramified along D =
6D1 + 2D2.

Analogously to the Riemann Existence Theorem 1.38, one has the fol-
lowing result on the existence of branched covers ramified along divisors
with prescribed ramification index.

Theorem 1.42. Let B = D1 ∪ ... ∪ Dn be a projective manifold. Then
any representation of π1(M \B) on a linear group GL(r,C ) such that the
image of a meridian γi has order ei, gives rise to a Galois cover of M
branched along D = e1D1 + ...+ enDn.
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The proof of this result is similar to the one presented here for Theo-
rem 1.38 and it relies on the fact that π1(M\B) is finitely generated, which
is a consequence of the Zariski Theorems of Lefschetz Type (see §1.7)
and §2.

1.4.10. Chisini Problem

In this context, another interesting motivation is the following problem:
Problem 1.4.11. Chisini Problem [19] Let S be a non-singular com-
pact complex surface, let π : S → P2 be a finite morphism having simple
branching, and let B be the branch curve; then “to what extent does the
pair (P2, B) determine π”?

Partial results have been given to this problem for generic coverings [57,
46, 45, 60], or special types of singularities [44, 54], but a global answer
to this is yet to be determined. Certain restrictions, like the fact that the
degree of the covering has to be ≥ 5, are also known [56, 15].

1.5. Monodromy Action on Fundamental Groups
Probably the first appearance in the literature of this fact is due to Chisini
[18], and has been implicitly used by van Kampen [42] and Zariski [76]
in the context of computing the fundamental group of plane projective
curve complements. The first systematic approach for the case of plane
curves is given by Moishezon [57] with the purpose of studying the Chisini
Conjecture.

In order to give a general definition in our setting let us recall the notion
of section.
Definition 1.43. Let π : X → M be a locally trivial fibration. We say
that a morphism s : M → X is a section if π ◦ s = 1M .

Associated with a locally trivial fibration π : X → M and a section
s : M → X there is a right action of the groupoid {π1(M,p1, p2)} on the
groups {π1(F, q0)}, called monodromy action of M on F . More specifically,
given a path γ ∈ π1(M,p1, p2) (s(p1) = (p1, q1), s(p2) = (p2, q2)) and a
closed path α ∈ π1(F, q1), one obtains another closed path αγ ∈ π1(F, q2).

In addition, if γ1 ∈ π1(M,p1, p2) and γ2 ∈ π1(M,p2, p3), with s(pi) =
(pi, qi), then

α(γ1γ2) = (αγ1)γ2 .
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1.5.1. Construction of the monodromy

Consider γ an open path representing an element in π1(M,p1, p2). The
following diagram comes from restriction:

π−1(γ) = X̃ ↪→ X

↓ π̃ ↓ π
[0, 1] γ−→ M

Note the following:

(1) The map π̃ is a fibration which, by Example 1.23, is trivial, and
hence consider a trivialization [0, 1] × F ϕ−→X̃ and a section s̃ :=
ϕ−1 ◦ s ◦ γ : [0, 1]→ [0, 1]× F (see (1.4)).

(2) Any path α ∈ π1(F, q1) can be regarded as a path α : [0, 1]→ {0}×
F , based at s(p1) = (p1, q1), and it is a lifting of 0 : [0, 1]→ [0, 1]
the 0 constant path (see (1.4)).

(3) By the Homotopy Lifting Property 1.21, the homotopy h : [0, 1]×
[0, 1] → [0, 1] given by h(λ, µ) = µ, which takes the constant zero
path 0 to the constant path 1 can be lifted to h̃ : [0, 1]× [0, 1] →
[0, 1]× F such that h̃(λ, 0) = α(λ) and h̃(0, µ) = h̃(1, µ) = s̃(µ).

[0, 1]× F ϕ−→ X̃ ↪→ X
α↗ ↓ pr1 ↓ π̃ ↓ π

[0, 1] 0−→ [0, 1] = [0, 1] γ−→ M

(1.4)

Definition 1.44. The closed path αγ(λ) := ϕ ◦ h̃(λ, 1) ∈ π1(F, q2) con-
structed above is called the monodromy action of γ over α.

Remark 1.45. Intuitively, α is being pushed fiberwise along γ and keeping
the base point along the section s.

One needs to check that the previous construction is independent of ϕ,
the choice of representative of γ and α. This is all a consequence of the
Homotopy Lifting Property.

Note that, according to our discussion, αγ = s(γ)−1αs(γ) (see Fig-
ure 1.4).
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α αγ

s(γ)

s(γ)

h(λ, µ)

Figure 1.4

The following example will clarify the previous construction.

Example 1.46. The trivial case occurs when q0 := q1 = q2, the fibration π
is trivial, and the section s : M → M × F is given by s(p) = (p, q0). In
this case, the monodromy action is trivial.

Example 1.47. The simplest non-trivial case arises when q0 := q1 = q2,
the fibration π is trivial, but the section is not constant on the second
coordinate. For instance, consider [0, 1] × F

pr1→ [0, 1], where F = D \
{(0, 1

2), (0,−1
2)}, (see Figure 1.5).

F

Figure 1.5. Fiber F

If γ represents the identity on the base, p1 = 0, p2 = 1, q0 = (0, 1),
and s(λ) = exp(2π

√
−1λ) is a section, then Figure 1.6 describes this

monodromy action on two closed paths α1, α2.

164



Braid Monodromy of Algebraic Curves

M × F
α1

αγ1α2

αγ2

M
γ

s(γ(1
2))

s(γ(0)) s(γ(1))

Figure 1.6. Monodromy Action

Example 1.48. Consider F as before, define X = S1×F with a non-trivial
section s : S1 → X given by s(λ) := (λ, λ) (note that S1 ⊂ F ). Note that
ϕ can be given as the exponential map. In particular, the trivialization ϕ
along γ is not trivial (see Figure 1.7),

F

Figure 1.7. Trivialization

165



J.I. Cogolludo

where s̃ is just the section ϕ−1 ◦ s ◦ γ : I → I × F .
In this case, the closed paths α1, α2 shown in the previous example are

transformed as shown in Figure 1.8,

α1

α2

αγ2

αγ1

Figure 1.8. Monodromy Action

that is, αγ1 = α2, αγ2 = α2α1α
−1
2 .

1.6. Mapping Class Groups and Braid Action
The group of oriented isomorphisms of a compact orientable surface S of
genus g fixing a set of n points up to homotopy relative to its boundary
is called the mapping class group of Sgn, and will be denoted by M(Sgn).

A classical interpretation of the geometric braid group on n-strings (see
Example 1.5) is the following.

Theorem 1.49 ([12]). There is an isomorphism between the geometric
group of braids on n-strings and the mapping class group of the disk D
fixing a set of n points, that is,

M(Dn) = π0(Diff+(Dn, ∂D)) ∼= π1(Yn) = Bn.

This allows one to interpret the action of the braid group on free groups
as a monodromy action.

Remark 1.50. The proof of Theorem 1.49 usually involves proving another
interesting result: Diff+(Dn, ∂D) is contractible, namely, any diffeomor-
phism in Diff+(Dn, ∂D) is isotopic to the identity map 11D.

The previous Remark implies the following.

166



Braid Monodromy of Algebraic Curves

Proposition 1.51. The set Diff+(Dn, ∂D) is naturally in bĳection with
the set of trivializations along [0, 1] of locally trivial fibrations of fiber
D \ Zn.

Note that the trivializations are nothing but the isotopy that joins a
diffeomorphism and the identity.

Using Proposition 1.51 and Theorem 1.49 one can consider the action,
via monodromy, of a braid in Bn on π1(D \ Zn) = Fn = Zg1 ∗ ... ∗ Zgn.

It is an interesting exercise to convince oneself that the monodromy
action of a standard basis σ1, . . . , σn−1 on g1 . . . , gn is given as follows:

gσij =


gi+1 j = i

gi+1gig
−1
i+1 j = i+ 1

gi otherwise.
(1.5)

This is basically a consequence of Example 1.48 and Figure 1.8.

Remark 1.52. Since (gn · ... ·g1) = ∂D, note that one obtains (gn · ... ·g1)σ =
(gn · ... · g1).

