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On the range of the Fourier transform
connected with Riemann-Liouville operator

Lakhdar Tannech Rachdi
Ahlem Rouz

Abstract

We characterize the range of some spaces of functions by the Fourier transform
associated with the Riemann-Liouville operator Rα, α > 0 and we give a new
description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-
Wiener-Schwartz theorems.

1. Introduction

In [3], the first author with the others consider the so-called Riemann-
Liouville transform Rα; α > 0, defined on the space C∗(R2) (the space of
continuous functions on R2, even with respect to the first variable) by

Rα(f)(r, x) =



α

π

∫ 1

−1

∫ 1

−1
f
(
rs
√

1− t2, x+ rt
)

×
(
1− t2

)α− 1
2
(
1− s2)α−1

dt ds, if α > 0;

1
π

∫ 1

−1
f
(
r
√

1− t2, x+ rt
) dt√

1− t2
, if α = 0.

The mapping Rα generalizes the mean operator R0 defined by

R0(f)(r, x) = 1
2π

∫ 2π

0
f
(
r sin θ, x+ r cos θ

)
dθ.

The dual operator tR0 of R0 is defined by

tR0(g)(r, x) = 1
π

∫
R
g
(√

r2 + (x− y)2, y
)
dy.

Math. classification: 42B35, 43A32, 35S30.
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The mean operator R0 and its dual tR0 play an important role and have
many applications; for example, in image processing of the so-called syn-
thetic aperture radar (SAR) data [9, 10] or in the linearized inverse scatter-
ing problem in acoustics [8]. The operators R0 and tR0 have been studied
by many authors and from many points of view [2, 13, 14]. In [3]; the au-
thors associated to the Riemann-Liouville operator the Fourier transform
Fα defined by

Fα(f)(µ, λ) =
1

2αΓ(α+ 1)
√

2π

∫
R

∫ +∞

0
f(r, x) jα

(
r
√
µ2 + λ2)e−iλxr2α+1 dr dx

where, jα is a modified Bessel function. They have constructed the
harmonic analysis related to the Fourier transform Fα (inversion formula,
Plancherel formula, Paley-Wiener theorem, Plancherel theorem ...).

Our investigation in the present work consists to characterize the range
of some spaces of functions by the Fourier transform Fα and to estab-
lish a real Paley-Wiener theorem and a Paley-Wiener-Schwartz theorem
for this transform. More precisely, in the second section of this paper, we
characterize the range of some subspace of L2([0,+∞[×R; r2α+1 dr⊗ dx

)
(the space of square integrable functions on [0,+∞[×R with respect to
the measure r2α+1 dr⊗dx). In the third section; we give a new characteri-
zation of the Schwartz’s space S∗(R2) (the space of infinitely differentiable
functions on R2; even with respect to the first variable, rapidly decreasing
together with all their derivatives)[15, 16, 18]. Using this; we give a nice
description of the space S∗(Γ) (the space of infinitely differentiable func-
tions on Γ = R2 ∪

{(
it, x

)
; (t, x) ∈ R2, |t| 6 |x|

}
; even with respect to

the first variable, rapidly decreasing with all their derivatives). In the last
section, using the idea of [4]; we establish a real Paley-Wiener theorem
and a Paley-Wiener-Schwartz theorem.

We recall that in [21]; the author obtains similar results for the Hankel
transform and the generalized Hankel transform on the half line.

2. Fourier transform associated with Riemann-Liouville op-
erator.

In this section, we recall some properties of the Fourier transform associ-
ated with the Riemann-Liouville operator.
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On the range of the Fourier transform

For all (µ, λ) ∈ C2; we put
ϕµ,λ(r, x) = Rα

(
cos(µ.)exp(−iλ.)

)
(r, x),

where Rα is the Riemann-Liouville transform defined in the introduction.
Then, the function ϕµ,λ is given by

ϕµ,λ(r, x) = jα
(
r
√
µ2 + λ2)e−iλx, (2.1)

where jα is the modified Bessel function defined by

jα(s) = 2αΓ(α+ 1)Jα(s)
sα

= Γ(α+ 1)
+∞∑
k=0

(−1)k

k!Γ(α+ k + 1)

(
s

2

)2k

= Γ(α+ 1)
√
πΓ(α+ 1

2)

∫ 1

−1

(
1− t2

)α− 1
2 e−itsdt; (2.2)

and Jα is the Bessel function of first kind and index α [6, 7, 12, 22].
Moreover,

• For all (µ, λ) ∈ Γ, we have
sup

(r,x)∈R2

∣∣ϕµ,λ(r, x)
∣∣ = 1

where Γ is the set given by

Γ = R2 ∪
{(
iµ, λ

)
; (µ, λ) ∈ R2, |µ| 6 |λ|

}
. (2.3)

• For all (µ, λ) ∈ C2; the function ϕµ,λ is the unique solution of the
system 

∆1u(r, x) = −iλu(r, x),
∆2u(r, x) = −µ2u(r, x),

u(0, 0) = 1, ∂u
∂r

(0, x) = 0; ∀x ∈ R;

where
∆1 = ∂

∂x
,

∆2 = ∂2

∂r2 + 2α+ 1
r

∂

∂r
− ∂2

∂x2 ; (r, x) ∈]0,+∞[×R, α > 0.

In the following, we shall define the Fourier transform associated with the
Riemann-Liouville operator and we give some properties that we need in
the next section.

We denote by
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• dνα(r, x) the measure defined on [0,+∞[×R, by

dνα(r, x) = 1
2αΓ(α+ 1)

√
2π

r2α+1dr ⊗ dx.

• Lp(dνα), p ∈ [1,+∞], the space of measurable functions f on
[0,+∞[×R, satisfying

∥∥f∥∥
p,να

=


(∫ +∞

0

∫
R

∣∣f(r, x)
∣∣pdνα(r, x)

) 1
p

< +∞, 1 6 p < +∞;

ess sup
(r,x)∈[0,+∞[×R

∣∣f(r, x)
∣∣ < +∞, p = +∞.

• Γ+ the subset of Γ given by

Γ+ = [0,+∞[×R ∪
{
(iµ, λ); (µ, λ) ∈ R2, 0 6 µ 6 |λ|

}
.

• BΓ+ the σ−algebra on Γ+;

BΓ+ = θ−1(B[0,+∞[×R
)
,

where θ is the bĳective function defined on Γ+ by

θ(µ, λ) =
(√

µ2 + λ2, λ
)
. (2.4)

• dγα(µ, λ) the measure defined on Γ+ by

γα(A) = να
(
θ(A)

)
; A ∈ BΓ+

• Lp(dγα), p ∈ [1,+∞], the space of measurable functions f on Γ+,
satisfying

‖f‖p,γα < +∞.

• dmn(x) the measure defined on Rn, by

dmn(x) = 1
(2π)

n
2
dx.

• Lp(dmn), p ∈ [1,+∞], the space of measurable functions f on Rn,
satisfying ∥∥f∥∥

p,mn
< +∞.
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On the range of the Fourier transform

Proposition 2.1. i. For all non negative measurable function f on Γ+
(respectively integrable on Γ+ with respect to the measure dγα), we have∫ ∫

Γ+
f(µ, λ)dγα(µ, λ) =∫

R
∫+∞

0 f(µ, λ)
(
µ2 + λ2)αµdµdλ+

∫
R
∫ |λ|

0 f(iµ, λ)
(
λ2 − µ2)αµdµdλ

√
2π 2αΓ(α+ 1)

ii. For all non negative measurable function g on [0,+∞[×R (respectively
integrable on [0,+∞[×R with respect to the measure dνα), we have∫

R

∫ +∞

0
g(r, x)dνα(r, x) =

∫ ∫
Γ+
g ◦ θ(µ, λ)dγα(µ, λ). (2.5)

Definition 2.2. The Fourier transform associated with the Riemann-
Liouville operator is defined on L1(dνα) by

∀(µ, λ) ∈ Γ; Fα(f)(µ, λ) =
∫

R

∫ +∞

0
f(r, x)ϕµ,λ(r, x) dνα(r, x),

where Γ is the set defined by the relation (2.3) and ϕµ,λ is the eigenfunction
given by (2.1).