Example 1.53. Consider π : X = D∗ × D \ {y2 − xk = 0} → M = D∗,
where D is the disk centered at 0 of radius 2, defined by (x, y) 7→ x. Note
that π is a proper submersion, and hence a locally trivial fibration by the
Ehresmann Fibration Theorem 1.24.

Since π1(M) = Z (Example 1.16), in order to calculate the monodromy
action of the base, it is enough to compute the braid produced by the path
γ(λ) = exp(2π

√
−1λ), which generates π1(M, 1). Note that π−1(γ(λ)) =

{(exp(2π
√
−1λ), exp(π

√
−1λk))}. The braid (exp(π

√
−1λk), λ) is depicted

in Figure 1.9 and it can be described as σk1 .

Therefore,

gγ1 = g
σk1
1 =

{
(g2g1)

k
2 g1(g2g1)−

k
2 if k even

(g2g1)
k−1

2 g2(g2g1)−
k−1

2 if k odd,

and
gγ2 = g

σk1
2 = g

σk+1
1

1 .
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1

√
−1

γ

λ = 1
k

λ = 0

λ = 1

Figure 1.9. Braid monodromy of {y2 − xk = 0}

Example 1.54. Another interesting example is the monodromy of the fi-
bration π : X = D∗ × D \ {yk = x} → M = D∗. Following Example 1.53
one obtains

which corresponds to the braid σ := σ1σ2 · · ·σk−1. Note that

gi = gσi =
{
gk i = 1
g−1
k gi−1gk i 6= 1.

(1.6)

Example 1.55. Based on Example 1.54 one can generalize this construction
to study the monodromy of the fibration π : X = D∗ × D \ {yq = xp} →
M = D∗. It is easy to see that such monodromy is nothing but p times the
monodromy of π : X = D∗ ×D \ {yq = x} →M = D∗, which corresponds
to the braid (σ1σ2 · · ·σq−1)p. In particular, one can recuperate the result
given in Example 1.53 for q = 2, p = k.
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1.7. Zariski Theorem of Lefschetz Type
From the previous sections one fact seems to be worth stressing:

In order to understand coverings of M ramified along D
one needs to study π1(M \B).

How to compute the fundamental group π1(M \B) of a quasi-projective
variety? The following crucial result, known as the Zariski Theorem of
Lefschetz Type (cf. [38, 33]) states that it is enough to understand com-
plements of curves on surfaces.

Theorem 1.56 (Hamm, Goreski-MacPherson). Let M ⊂ Pn be a closed
subvariety which is locally a complete intersection of dimension m. Let A
be a Whitney stratification of M and consider B ⊂ Pn another subvariety
such that B ∩ M is a union of strata of A. Consider H a hyperplane
transversal to A in M \B, then the inclusion

(M \B) ∩H ↪→M \B
is an (m− 1)-homotopy equivalence.

For this reason, we will be mostly concerned about complements of pro-
jective curves in the complex plane P2. However, it is important to stress
that the general problem of computing homotopy groups of complements
to singular varieties and relating them to other invariants of the comple-
ment is a very interesting question in and of its own (see [65, 51, 52]).

2. Zariski–van Kampen Method

The Zariski–van Kampen method allows us to give a finite presentation
for the fundamental group of the complement to a projective plane curve.
Originally sketched by Zariski [76] and later completed by van Kam-
pen [42]. Later on, D. Chéniot [16] gave a modern approach to this method.
The method is constructive and in some cases it is even effective, i.e. it has
been implemented in the case of line arrangements, curves with easy sin-
gularities and equations on the Gaussian integers Z[

√
−1] (see [14, 11]). A

very nice approach to this method can be found in the unpublished notes
written by I.Shimada in [73].

We will put together several ingredients, among which, the van Kampen
Theorem is key.
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2.1. Fundamental Group of the Total Space of a Locally Triv-
ial Fibration

Let π : X → M be a locally trivial fibration with section s : M → X.
Consider p ∈M and x0 ∈ Fp.

Theorem 2.1. π1(X,x0) = π1(Fp, x0) o π1(M,p), where the action of
π1(M,p) on π1(Fp, x0) is given by the monodromy of π.

Proof. First of all note that the existence of a section implies that
π∗ ◦ s∗ : πi(M) s∗→ πi(X) π∗→ πi(M)

is the identity, and hence πi(M) s∗→ πi(X) is surjective. Therefore, the
homotopy exact sequence of the fibration becomes:

1→ πi(Fp)
i∗→ πi(X)

s∗x→
π∗
πi(M)→ 1

for any i ∈ N. In particular, we are interested in i = 1. Since πi(X) π∗→ πi(M)
splits, πi(X) endows a semi-direct product structure, that is, π1(M) =
{(γ, α) | γ ∈ πi(M), α ∈ πi(Fp)} as a set (where (γ, α) is nothing but
s∗(γ)i∗(α)) and the product structure is given by

(γ1, α1) · (γ2, α2) = s∗(γ1)i∗(α1)s∗(γ2)i∗(α2) =
= s∗(γ1)s∗(γ2)s∗(γ2)−1i∗(α1)s∗(γ2)i∗(α2) =

= (γ1γ2, s∗(γ2)−1α1s∗(γ2)α2).

By Remark 1.45, s∗(γ2)−1α1s∗(γ2) = αγ2
1 , thus

(γ1, α1) · (γ2, α2) = (γ1γ2, α
γ2
1 α2)

is given by the monodromy action of π1(M) on π1(Fp). �

Besides Proposition 1.34, we need another basic result on meridians.

Proposition 2.2. Let B ⊂M be an irreducible hypersurface in M , then
the inclusion M \ B ↪→ M induces a surjective morphism π1(M \ B) →
π1(M), whose kernel is 〈γ〉, the normal subgroup of π1(M \B) generated
by a meridian of B.

Proof. Basically, if α ∈ π1(M \ B) is such that i∗(α) = 1, then α is the
boundary of a disk, say D, in M . Since B is a hypersurface and D is
compact, then (after pushing D in general position) the intersection D∩B
is a finite number of points b1, . . . , bn (see Figure 2.1).
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q0

B

γ̃ = ∂D

αi

γ′i bi

b′i

Figure 2.1. Kernel

Note that n ≥ 1 or else D ⊂ M \ B and hence γ̃ = 1 in π1(M \ B).
Consider disks D1, . . . ,Dn on D such that Di ∩ B = {bi} and paths αi
from q0 to b′i ∈ ∂D = γi (i = 1, . . . , n) such that γ =

∏n
i=1 αi · γ

εi
i · α−1,

where εi = ±1. Note that γ′i = αi · γi · α−1 is a meridian around B, and
hence, by Proposition 1.34 γ′i ∈ 〈γ〉, which implies γ̃ ∈ 〈γ〉. �

2.2. Zariski–van Kampen Theorem
Let C ⊂ P2 be a projective plane curve given as the zeroes of a reduced
homogeneous polynomial f ∈ C [X,Y, Z] of degree d. After a suitable
change of coordinates one can assume P = [0 : 1 : 0] ∈ P2 \C and thus one
can consider the projection π : P2 \ {P} → P1 from P . Note that, for any
point z = [x0 : z0] the preimage π|C consists of a finite number of points,
precisely the roots of the one-variable polynomial f(x0, t, z0).

Lemma 2.3. If P /∈ C, then f(x0, t, z0) ∈ C [t] has degree exactly d.