We have the following properties

• For every f ∈ L1(dνα) and (µ, λ) ∈ Γ, we have

Fα(f)(µ, λ) =
(
B ◦ F̃α

)
(f)(µ, λ) (2.6)

where,

∀(µ, λ) ∈ R2; F̃α(f)(µ, λ) =
∫

R

∫ +∞

0
f(r, x) jα(rµ) e−iλxdνα(r, x),

and

∀(µ, λ) ∈ Γ, B(f)(µ, λ) = f
(√

µ2 + λ2, λ
)

= f ◦ θ(µ, λ). (2.7)

• For f ∈ L1(dνα), the function Fα(f) is continuous on Γ and

lim
µ2+2λ2−→+∞

(µ,λ)∈Γ

Fα(f)(µ, λ) = 0.
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• For f ∈ L1(dνα) such that Fα(f) ∈ L1(dγα), we have the inversion
formula for Fα; for almost every (r, x) ∈ [0,+∞[×R,

f(r, x) =
∫ ∫

Γ+
Fα(f)(µ, λ)ϕµ,λ(r, x)dγα(µ, λ).

• For all p ∈ [1,+∞] and f ∈ Lp(dνα),

B(f) ∈ Lp(dγα) and ‖B(f)‖p,γα = ‖f‖p,να . (2.8)

In particular, from the relations (2.5), (2.7) and the fact that the func-
tion θ defined by (2.4), is bĳective from Γ+ onto [0,+∞[×R; we de-
duce that the mapping B is an isometric isomorphism from L2(dνα) onto
L2(dγα).

It’s well known [19, 20], that the transform F̃α is an isometric isomor-
phism from L2(dνα) onto itself. Then, using the relations (2.5), (2.6) and
(2.7), we have the following result

Theorem 2.3. (Plancherel theorem) The transform Fα can be extended
to an isometric isomorphism from L2(dνα) onto L2(dγα). In particular,
we have the Parseval’s equality; for all f, g ∈ L2(dνα)∫

R

∫ +∞

0
f(r, x)g(r, x)dνα(r, x) =

∫ ∫
Γ+

Fα(f)(µ, λ)Fα(g)(µ, λ)dγα(µ, λ).

3. Fourier transform of L2(dνα)- rapidly decreasing functions.

This section consists to characterize, by the Fourier transform associated
with the Riemann-Liouville operator, a space of functions having only
some integral conditions at infinity. This permits in the coming section,
to give an other description of the Schwartz’s space on the set Γ.

We denote by [3, 13]

• S(R2) the space of infinitely differentiable functions on R2, rapidly
decreasing together with all their derivatives, and S∗(R2) its subset
consisting of even functions with respect to the first variable.

• S∗(Γ) the space of infinitely differentiable functions on Γ, even
with respect to the first variable, rapidly decreasing together with
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On the range of the Fourier transform

all their derivatives, which means
∀(k1, k2) ∈ N2, ∀α ∈ N,

sup
{(

1 + |µ|2 + |λ|2
)α∣∣( ∂

∂µ
)k1( ∂

∂λ
)k2f(µ, λ)

∣∣; (µ, λ) ∈ Γ
}
< +∞,

where

∂f

∂µ
(µ, λ) =


∂

∂r

(
f(r, λ)

)
, if µ = r ∈ R;

1
i

∂

∂t

(
f(it, λ)

)
, if µ = it, |t| 6 |λ|.

To prove the main result of this section, we need the following lemma.

Lemma 3.1. Let a0, a1, b0, b1 be real numbers such that ai < bi;
i ∈ {0, 1}; and let

ψ : R2 × [a0, b0]× [a1, b1] −→ C

be a bounded function such that

i. For all (µ, λ) ∈ R2; the function

(r, x) 7−→ ψ
(
(µ, λ); (r, x)

)
belongs to L1([a0, b0]× [a1, b1]; dm2(r, x)

)
.

ii.

lim
µ2+λ2−→+∞

∫ β0

α0

∫ β1

α1
ψ
(
(µ, λ); (r, x)

)
dm2(r, x) = 0

uniformly with respect to αi, βi; 0 6 i 6 1 and ai 6 αi 6 βi 6 bi.