Proof. One can write f(X,Y, Z) = aY d + Xf1(X,Y, Z) + Zf2(X,Y, Z),
where degY fi < d, i = 1, 2. By hypothesis, f(P ) = f(0, 1, 0) = a 6= 0,
therefore f(x0, t, z0) = atd+x0f1(x0, t, z0) + z0f2(x0, t, z0) has degree d as
a polynomial in C [t]. �

This implies that π|C is a branched cover of P1 of degree d ramified
on ∆ := {[x0 : z0] ∈ P1 | ∂tf(x0, t, z0) = f(x0, t, z0) = 0}, that is, ∆ =
{DiscrimY (f) = 0}. In other words, π|C ramifies along those points of P1

whose vertical lines above them intersect C in less than d distinct points
(see Figure 2.2).
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qn qn−1 · · · q2 q1

Ln Ln−1 · · · L2 L1

Figure 2.2. The projection from P

Let L := L1∪· · ·∪Ln be the union of the non-generic vertical lines, that
is, L := π−1(∆). Even though π is a locally trivial fibration, there are two
problems: first of all it is not so obvious since all the fibers are very close
to P and second of all, the fiber is NOT π−1([x0 : z0]) ∼= P1\{P}. We would
like to separate the fibers. In order to do so one can construct another
complex space X from P2 by replacing P by the P1 of lines passing through
P . In other words, each line Lq := π−1([x0 : z0]) will be compactified
not by adding P , but by adding a point Pq. Algebraically this can be
done as follows. Consider UY = {[X : Y : Z] | Y 6= 0} an affine chart
of P2 containing P and define the following map ε : ŨY → UY , where
ŨY = {[X : Y : Z]× [u : v] ∈ UY ×P1 | uZ = vX}, given by the projection
onto the first component ε([X : Y : Z], [u : v]) = [X : Y : Z]. Note that

ε−1([x0 : 1 : z0]) =
{

([x0 : 1 : z0], [z0 : x0]) if x0z0 6= 0
([0 : 1 : 0], [u : v]) =: E ∼= P1 if x0 = z0 = 0.

(2.1)
and hence ŨY \ E ∼= UY \ {P}. Since the other standard affine charts
of P2 do not contain P , namely P /∈ UX := {[X : Y : Z] | X 6= 0},
P /∈ UZ := {[X : Y : Z] | Z 6= 0}, one can glue the charts ŨY , UX , and
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UZ using the same transition functions as for UY , UX , and UZ . This way
one defines the manifold X.

Now π̃ = π ◦ ε can be extended to X as follows

π̃(P̃ ) =
{

[v : u] if P̃ = ([X : Y : Z], [u : v]) ∈ ŨY
[x0 : z0] if P = [x0 : 0 : z0].

According to (2.1) one can check that π̃|X\E = π|P2\{P}. Moreover, if
L̃q := π̃−1([x0 : z0]), q = [x0, z0], then

L̃q ∩ ŨY = {([tx0 : s : tz0], [z0 : x0]) | [t : s] ∈ P1, s 6= 0}
L̃q ∩ UX = L̃q ∩ UZ = {[tx0 : s : tz0] | [t : s] ∈ P1, t 6= 0}

Hence Lq ∪ {P̃q := ([0 : 1 : 0], [z0 : x0])} and L̃q ∼= P1.
Define C̃ := ε−1(C), L̃ := ε−1(L) the preimages of C and L, respectively,

by the blow-up. Note that C̃ ∼= C by the above discussion, since P /∈ C.
Also, note that π̃|C̃ is a branched cover and π̃|(C̃∪L̃) is an unbranched cover.

Finally, π̃ is a proper submersion, and hence (by the Ehresmann’s Fibra-
tion Theorem 1.24) a locally trivial fibration of fiber L̃q ∼= P1. Moreover,
since C̃ is compact, using once again Theorem 1.24, π̃|X\(C̃∪L̃) is also a
locally trivial fibration of fiber P1 \ Zd, where Zd is a union of d distinct
points.

Summarizing:

Proposition 2.4. The map π̃ : X \ (C̃ ∪ L̃) → P1 \∆ is a locally trivial
fibration of fiber F := P1\Zd. Moreover, π1(X \(C̃ ∪L̃)) = π1(P2\(C∪L)).

Proof. The first part is a consequence of the discussion above. For the sec-
ond part, note that the map ε induces a morphism π1(X\(C̃∪L̃)) ε∗→ π1(P2\
(C ∪ L)). Let us show that ε∗ is an isomorphism. Note that any class in
π1(P2 \ (C ∪L)) can be described by a closed path γ avoiding P (since we
can restrict ourselves to piecewise smooth representatives as mentioned in
Remark 1.1) as shown in Figure 2.3.

Since X\(E∪C̃∪L̃)
ε∼= P2\({P}∪C∪L), there exists γ̃ ∈ π1(X\(E∪C̃∪L̃))

such that ε∗(γ̃) = γ, which shows that ε∗ is surjective. Analogously, ε∗(γ̃)
is trivial in π1(P2 \ (C ∪ L)) for some γ̃ ∈ π1(X \ (C̃ ∪ L̃)) if ε∗(γ̃) = ∂D
for a certain disk in P2 \ (C ∪L). As above, if D intersects P , one can find
a homotopic representative avoiding P , that is, D ⊂ P2 \ ({P} ∪ C ∪ L).
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P P

γ γ

Figure 2.3. Avoiding a zero-dimensional subset

Again, since X \ (E ∪ C̃ ∪ L̃)
ε∼= P2 \ ({P} ∪ C ∪ L), there exists D̃ ⊂

X \ (E ∪ C̃ ∪ L̃) such that ε(D̃) = D and ∂D̃ = γ̃, which shows that γ̃ is
trivial in π1(X \ (E ∪ C̃ ∪ L̃)) and hence in π1(X \ (C̃ ∪ L̃)). This shows
that ε∗ is injective. �

As shown in Figure 2.4, one can choose g1, . . . , gd ∈ π1(F ) meridians
around Zd such that gd · · · g1 = 1, that is,

π1(F ) = 〈g1, . . . , gd : gd · · · g1 = 1〉
(see Example 1.17). Analogously, let us denote by γ1, . . . , γn ∈ π1(P1 \∆)
meridians around ∆ such that γn · · · γ1 = 1, that is,

π1(P1 \∆) = 〈γ1, . . . , γn : γn · · · γ1 = 1〉 = 〈γ1, . . . , γn−1〉.

γn γn−1 · · · γ2 γ1

x0

z0

g1

...
g2

gd

Figure 2.4. Choices of meridians
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Under these conditions one has the following.

Proposition 2.5. The group π1(P2 \ (C ∪ L)) is generated by g1, . . . , gd,
γ1, . . . , γn and a finite set of defining relations is given by:
γn · · · γ1 = 1, gd · · · g1 = 1 and gγji = γ−1

j giγj , for j = 1, . . . , n− 1.

Proof. It is an immediate consequence of Theorem 2.1 and Proposition 2.4.
For the sake of simplicity, note that we have replaced s∗(γj) simply by γj .
The relations coming from the monodromy should read

g
γj
i = s∗(γj)−1gis∗(γj)

to be precise. �

Finally, one can give a presentation of π1(P2 \ C) as follows.

Theorem 2.6 (Zariski–van Kampen Theorem). Let C ⊂ P2 be a curve
and gi, γj meridians as constructed above. Then

〈g1, . . . , gd : gd · · · g1 = 1, gγji = gi, j = 1, . . . , n− 1〉

is a finite presentation of π1(P2 \ C).

Proof. After using Proposition 2.2 for each irreducible component of L,
one obtains the following

π1(P2 \ C) =
〈g1, . . . , gd, γ1, . . . , γn−1 : gd · · · g1 = 1, gγji = γ−1

j giγj〉/〈γ1, . . . , γn−1〉
= 〈g1, . . . , gd : gd · · · g1 = 1, gγji = gi〉.

�

Remark 2.7. This is a first approach to a very fruitful combination of
methods, which appears in several instances in singularity theory. For
instance, a similar idea can be applied to higher homotopy groups as
nicely presented by Chéniot-Libgober in [17].

As an immediate application of this Theorem one has the following.

Corollary 2.8. Let C = C1∪...∪Cr the decomposition of C in its irreducible
components, then

H1(P2 \ C) = Zr−1 ⊕ Z/τ,
where di := deg C and τ is the greatest common divisor of d1, . . . , dr.
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Proof. We will use the fact that H1(X) = π1(X)/[π1(X), π1(X)], that is,
the first homology group H1(X) of a topological space X is the abelianiza-
tion of π1(X) its fundamental group (see for instance [58, Lemma 11.69.3]).

First of all, by Proposition 1.34, we know that H1(P2 \ C) is a quotient
of Zr, since π1(P2 \C) is generated by meridians of the irreducible compo-
nents of C and any two meridians of the same irreducible component are
conjugated.

Finally, and this is the key here, Theorem 2.6 specifies that the quotient
of Zr mentioned above comes from abelianizing the relations gd · · · g1 = 1,
g
γj
i = gi, j = 1, . . . , n−1. By construction of the monodromy, the element
g
γj
i is a meridian around the same irreducible component as gi, hence these

relations are trivial in H1. The only relation left is gd · · · g1 = 1. Note that
in the set {g1, . . . , gd} there are exactly di meridians of the component Ci,
hence, after abelianizing, gd · · · g1 = 1 becomes

d1m1 + · · ·+ drmr = 0, (2.2)
where m1, . . . ,mr represent cycles around the component C1, . . . , Cr re-
spectively. Therefore

H1(P2 \ C) = Zm1 ⊕ · · · ⊕ Zmr
d1m1 + · · ·+ drmr

,

which has rank r−1 and non-trivial torsion τ if and only if τ = (d1, ..., dr) >
1. �

Remark 2.9. The projection π used for the Zariski–van Kampen method
as presented here is only required to be performed from a point P /∈ C.
Originally, π was asked to be generic in the following sense:

(1) Any line L through P contains at most one singular point of C or
one tangency,

(2) no lines through P are higher order tangents at a smooth point of
C, and

(3) any line L through P that intersects C at a singular point Q sat-
isfies that multQ(C) = multQ(L, C).

Geometrically, this means that the following cases are avoided in the lo-
cally trivial fibration π:
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Figure 2.5. Non-generic projections

Obviously, one can always chose P so that π is generic, since the set of
higher order tangencies at C, lines containing more that one singular point,
bitangencies, and lines in the tangent cone of a singularity of C is finite,
so P can be chosen outside this set and C.

The following, very natural, result assures that if two curves can be joint
by a smooth path of equisingular curves, then their fundamental groups
are isomorphic (see [14] for a proof).

Proposition 2.10. All curves in the same connected family of equisingu-
lar curves are isotopic.

One also has results on how the fundamental group of a family of equi-
singular curves changes when degenerating onto other curves outside the
equisingular locus.

Proposition 2.11 ([25]). Let {Ct}t∈(0,1] be a continuous family of equi-
singular curves degenerating onto the reduced curve C0. Then there is a
natural epimorphism

π1(P2 \ C0)→ π1(P2 \ Ct).

In particular,

Corollary 2.12. If C can be continuously degenerated onto a curve with
abelian fundamental group, then π1(P2 \ C) is abelian as well.

Other interesting degeneration results can be found in [5].
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2.3. Basic examples

2.3.1. The fundamental group of smooth and nodal curves

First, we will compute the fundamental group of the curve

C := {F (X,Y, Z) = Xd + Y d − Zd = 0}

using the Zariski–van Kampen method described above.

(1) Choose a point P = [0 : 1 : 0] /∈ C and project from P .

(2) The projection π : P2\C → P1 ramifies along ∆ := {F = Xd+Y d−
Zd = FY = dY d−1 = 0} = {[ξid : 0 : 1] | ξ = exp

(
2π
√
−1
d

)
}. After

blowing up, the projection π̃|π̃−1(P1\∆) is a locally trivial fibration
of fiber P1 \ Zd. Note that this projection is highly not generic,
since each non-generic fiber, say L̃i = π̃−1([ξid : 1]), intersects C̃
only at [ξid : 0 : 1], that is, L̃i is a tangent of C̃ of order d.

(3) Fix a base point on the base, say [0 : 1].

(4) π1(P1 \∆) = 〈γ1, . . . , γd : γd · · · γ1 = 1〉, where γi is a meridian of
ξid based at 0.

ξid

0γi

(5) Choose a basis on the fiber L0 := π̃−1([0 : 1]).
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(6) In order to compute the monodromy along γi, one can decompose
γi = αi ·γ′i ·α

−1
i where αi is the straight path joining 0 and a point

close to ξid and γ′i is a loop around ξid. Note that the monodromy
along αi only produces a contraction of the points on the fiber.

(7) The monodromy along γ′i is given in Example 1.54 as σ1 · · ·σd−1
(independently of i).

(8) From (1.6) one obtains:

gi = g
(σ1σ2···σd−1)
i =

{
gd i = 1
g−1
d gi−1gd i 6= 1,

hence g2 = g−1
d g1gd = g1, and by induction g1 = ... = gd = g.

Finally, g1 · · · gd = 1 becomes gd = 1. Therefore,
π1(P2 \ C) = 〈g : gd = 1〉 = Z/dZ. (2.3)

Note that all necessary relations are obtained by the monodromy action
of any meridian γi. This can be further improved.

Theorem 2.13. If C is an irreducible curve with a maximal order tangent,
that is, if there exists a line L such that L ∩ C = {Q}, then π1(P2 \ C) is
abelian.

Proof. Consider P ∈ L, P 6= Q and project from P . Since L becomes
a non-generic fiber of the projection, one can fix a base point x0 on P1

sufficiently close to the projection of L, say z1. The monodromy around
z1 is given as in Example 1.54. The computation above shows that the
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relations obtained from this monodromy are enough to verify that π1(P2 \
C) is abelian. �

Another application of the computations above.

Theorem 2.14. If C is a smooth curve of degree d, then π1(P2\C) = Z/dZ.

Proof. The family of smooth curves of degree d is a quasi-projective variety
in the projective space PN of dimension N =

(d−2
2
)
, where N + 1 is the

number of coefficients of a generic homogeneous polynomial of degree d in
C [X,Y, Z]. Therefore it is path connected, and, by Proposition 2.10, it is
enough to compute the fundamental group of a particular smooth curve
of degree d. The curve C defined above is smooth since

Sing C = {[X : Y : Z] ∈ P2 | FX = FY = FZ = 0} =
= {[X : Y : Z] ∈ P2 | Xd−1 = Y d−1 = Zd−1 = 0} =

= {[X : Y : Z] ∈ P2 | X = Y = Z = 0} = ∅.

Hence (2.3) gives the required fundamental group. �

The simplest singularities a curve can have are nodes (aka. ordinary
double points), that is, singular points that admit local equations of the
form x2 + y2, where x and y are generators of the local ring OP2,P . Note
that x2+y2 is equivalent to x2−y2 = (x−y)(x+y) by a complex change of
coordinates. In other words, a node locally looks like a product of smooth
transversal branches (locally meaning inside a neighborhood of the point,
as shown below).

A more general result regarding nodal curves was already given by
Zariski [76, Theorem 7].

Theorem 2.15 (Zariski, Fulton, Deligne, Salvetti). Any nodal curve has
an abelian fundamental group.
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Remark 2.16. As in our proof of Theorem 2.14 Zariski’s proof of The-
orem 2.15 depended on the irreducibility of the moduli spaces of nodal
curves (there are different strata depending on the number and degrees
of irreducible components). Such result had been claimed by Severi [72,
Anhang F], and hence the proof given by Zariski was completed. However,
later on, a gap was found in Severi’s proof and hence Zariski’s result was
not complete anymore. Severi’s assertion became Severi’s problem and
the original result by Zariski turned into the Zariski conjecture on nodal
curves and they remained open until 1980, when Fulton [32] first and then
Deligne [24] proved the Zariski conjecture on nodal curves (giving alge-
braic and topological proofs respectively) without using Severi’s result.
Finally, in 1986, J. Harris [39] solve the Severi problem. For a further
study of such problems see [63, 74, 34, 35, 36] among others.

One can also find more recent proofs of this result by means of mon-
odromy computations (see M.Salvetti [68]).

Also, generalizations of this result have been proved by M.V.Nori in [61].

The same ideas in Deligne’s proof lead to the following result.

Proposition 2.17. If C1 and C2 are two curves intersecting transversally
(only in ordinary double points), then

π1(P2 \ (L ∪ C1 ∪ C2)) = π1(P2 \ (L ∪ C1))⊕ π1(P2 \ (L ∪ C2)),
where L is a line tranversal C1 ∪ C2.

2.3.2. Further examples

By the previous sections we know how to compute fundamental groups of
all curves of degrees one, two, and three:

(1) Degree one: π1(P2 \ L) = {1} (since L is smooth and of degree
one).