Then, for all f ∈ L1([a0, b0]× [a1, b1]; dm2(r, x)
)
;

lim
µ2+λ2−→+∞

∫ b0
a0

∫ b1
a1

ψ
(
(µ, λ); (r, x)

)
f(r, x) dm2(r, x) = 0.
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Proof. • Suppose firstly that f ∈ S(R2). By integration by parts; we have∫ b0
a0

∫ b1
a1

f(r, x)ψ
(
(µ, λ); (r, x)

)
dm2(r, x)

= f(b0, b1)
∫ b0
a0

∫ b1
a1

ψ
(
(µ, λ); (r, x)

)
dm2(r, x)

−
∫ b1
a1

∂f

∂x
(b0, x)

[ ∫ x
a1

∫ b0
a0

ψ
(
(µ, λ); (t, y)

)
dm2(t, y)

]
dx

−
∫ b0
a0

∂f

∂r
(r, b1)

[ ∫ b1
a1

∫ r
a0
ψ
(
(µ, λ); (t, y)

)
dm2(t, y)

]
dr

+
∫ b0
a0

∫ b1
a1

∂2f

∂r∂x
(r, x)

[ ∫ r
a0

∫ x
a1
ψ
(
(µ, λ); (t, y)

)
dm2(t, y)

]
dr dx.

Then, the result follows from the hypothesis ii) and the fact that f and
all its derivatives are bounded on R2.
• If f is any function in L1([a0, b0]× [a1, b1]; dm2(r, x)

)
; then for all ε > 0,

there exists g ∈ S(R2) such that∫ b0
a0

∫ b1
a1

∣∣f(r, x)− g(r, x)
∣∣ dm2(r, x) 6

ε

2
1
‖ψ‖∞

.

Consequently;∣∣∣ ∫ b0
a0

∫ b1
a1

f(r, x)ψ
(
(µ, λ); (r, x)

)
dm2(r, x)

∣∣∣
6

ε

2
+
∣∣∣ ∫ b0
a0

∫ b1
a1

g(r, x)ψ
(
(µ, λ); (r, x)

)
dm2(r, x)

∣∣∣
and the required result follows from the first case. �

Example 3.2. Let a be a positive real number and let

ψ : R2 × [0, a]× [−a, a] −→ C

defined by

ψ
(
(µ, λ); (r, x)

)
=
(
rµ
)α+ 1

2 jα(rµ) e−iλx1[0,+∞[(µ).

From the asymptotic expansion of the function jα [12, 22]; it follows that
the functions

r 7−→ rα+ 1
2 jα(r)
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On the range of the Fourier transform

and
g(r) =

∫ r
0
sα+ 1

2 jα(s)ds

are bounded on [0,+∞[. On the other hand, for all (µ, λ) ∈ R2;

•∫ a
0

∫ a
−a

∣∣∣ψ((µ, λ); (r, x)
)∣∣∣dm2(r, x) 6

a

π

∫ a
0

∣∣(rµ)α+ 1
2 jα(rµ)

∣∣dr
6

a2

π

∥∥sα+ 1
2 jα
∥∥
∞.

• For all [α0, β0] ⊂ [0, a] and [α1, β1] ⊂ [−a, a];∫ β0

α0

∫ β1

α1
ψ
(
(µ, λ); (r, x)

)
dm2(r, x)

= 1
2π

e−iα1λ − e−iβ1λ

iλ
× g(β0µ)− g(α0µ)

µ
.

Thus,

lim
µ2+λ2−→+∞

∫ β0

α0

∫ β1

α1
ψ
(
(µ, λ); (r, x)

)
dm2(r, x) = 0

uniformly for [α0, β0] ⊂ [0, a] and [α1, β1] ⊂ [−a, a].

Consequently; from lemma 3.1, we deduce that
∀ f ∈ L1([0,+∞[×R, dm2(r, x)

)
;

lim
µ2+λ2−→+∞

∫ a
0

∫ a
−a
f(r, x)(rµ)α+ 1

2 jα(rµ)e−iλx dm2(r, x) = 0.

In the following, to give a nice description of rapidly decreasing func-
tions; we need the following notations

• ∂

∂µ2 = 1
µ

∂

∂µ

• C = ∂

∂λ
− λ ∂

∂µ2

• lα = ∂2

∂r2 + 2α+ 1
r

∂

∂r
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• Lα = lα + ∂2

∂x2

• Kα = (µ2 + λ2)
( ∂

∂µ2
)2 + (2α+ 2) ∂

∂µ2

• Aα = Kα +
( ∂
∂λ
− λ ∂

∂µ2
)2 = Kα + C2.

Then, for all f ∈ S∗(R2); we have the following properties

•
B
( ∂

∂µ2 f
)

= ∂

∂µ2B(f). (3.1)

• For all (k1, k2) ∈ N2;

B
(
lk1
α

( ∂
∂λ

)k2f
)

= Kk1
α C

k2B(f). (3.2)

• For all k ∈ N;
B(Lkαf) = AkαB(f). (3.3)

Where B is the mapping given by the relation (2.7).
Now, we are able to prove the main result of this section.