(2) Degree two:
(a) π1(P2 \ (L1 ∪ L2)) = Z, where Li is a line (L1L2 is a nodal

curve union of two smooth curves of degree one).
(b) π1(P2 \ Q) = Z2, where Q is a conic (smooth curve of degree

two).

(3) Degree three:
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(a) π1(P2 \ (L1 ∪ L2 ∪ L3)) = Z2, where Li, i = 1, 2, 3, are lines
in general position (L1L2L3 is a nodal curve union of three
smooth curves of degree one).

(b) π1(P2 \ (L1 ∪ L2 ∪ L3)) = Z ∗ Z, where Li, i = 1, 2, 3, are
concurrent lines.

Proof. Projecting from a point outside the lines one realizes
that there is only one special fiber. Since Theorem 2.6 involves
the monodromy action of all meridians but one, then there are
no relations coming from monodromy, that is, π1(P2 \ (L1 ∪
L2 ∪ L3)) = 〈g1, g2, g3 : g3g2g1 = 1〉 = Z ∗ Z. �

(c) π1(P2 \ (Q ∪ L)) = Z, where Q is a conic and L is a line
transversal to Q.

(d) π1(P2 \ (Q ∪ L)) = Z, where Q is a conic and L is a tangent
line to Q.

Proof. Projecting from a point P on L one realizes that there
are two special fibers: L and L′ both tangent lines to Q
through P . Consider γ a meridian around the projection of L.
Note that the monodromy induced by γ is the only necessary
to obtain the required presentation. By Proposition 2.5 one
obtains the following π1(P2 \ (Q ∪ L)) = 〈g1, g2, γ : g2g1 =
1, gγ1 = γ−1g1γ, g

γ
2 = γ−1g2γ〉. Since gγ1 = g2, g2 = g2g1g

−1
2 by

Example 1.54, one obtains the required result. �

(e) π1(P2 \ C3) = Z3, where C3 is a smooth, nodal, or cuspidal
cubic.

Proof. Since C3 has an inflection point, one simply applies
Theorem 2.13. �

Probably the easiest example of non-abelian fundamental group of an
irreducible quartic (i.e. a curve of degree four) is the three-cuspidal quar-
tic. Zariski [78] showed this in a more general setting using a brilliant
argument. Let us sketch the proof.

Theorem 2.18. Let C be a (rational) curve of degree 2d, with 2(d−1)(d−
2) nodes and 3(d−1) cusps. Then π1(P2\C) = Bd+1(P1) (see Example 1.5).

Proof. Such curves are generic plane sections of the space ∆̄d+1 of homo-
geneous polynomials of degree d+ 1 in two variables with multiple roots,
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described in Example 1.5. The reason is the following: a plane in the space
Ȳd+1 of homogeneous polynomials of degree d+ 1 in two variables is noth-
ing but a family of polynomials E := {λ0f0 + λ1f1 + λ2f2 | [λ0 : λ1 :
λ2] ∈ P2}. Note that a polynomial λ0f0 + λ1f1 + λ2f2 ∈ E has multiple
roots if the line λ0X + λ1Y + λ2Z = 0 intersects the parametrized curve
F := [f0(s, t) : f1(s, t) : f2(s, t)] ⊂ P2 at a tangent. Note that F has
degree d + 1. In fact it is a (rational) curve with d(d−1)

2 nodes. Therefore
E ∩ ∆̄d+1 is exactly the dual of F , say F̌ , which has to have degree 2d,
2(d− 1)(d− 2) nodes and 3(d− 1) cusps.

Hence, using Zariski Theorem of Lefschetz Type 1.56, π1(E \ F̌ ) =
π1(Ȳn) = Bd+1(P1). �

Corollary 2.19 (Zariski [78]). Let C be an irreducible tricuspidal quartic.
Then

π1(P2 \ C) = 〈g1, g2 : g1g2g1 = g2g1g2, g2g
2
1g1 = 1〉.

This type of result has been generalized to the study of complements
of discriminant varieties by Dolgachev-Libgober in [26].

2.4. Braid monodromy of curves: local versus global
When computing the monodromy action of the locally trivial fibration
π : X → P1 \∆ constructed in the Zariski–van Kampen method one needs
a collection of meridians around the points in ∆. We recall that a meridian
γ around z ∈ ∆ can be decomposed as γ = ω · γz · ω−1, where ω is a path
joining the base point z0 and a point z′ near z, and γz is the boundary of
a disk centered at z (see Definition 1.33).

The action of γ on π1(F, s∗(x0)) will also be decomposed as the action
of γz on π1(F, s∗(z′)) and the action of ω on π1(F, s∗(x0), s∗(z′)). The first
one will be called the local monodromy at z and the second one will be
called the global monodromy at z.

The local monodromy is completely determined by the local topological
type of the curve on the points on the fiber (see Examples 1.53, 1.55,
and 1.54). For instance, the Puiseux expansion at each singular point on
the fiber determines the local monodromy.

However, the global monodromy depends on the position of singularities
and, in general, it depends on the global geometry of the curve. Whether
or not there is a finite set of global data on the curve that determines the
global monodromy is still unknown.
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In the previous sections only examples were presented where the local
monodromy information was enough to give the monodromy action, but
this is far from being the case in general. The following example will
hopefully depict the general situation.
Example 2.20. Consider the following quartic, which is a union of two
smooth conics intersecting at one point:

When projecting from [0 : 1 : 0] there are five special fibers

After choosing a base point we can start computing the braid mon-
odromy as follows:

The tangency and the high order tacnode can basically be obtained
directly from the local monodromy, since the global monodromy is trivial
(the base point is close enough to both special fibers).
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The tangency can be computed directly from Example 1.54 as σ2 and the
tacnode, whose local equation is y2 = x8, that is two smooth branches
with multiplicity of intersection 4, can be obtained from Example 1.53
as σ8

1.
However, the remaining braids depend on global monodromy for two

different reasons:

• the left-most tangency depends on global monodromy basically
due to the fact that the branches from the small conic become com-
plex conjugated and intertwine with the branches of the big conic
as one approaches the tangency obtaining the following braid.

that is, σ−1
3 σ−1

1 σ2σ1σ3.
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• the tangent immediately to the right of the tacnode also depends
on global monodromy, even though all the branches remain real.
The reason in this case is that the approaching path ω consists of
half a turn around the tacnode. The braid becomes σ4

1 · σ2 · σ−4
1 .

• the right-most tangent also depends on global monodromy for both
reasons, one has to avoid the branching values by performing half
turns and also the real branches become complex conjugated at
some point. However, since one only needs to compute all the
monodromy actions but one, this one can be disregarded.

Finally, straightforward computations give the following:

(r1) g1 = g
σ8

1
1 = (g2g1)4g1(g2g1)−4 ⇒[(g2g1)4, g1] = 1

g2 = g
σ8

1
2 = (g2g1)4g2(g2g1)−4 ⇒[(g2g1)4, g2] = 1

g3 = g
σ8

1
3 = g3

g4 = g
σ8

1
4 = g4

(r2) g1 = gσ2
1 = g1

g2 = gσ2
2 = g3 ⇒g2 = g3

g3 = gσ2
3 = g3g2g

−1
3 ⇒g2 = g3

g4 = gσ2
4 = g4

(r3) g1 = g
(σ−1

3 σ
−1
1 σ2σ1σ3)

1 = g−1
2 g4g2 ⇒g4 = g2g1g

−1
2

g2 = g
(σ−1

3 σ
−1
1 σ2σ1σ3)

2 = g2

g3 = g
(σ−1

3 σ
−1
1 σ2σ1σ3)

3 = g3

g4 = g
(σ−1

3 σ
−1
1 σ2σ1σ3)

4 = g4g2g1g
−1
2 g−1

4 ⇒g4 = g2g1g
−1
2

186



Braid Monodromy of Algebraic Curves

(r5) g1 = g
(σ4

1σ2σ
−4
1 )

1 = (g3(g2g1)−2(g1g2)2g1g3(g2g1)−2) ∗ g1

(r6) g2 = g
(σ4

1σ2σ
−4
1 )

2 = (g3(g2g1)−2(g1g2)2g1g3(g2g1)−2(g1g2)2g1) ∗ g3

(r7) g3 = g
(σ4

1σ2σ
−4
1 )

3 = g−1
1 g−1

2 g−1
1 g2g1g2g1

g4 = g
σ4

1σ2σ
−4
1

4 = g4, (2.4)

where w ∗ gi = wgiw
−1. Also one needs to add the relation g4g3g2g1 =

1, which, after using (r2) and (r3) becomes (r8) ≡ (g2g1g
−1
2 )g2g2g1 =

(g2g1)2 = 1.
Finally, using (r2), (r3), and (r8) one can easily check that (r1), (r5),

(r6), and (r7) become trivial. Therefore, according to the Zariski–van
Kampen Theorem 2.6

π1(P2 \ C) = 〈g1, g2 : (g2g1)2 = 1〉 = Z ∗ Z2,

which is the biggest group whose abelianized is Z⊕Z2. This result can also
be obtained from the fact that both conics generate a very special pencil
with a reduced member, the tangent line to both conics at the tacnode,
but that would be another story and it is left to the interested reader.

3. Braid Monodromy Tools

3.1. Definitions and First Properties
Let C̄ = C0∪C1∪...∪Cr, be the decomposition in irreducible components of
a projective plane curve C̄. Let us denote by di the degree of Ci and assume
C0 is a transversal line. An alternative construction similar to the Zariski–
van Kampen method occurs when studying C 2 := P2\C0, C := C̄∩C 2. The
space C 2\C retracts into a compact polydisk minus C as in the Figure 3.1.

Figure 3.1. Affine projection
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The projection onto the first coordinate outside the special fibers (see
notation from §2.2) π : Dx × Dy \ (C ∪ L) → Dx \ Zn is a locally trivial
fibration outside the fibers L whose intersection with C has less than d
points.

Definition 3.1. A set of meridians γ1, γ2, . . . , γn of a finite set on a disk
D is called a geometric basis if γnγn−1 · · · γ1 = ∂D with the positive (coun-
terclockwise) orientation.

z0
z2 z1· · ·zn

γ1
γ2

γn

D

Remark 3.2. A classical result by Artin [7] states that the set of geometric
bases is in bĳection with Diff+(D \ Zn, ∂D) ∼= Bn.

Definition 3.3. Consider µ the braid monodromy action of the funda-
mental group of the base of π relative to the section s∗(x) := (x, q0) where
q0 ∈ ∂Dy:

µ : π1(Dx \ Zn, z0) −→ Diff+(Fz0) ∼= Bd

and fix Γ := (γ1, ..., γn) a geometric basis of π1(Dx \ Zn, z0). The list of
braids (µ(γ1), ..., µ(γn)) ∈ Bnd is called the Braid Monodromy Representa-
tion of C relative to (π,Γ, z0, s∗).

Remark 3.4. Due to the fact that any projective plane curve (outside its
singular points) is an oriented Riemann surface, the braids obtained in
any braid monodromy representation are quasi-positive, that is, they are
conjugate of positive braids (braids that can be written as products of
positive powers of the standard generators σi).

Moreover, the braids that appear in any braid monodromy represen-
tation are called algebraic braids because they can be realized as local
monodromy of an algebraic function.
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Our purpose is to construct an invariant of the projection π. In order
to do so, we need to understand the different braid monodromy repre-
sentations of C relative to (π,Γ, z0, s∗) for the different choices of Γ, z0,
and s∗.

(1) Choice of geometric basis of Dx \ Zn. Let Γ = (γ1, . . . , γn) and
Γ′ = (γ′1, . . . , γ′n) two geometric bases. By Remark 3.2, there exists
a braid β ∈ Bn such that Γ′ = Γβ. This action is given as shown
in (1.5), that is,

(γ1, . . . , γi−1, γi, γi+1, . . . , γn)σi = (γ1, . . . , γi−1, γ
−1
i γi+1γi, γi, . . . , γn).

Therefore, the action of Bn on Γ naturally turns into an action on
the monodromy representations associated with Γ.

(2) Choice of section, or analogously, choice of base point q0 ∈ {z0}×
Dy = Fz0 . This produces, as mentioned in Remark 1.2, an inner
automorphism, that is, a conjugation by a braid β ∈ Bd. Hence,
there is another action:

(µγ1, . . . , µγn)β = (β−1µγ1β, . . . , β
−1µγnβ).

It is a mere exercise to check that the action of Bn and Bd on the set
of geometric bases commute. This means that there is an right action of
Bn × Bd on the set of monodromy representations, which takes care of
all the possible choices of Γ, base points, and sections. Such an action is
called the Hurwitz moves of a monodromy representation. Summarizing:

Theorem 3.5. Given a monodromy representation µ of C with respect to
(π,Γ, z0). There is a one-to-one map between

{Monodromy representations of C with respect to π}
and

{ Hurwitz class of µ} .

Definition 3.6. Two monodromy representations of C are called (Hur-
witz) equivalent if they belong to the same orbit by the Hurwitz moves
described above. That is, if there exists (σ, β) ∈ Bn × Bd such that
µΓ′ = µΓ(σ,β).

The orbit of a braid monodromy representation by the action of Hurwitz
moves will be called the braid monodromy class of a curve.
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Remark 3.7. Note that µ(γn)µ(γn−1) · · ·µ(γ2)µ(γ1) = µ(∂Dx), Since ∂D
can be seen as a meridian of the point at infinity of C , that is, the pro-
jection of the line C0. The condition that C0 is transversal to C implies
that µ∂D = ∆2

d = (σ1 · · ·σd−1)d, the Garside element of Bd, generator of
its center. Thus, µ(γn)µ(γn−1) · · ·µ(γ2)µ(γ1) = ∆2

d = (σ1 · · ·σd−1)d. This
is another way to present a monodromy representation. This is usually
known as a Braid Monodromy Factorization.

Many questions are still open regarding braid monodromy factorizations
of algebraic curves. We mention just a few:
Question 3.1.1. Which (algebraic) factorizations are realizable in the
algebraic category? This problem was solved in a bigger category called
Hurwitz category by B. Moishezon [56].

The braid monodromy factorization of a smooth curve is a product
of conjugates of the standard generators σi. Any two such products are
Hurwitz equivalent [10, Corollary 3.5], therefore, by Theorem 3.5 the re-
alization problem is solved for the smooth case.

One can also find interesting local versions of the realization prob-
lem [62].

So far we have proved (Zariski–van Kampen Theorem 2.6) that the
braid monodromy representation of a curve determines the fundamental
group of its complement. In fact it is much stronger than that, as shows
the following result, which has been proved by Kulikov-Teicher in [48] for
cuspidal curves and by Carmona [14] in full generality.
Theorem 3.8. The braid monodromy class of C fully determines the topol-
ogy of the pair (P2, C). In other words, if two curves C1 and C2 have the
same braid monodromy class, then there is a homeomorphism ϕ : P2 → P2

such that ϕ(C1) = C2.
The converse is not known in general, basically because the homeomor-

phism ϕ : P2 → P2 may not send lines to lines. Therefore, the pencil
of lines through P , which determines the braid monodromy of C1 is not
preserved by ϕ. There are some partial positive converses:
Theorem 3.9 (Carmona [14]). The pair (P2, C) fully determines the braid
monodromy class of C with respect to a projection.

Another partial result in this direction is the following. Let C1 and C2
be two curves and L1, L2 be lines such that the affine curves Ci ∪ L1 ⊂
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C 2 := P2\Li have no vertical asymptotes. Consider L1 and L2 the union of
vertical lines as described in §2.2 and ϕ : (P2, C1,L1, L1)→ (P2, C2,L2, L2)
a homeomorphism, then one has the following:

Theorem 3.10 (Artal, Carmona,- [2]). The braid monodromy factoriza-
tion of C1 from a point P ∈ L1 is Hurwitz equivalent to the braid mon-
odromy representation of C2 from ϕ(P ) ∈ L2.

In a different direction, there is also a negative converse to Theorem 3.8.