Theorem 3.3. Let f ∈ L2(dνα). Then, the following assumptions are
equivalent
1. For all (k1, k2) ∈ N2; the function

(r, x) 7−→ rk1xk2f(r, x)
belongs to the space L2(dνα).
2. The Fourier transform Fα(f) of f satisfies the following properties

i. The function Fα(f) is infinitely differentiable on Γ, even with re-
spect to the first variable.

ii. For all (k1, k2) ∈ N2 the function Kk1
α C

k2Fα(f) ∈ L2(dγα).

iii. For all (k1, k2) ∈ N2;

lim
µ2+2λ2−→+∞

(µ,λ)∈Γ

(
1 +

(
µ2 + λ2) 2α+1

4
)
Kk1
α C

k2Fα(f)(µ, λ) = 0.
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On the range of the Fourier transform

iv. For all (k1, k2) ∈ N2;

lim
µ2+2λ2→+∞

(µ,λ)∈Γ

(
µ2 + λ2) 2α+3

4
∂

∂µ2K
k1
α C

k2Fα(f)(µ, λ) = 0.

Proof. • Suppose that for all (k1, k2) ∈ N2; the function

(r, x) 7−→ rk1xk2f(r, x)
belongs to the space L2(dνα). Then, for all (l1, l2) ∈ N2; the function

(r, x) 7−→ rl1xl2f(r, x)
belongs to L1(dνα).

i. From the relation (2.2), we deduce that for all k ∈ N and s ∈ R;∣∣j(k)
α (s)

∣∣ 6 1; (3.4)
then, by derivative’s theorem, it follows that the function

F̃α(f)(µ, λ) =
∫ ∞

0

∫
R
f(r, x)jα(rµ)e−iλxdνα(r, x)

is infinitely differentiable on R2, even with respect to the first variable.
Hence, from the relation (2.6), the function Fα(f) is infinitely differen-
tiable on Γ, even with respect to the first variable.

ii. For all (k1, k2) ∈ N2 and using the relations (2.6) and (3.2), we get

Kk1
α C

k2Fα(f) = Kk1
α C

k2
(
B(F̃α(f))

)
= B

(
lk1
α ( ∂

∂λ
)k2F̃α(f)

)
= B

(
F̃α
(
(−r2)k1(−ix)k2f

))
= Fα

(
(−r2)k1(−ix)k2f

)
.

Since, the function
(r, x) 7−→ r2k1xk2f(r, x)

belongs to the space L2(dνα); by Plancherel theorem’s; the function

Kk1
α C

k2Fα(f) = Fα
(
(−r2)k1(−ix)k2f

)
belongs to L2(dγα).
iii. For all f ∈ L1(dνα); the function F̃α(f) belongs to the space C∗,0(R2)
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(the space of continuous functions g on R2; even with respect to the first
variable and such that lim

µ2+λ2−→+∞
g(µ, λ) = 0). Then,

lim
µ2+2λ2−→+∞

(µ,λ)∈Γ

Kk1
α C

k2Fα(f)(µ, λ) =

lim
µ2+2λ2−→+∞

(µ,λ)∈Γ

F̃α
(
(−r2)k1(−ix)k2f

)(√
µ2 + λ2, λ

)
= 0. (3.5)

On the other hand; for all (µ, λ) ∈ [0,+∞[×R, we have

µ
2α+1

2 F̃α
(
(−r2)k1(−ix)k2f

)
(µ, λ)

=
∫ a

0
∫ a
−a(−r2)k1(−ix)k2f(r, x)µα+ 1

2 jα(rµ)e−iλxr2α+1drdx

2αΓ(α+ 1)
√

2π

+
∫ ∫

[0,+∞[×R\Ia(−r
2)k1(−ix)k2f(r, x)µα+ 1

2 jα(rµ)e−iλxr2α+1drdx

2αΓ(α+ 1)
√

2π

where a > 0 and Ia = [0, a]× [−a, a]. Let

Cα = sup
s>0

∣∣sα+ 1
2 jα(s)

∣∣,

and l ∈ N such that

∫
R

∫ +∞

0

dr dx

(1 + r2 + x2)2l < +∞,
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On the range of the Fourier transform

we have;∣∣∣∣∣∣
∫ ∫

[0,+∞[×R\Ia(−r
2)k1(−ix)k2f(r, x)µα+ 1

2 jα(rµ)e−iλxr2α+1drdx

2αΓ(α+ 1)
√

2π

∣∣∣∣∣∣
6

Cα

2αΓ(α+ 1)
√

2π

∫ ∫
[0,+∞[×R\Ia

r2k1 |x|k2
∣∣f(r, x)

∣∣rα+ 1
2dr dx

6
Cα

2αΓ(α+ 1)
√

2π

( ∫ +∞

0

∫
R

drdx

(1 + r2 + x2)2l

) 1
2×

( ∫ ∫
[0,+∞[×R\Ia

(1 + r2 + x2)2l|r|4k1 |x|2k2 |f(r, x)|2r2α+1drdx
) 1

2

= Cα(
2αΓ(α+ 1)

√
2π
) 1

2

( ∫ +∞

0

∫
R

drdx

(1 + r2 + x2)2l

) 1
2×

( ∫ ∫
[0,+∞[×R\Ia

(1 + r2 + x2)2l|r|4k1 |x|2k2 |f(r, x)|2dνα(r, x)
) 1

2
. (3.6)

Let ε > 0. Since,∫ +∞

0

∫
R

(1 + r2 + x2)2lr4k1 |x|2k2 |f(r, x)|2dνα(r, x) < +∞;

by (3.6); there exists a > 1 such that∣∣∣ ∫ ∫
[0,+∞[×R\Ia

(−r2)k1(−ix)k2f(r, x)µα+ 1
2 jα(rµ)e−iλxdνα(r, x)

∣∣∣ 6 ε

2
Let ψ be the function defined in example 3.2 by

ψ
(
(µ, λ), (r, x)

)
= µα+ 1

2 jα(rµ) e−iλx rα+ 1
2 1[0,+∞[(µ)

and
g(r, x) = (−1)k1r2k1+α+ 1

2 (−ix)k2f(r, x).
By Hölder’s inequality, we have∫ +∞

0

∫
R
|g(r, x)|dm2(r, x) =

∫ +∞

0

∫
R
r2k1 |x|k2 |f(r, x)|rα+ 1

2dm2(r, x)

6
(2αΓ(α+ 1)

√
2π

2π

) 1
2
( ∫ +∞

0

∫
R

dm2(r, x)
(1 + r2 + x2)2l

) 1
2

×
( ∫ +∞

0

∫
R

(1 + r2 + x2)2lr4k1x2k2 |f(r, x)|2 dνα(r, x)
) 1

2
< +∞.
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Applying the result of example 3.2; we deduce that∫ a
0

∫ a
−a
µα+ 1

2 (−1)k1r2k1+2α+1(−ix)k2f(r, x)jα(rµ)e−iλxdrdx µ
2+λ2→+∞−→ 0.

This shows that
lim

µ2+λ2→+∞
µα+ 1

2 F̃α
(
(−r2)k1(−ix)k2f

)
(µ, λ) = 0

and consequently;

lim
µ2+2λ2−→+∞

(µ,λ)∈Γ

(
µ2 + λ2) 2α+1

4 F̃α
(
(−r2)k1(−ix)k2f

)(√
µ2 + λ2, λ

)
= 0.

(3.7)
Combining the relations (2.6), (3.2), (3.5) and (3.7), we get

lim
µ2+2λ2−→+∞

(µ,λ)∈Γ

(
1 +

(
µ2 + λ2) 2α+1

4
)
Kk1
α Ck2 Fα(f)(µ, λ) = 0.

iv. From the relation
∂

∂µ

(
jα(rµ)

)
= − r2µ

2(α+ 1)
jα+1(rµ), (3.8)

and from the derivative’s theorem, We have

µ
2α+3

2
∂

∂µ2 F̃α
(
(−r2)k1(−ix)k2f

)
(µ, λ) = 1

2(α+ 1)∫ +∞

0

∫
R

(−r2)k1+1(−ix)k2f(r, x)µα+ 3
2 jα+1(rµ)e−iλxdνα(r, x).