Theorem 3.11 (Kharlamov-Kulikov [43]). There are two sequences of
plane irreducible cuspidal curves, Cm,1 and Cm,2, m ≥ 5, such that the
pairs (C 2, Cm,1) and (C 2, Cm,2) are diffeomorphic, but Cm,1 and Cm,2 are
not isotopic and have different braid monodromy classes.

Obviously, the diffeomorphisms cannot be extended to P2, otherwise
the hypothesis in Theorem 3.10 would hold and the braid monodromy
representations would be equivalent.

3.2. The Homotopy Type of (C 2, C)
Let us consider the affine curve scenario as described at the beginning
of §3.1, that is, C̄ = C0 ∪ C1 ∪ ... ∪ Cr, where C0 is a transversal line,
di = deg Ci, and d := deg C − 1. C 2 := P2 \ C0, C := C̄ ∩ C 2. Consider
π : Dx × Dy \ C → Dx \ Zn generic, where Dx is big enough to contain all
the critical values Zn of the projection from C.

Let us take a closer look at the relations (2.4) in Example 2.20. Note
that, the relations derived from the tacnode σ8

1 (involving branches 1 and
2), are trivial for the generators g3 and g4. Analogously, the braid σ2
coming from the first tangency (involving branches 2 and 3) preserves
generators g1 and g4. This is a general result. To be more precise, let
γi = ω · γ′i · ω−1 be a meridian around zi ∈ Zn and let gi1 , . . . , gik denote
the meridians that approach the singular point xi over zi (see Figure 3.2)
when running along ω. The following result is well known, see [50, 57].

Proposition 3.12. Under the above hypothesis we have gγij = gj for any
j /∈ {i1, . . . , ik}.

Moreover, the relations gγij = gj, j = i1, . . . , ik − 1 imply gγiik = gik .
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γi

x0

z0

xi
...

gik(i)

gi1

Figure 3.2

Therefore, one has the following.

Theorem 3.13 (Zariski–van Kampen Theorem revisited).
〈g1, ..., gd : gγji = γ−1

j giγj , i = 1, ..., d, j = 1, ..., ik(i) − 1〉

is a presentation of π1(C 2 \ C).

This presentation will be called Zariski presentation.
Associated with a (finite) group presentation

G = 〈g1, . . . , gd : r1(ḡ) = r2(ḡ) = · · · = rn(ḡ) =〉,
one can construct a (finite) connected 2-dimensional CW-complex K as
follows.

(1) the 0-dimensional skeleton of the complex will be given by only
one 0-cell, K0 = {e0},

(2) the 1-dimensional skeleton of the complex will be in bĳection with
the set of generators, say K1 = {e1

1, . . . , e
1
d}, whose boundary will

be glued to e0, and

(3) the 1-dimensional skeleton of the complex will be in bĳection with
the set of relators, say K2 = {e2

1, . . . , e
2
n}. The identification mor-

phism is so that ∂e2
i is glued to the 1-cell ri(ē1).
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Remark 3.14. Note that the 2-dimensional CW-complex is associated with
a presentation, not with the group. However, certain transformations in
the presentation are allowed keeping the homotopy type. Such transfor-
mations are called Tietze transformations of type (I) and (II) (cf. [27]):

(I) Adding (deleting) a generator gi and a relation of the type gi =
w(g1, . . . , gi−1, gi+1, . . . , gd).

(II) Replacing a relation r = 1 by a relation r = wsw−1, where w is
any word and s = 1 is another relation.

(III) Adding (deleting) the relation 1 = 1.

Tietze transformations of type (III) change the homotopy type of the
complex since it means attaching (resp. detaching) a 2-dimensional sphere
and this increases (resp. decreases) the Euler characteristic of the complex
by one.

Theorem 3.15 (Libgober [50]). The 2-dimensional complex associated
with the Zariski presentation has the homotopy type of C 2 \ C.

Proof. The proof of this result is based on two local results.

Lemma 3.16. The 2-dimensional complex associated with the Wirtinger
presentation of a link K ⊂ S3 has the homotopy type of S3 \K.

Lemma 3.17. The 2-dimensional complex associated with the Artin pre-
sentation of a link K ⊂ S3 has the homotopy type of S3 \K.

�

Example 3.18. Let us consider the affine version of Example 2.20.

The following is a Zariski presentation (see (2.4)):

π1(C 2\C) = 〈g1, g2, g3, g4 : [(g2g1)4, g1] = 1, g2 = g3,

g2 = g3,

g4 = g2g1g
−1
2 ,

g4 = g2g1g
−1
2
〉 ≡
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≡ 〈g1, g2 : [(g2g1)4, g1] = 1, 1 = 1, 1 = 1〉 .

Hence, according to Theorem 3.15, C 2 \C has the same homotopy type
than (S3 \K2,8) ∨ S2 ∨ S2.

Note that both spaces obviously have the same fundamental group and
the same Euler characteristic. It is easy to check that χ(C0 ∪ C) = 1, and
hence χ(C 2 \ (C0 ∪ C)) = 2. Note that χ(S3 \K2,8) = 0.

The following is an open problem.

Question 3.2.1. Does the fundamental group and the Euler characteristic
determine the homotopy structure of complements to affine curves? That
is, given two affine curves C1 and C2 with isomorphic fundamental groups
and same Euler characteristic, are necessarily their homotopy types the
same?

Note that Question 3.2.1 has a negative answer in the general case of
2-dimensional complexes [27].

Question 3.2.2. Does Theorem 3.15 also hold for projective curves for
some preferred presentation?

3.3. Line Arrangements

Very interesting examples of curves are line arrangements. For line ar-
rangements there are algorithms to construct complexes that share the
same homotopy type as the line complement, without resorting to the
Zariski–van Kampen method. Basically the idea is that singularities of
line arrangements are all of type yk = xk and can be all found as solutions
of linear equations.

Very extensive literature has been written on this topic (see [64, 66, 8,
9, 69, 68, 31, 21, 22, 40, 30, 20] among others).

Note that, even though some of the topology of complements to line
arrangements depends on the combinatorial information of the arrange-
ment (that is, the way lines intersect each other). Combinatorics are not
enough to determine fundamental groups as stated by Rybnikov [67] (see
also [4]).
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Our focus of attention in this survey will be to describe a simple method
to obtain a braid monodromy representation of complexified real arrange-
ments, which will be later extended to other real curves and general line
arrangements.

3.3.1. Wiring Diagrams

Definition 3.19. A line arrangement L = L1 ∪ · · · ∪ Ld is called a real
line arrangement if there is a projective system of coordinates such that
L admits a real equation. If in addition, L1, . . . ,Ld admit real equations,
then L is called a strongly real line arrangement.
Remark 3.20. The definitions of real and strongly real are not consistent
throughout the literature, so doublecheck the definitions before reading a
result on real arrangements.

Note that both concepts are not equivalent, since MacLane arrangement
(see [53]) is real, but not strongly real.

The following result is immediate, but it is worth mentioning for clarity.

Lemma 3.21. Consider the affine situation of a strongly real line arrange-
ment and the vertical projection (onto the first coordinate) as in §3.1. The
following properties hold:

(1) The set of singularities of the arrangement have real coordinates,

(2) the plane R2 ⊂ C 2 is such that R2 ∩L is isomorphic to a graph Γ
with the following structure (see Figure 3.3).

−N N

d

...
2
1

d

...
2
1

Figure 3.3. Wiring Diagram
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(a) There exists a certain N > 0 such that Γ∩(−∞,−N ]×R and
Γ∩ [N,∞)×R are given by d parallel rays and Γ∩ [−N,N ] is
a union of segments and stars given as a union of segments
(the intersection point is called a singularity of Γ),

ik i1

ik−1 i2
...

...

i2 ik−1

i1 ik

Figure 3.4

(b) there are d broken lines of segments (as many as affine lines),
and

(c) each pair of broken lines intersect exactly once.
Associated with any wiring diagram Γ one can construct a finite list of

braids in Bd as follows.
Let (x1, y1), . . . , (xn, yn) denote the singular points of Γ ordered such

that x1 > · · · > xn. Denote by δ̄i := δi1, . . . , δ
i
ki

the segments intersecting
at (xi, yi). One defines βi ∈ Bd as

βi :=

i−1∏
j=1

∆δ̄j

 ∗∆2
δ̄i

where locally ∆(1,...,k) = (σ1 . . . σk−1)(σ1 · · ·σk−2)(σ1σ2)σ1 is a halftwist of
the strings (1, . . . , k). Globally, one needs to keep track of the position of
the segments δ1, . . . , δk.
Example 3.22. The braid monodromy of the wiring diagram of Figure 3.3
is given as follows:

β1 = σ2
2

β2 = (σ2) ∗ σ2
1

β3 = ((σ2)(σ1)) ∗ (σ2σ3)3

β4 = ((σ2)(σ1)(σ3σ2σ3)) ∗ σ2
1 .

(3.1)
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One can prove the following result.

Theorem 3.23. The braid monodromy representation associated to the
wiring diagram of a line arrangement coincides with the braid monodromy
representation of the line arrangement.

This gives one a simple algorithmic method to compute braid mon-
odromy representations of complexified strongly real line arrangements.

Finally, note that, despite the simplicity of the method, braid mon-
odromy representations of strongly real arrangements are not determined
by the combinatorics. In [3] the authors present two strongly real arrange-
ments of lines with the same combinatorics but whose braid monodromies
are not Hurwitz equivalent (see §3.4).

This diagram has two possible generalizations: braided wiring diagrams
for complex line arrangements and decorated wiring diagrams for com-
plexified strongly real curves, which will be treated separately.

3.3.2. Braided Wiring Diagrams

Consider a line arrangement L in the affine situation as in §3.1. We recall
that the projection π|L has a finite set of critical values denoted by Zn ⊂
Dx.

Choose a piecewise linear path starting at a base point on ∂Dy with
no self-intersections and joining all the points in Zn such that the seg-
ment is not broken at the points in Zn. For instance, one can follow the
lexicographic order in the complex numbers as in Figure 3.5:

z = x+ y
√
−1 > z′ = x′ + y′

√
−1⇔

{
x > x′, or
x = x′, y > y′.

The preimage of each segment will be an open braid and not a planar
graph as for wiring diagrams. The rest is analogous to the wiring case:
when crossing a point in Zn, where the lines δ̄ = (δ1, . . . , δk) converge, a
braid of local type ∆δ̄ will be generated and when ending at a point in Zn
a braid of local type ∆2

δ̄
will appear.

Example 3.24. Consider the Hesse arrangement:
H := {`1`2`3 · · · `12 = 0},
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Figure 3.5

where
`1 = {y = 0}, `2 = {(x+ ω2y + ω2z) = 0}, `3 = {(x+ ωy + ωz) = 0},

`4 = {(x+ ω2y + ωz) = 0}, `5 = {(x+ ωy + ω2z) = 0},
`6 = {(x+ ω2y + z) = 0}, `7 = {(x+ ωy + z) = 0},

`8 = {x = 0}, `9 = {(x+ y + z) = 0}, `10 = {z = 0},
`11 = {(x+ y + ωz) = 0}, `12 = {(x+ y + ω2z) = 0},

and ω is a root of z2 + z + 1 = 0. Assume `10 is the line at infinity and
project from the quadruple point P := [1 : −1 : 0]. The lines `9, `11, and
`12 become vertical. Figure 3.6 represents the non-generic braided wiring
diagram for the Hesse arrangement and this particular projection:

Recall that f1 := `4`5`9 and f2 := `1`8`10 generate a pencil of cubics
containing f3 := `2`7`11 and f4 := `3`6`12 as members of the pencil. Note
that each reducible cubic f1, . . . , f4 consists of three lines in general po-
sition (three lines joining all the inflexion points of a smooth cubic, each
one containing three of them). Using the results in [47] on braid factoriza-
tions, one can prove that the Hesse arrangement cannot degenerate onto a
pseudoholomorphic Hesse arrangement, where the cubics fi become three
concurrent lines.

3.3.3. Decorated Wiring Diagrams

Definition 3.25. A plane curve C = C1 · · · Cr is called real if there is a
projective system of coordinates such that C admits real equations.

198



Braid Monodromy of Algebraic Curves

`10 `11 `12

`1

`2

`3

`4

`5

`6

`7

`8

Figure 3.6. Hesse Wiring Diagram

If, in addition, C1, . . . , Cr admit real equations, the singular points and
vertical tangencies have real coordinates, and the tangent cone at each
singularity is a strongly real line arrangement, we call C a strongly real
curve.

Consider the affine situation of a strongly real curve of degree d and the
vertical projection (onto the first coordinate) as in §3.1. One can write a
diagram with solid lines and dashed lines, where:

(1) There exists a certain N > 0 such that Γ ∩ (−∞,−N ] × R and
Γ ∩ [N,∞)× R are given by d− 2k parallel rays and Γ ∩ [−N,N ]
is a union of solid and dashed paths,

(2) the solid paths are isomorphic to C ∩ R2,

(3) the dashed paths represent the real parts of non-real (conjugated)
branches,

(4) every time two dashed paths intersect, one of them overcrosses if
their imaginary parts are larger (dashed paths always overcross
solid paths).

Example 3.26. The following is the wiring of the quartic from Exam-
ple 2.20.
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Figure 3.7

Note, for example, notice the braids generated at the local picture:

Figure 3.8

and compare with the monodromy obtained in Example 2.20.

3.4. Conjugated Curves
One last application of braid monodromies is the study of the different
Galois embeddings of a curve given by equations in a number field in the
spirit of [71, 1]. More precisely, let C be a plane curve whose equation can
be defined on the ring of polynomials with coefficients on a number field
K ⊃ Q. Any Galois transformation σ of the number field will produce
another curve Cσ, whose equation is again defined on K[X,Y, Z], with
the same number and degrees of irreducible components, same type of
singularities,... that is same combinatorial type.

However, since σ cannot necessarily be extended to a homeomorphism
of the total space (think of the automorphism

√
2 7→ −

√
2) the question

arises whether or not (P2, C) and (P2, Cσ) are topologically equivalent.
Also note that any such example cannot be detected by means of al-

gebraic invariants such as the algebraic fundamental group (that is, the

200



Braid Monodromy of Algebraic Curves

profinite completion of the fundamental group), Alexander polynomials,
or any kind of invariant related with finite coverings.

Consider the arrangements C + and C− given by the following equations
(see Figure 3.9).

M±1 : z = 0, M±2 : x = 0, M±3 : x = z,

M±4 : x = −(γ + 1)z, M±5 : x = (γ + 2)z,
L±1 : y = x, L±2 : y = γ(x− z), L±3 : y = γx+ z,

L±4 : y = z, L±5 : y = 0, N± : γ±x+ (γ± + 1)y + z = 0,

where γ± are the roots of X2 +X − 1 = 0.

L+
4

L+
5

L+
3

L+
1 L+

2

M+
4 M+

2

M+
3 M+

5

N+

L−4

L−5

L−3

L−1

L−2

M−4

M−2

M−3

M−5

N−

Figure 3.9

First, one can compute the braid monodromy of the horizontal (= non-
vertical) lines

⋃
L±i . In order to show that they are not Hurwitz equivalent,

representations of the braid group onto finite groups can be used. Once
such a representation is fixed, the Hurwitz action only produces a finite
number of elements, and hence the problem becomes effectively solvable.

In our particular example, one can use the Burau representation of B5
into GL(5; Z[t±1]). Replacing t by 2 mod 5 one obtains a representation
β : B5 → GL(5; Z/5Z) such that the braid monodromy representations
produce different orbits after the Hurwitz action.

Therefore, using Theorem 3.10 one obtains the following.
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Theorem 3.27. ([3]). There is no homeomorphism between (P2,C +) and
(P2,C−).

Remark 3.28. Still, the question whether or not the fundamental groups
G+ := π1(P2 \ C +) and G− := π1(P2 \ C−) are isomorphic remains open.
As mentioned above, the reader should notice that

πalg
1 (P2 \ C +) ∼= πalg

1 (P2 \ C−).

In other words, G+ and G− have the same profinite completion (that is,
the same structure of finite index subgroups).

This is a paradigmatic example in the sense that it shows the power of
the braid monodromy representation of a curve in and of itself and not as
a mere instrument to obtain fundamental groups.
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