Using the same argument as in iii) and the example 3.2, with

ψ̃
(
(µ, λ), (r, x)

)
= (rµ)α+ 3

2 jα+1(rµ)e−iλx1[0,+∞[(µ),
and

g̃(r, x) = (−1)k1+1r2k1+α+ 1
2 (−ix)k2f(r, x)

we deduce that

lim
µ2+λ2−→+∞

µ
2α+3

2
∂

∂µ2 F̃α
(
(−r2)k1(−ix)k2f

)
(µ, λ) = 0,

and therefore

lim
µ2+2λ2−→+∞

(µ,λ)∈ Γ

B
(
µ

2α+3
2

∂

∂µ2 F̃α
(
(−r2)k1(−ix)k2f

))
(µ, λ) = 0.
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Wich means that

lim
µ2+2λ2−→+∞

(µ,λ)∈ Γ

(
µ2 + λ2) 2α+3

4
∂

∂µ2 Kk1
α Ck2Fα(f)(µ, λ) = 0.

• Conversely; suppose that f ∈ L2(dνα) and Fα(f) satisfies the asser-
tion 2) of theorem. In particular; for every (k1, k2) ∈ N2, the function
Kk1
α Ck2Fα(f) belongs to L2(dγα). In virtue of the relations (2.5) and

(3.2), we deduce that for all (k1, k2) ∈ N2; the function lk1
α

( ∂
∂λ

)k2F̃α(f)
belongs to L2(dνα).

Let’s denote by Λn; n ∈ N∗, the usual Fourier transform defined on
L1(dmn) by

Λn(f)(λ) =
∫

Rn
f(x) e−i〈λ/x〉dmn(x)

and Fα the Fourier Bessel transform defined on the space

L1([0,+∞[, 1
2αΓ(α+ 1)

r2α+1 dr
)

by

Fα(f)(µ) = 1
2αΓ(α+ 1)

∫ +∞

0
f(r) jα(rµ) r2α+1dr.

Let k ∈ N. Since∫ +∞

0

∫
R

∣∣∣( ∂
∂λ

)k
F̃α(f)(µ, λ)

∣∣∣2dνα(µ, λ) < +∞;

then, there exists a null set N1 ⊂ [0,+∞[; such that for all µ ∈ N c1 ;∫
R

∣∣∣( ∂
∂λ

)k
F̃α(f)(µ, λ)

∣∣∣2dλ < +∞. (3.9)

For µ ∈ N c1 ; we put

fk,µ(t) =
( ∂
∂t

)k
F̃α(f)(µ, t)

and
gnk,µ(y) =

∫ n
−n
fk,µ(t)eitydm1(t); n ∈ N.

By (3.9); the function fk,µ belongs to L2(dm1) and

lim
n−→+∞

gnk,µ = Λ−1
1 (fk,µ) in L2(dm1). (3.10)
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However; by integration by parts; we have

gnk,µ(y) = 1√
2π
[
eityfk−1,µ(t)

]n
−n −

∫ n
−n
fk−1,µ(t)iyeitydm1(t). (3.11)

On the other hand, from the hypothesis iii) and by writing

(
1 + µ

2α+1
2
)
lk1
α

( ∂
∂λ

)k2F̃α(f)(µ, λ)

=
[
1 +

(
λ2 + (µ2 − λ2)

) 2α+1
4

]
Kk1
α C

k2Fα(f)
(√

µ2 − λ2, λ
)
,

if µ > |λ| and

(
1 + µ

2α+1
2
)
lk1
α

( ∂
∂λ

)k2F̃α(f)(µ, λ)

=
[
1 +

(
λ2 + (i

√
λ2 − µ2)2) 2α+1

4

]
Kk1
α C

k2Fα(f)
(
i
√
λ2 − µ2, λ

)
, (3.12)

if µ < |λ|. We deduce that for all (k1, k2) ∈ N2;

lim
µ2+λ2−→+∞

(
1 + µ

2α+1
2
)
lk1
α

( ∂
∂λ

)k2F̃α(f)(µ, λ) = 0.

In particular; for all µ ∈ [0,+∞[;

lim
|λ|−→+∞

( ∂
∂λ

)k−1
F̃α(f)(µ, λ) = 0.

Consequently; for all µ ∈ N c1 ;

lim
n−→+∞

[
eityfk−1,µ(t)

]n
−n

= 0. (3.13)

Combining the relations (3.11) and (3.13), we get

lim
n−→+∞

gnk,µ(y) = lim
n−→+∞

(−iy)
∫ n
−n
fk−1,µ(t) eitydm1(t),

and by iteration, we deduce that

lim
n−→+∞

gnk,µ(y) = (−iy)k lim
n−→+∞

∫ n
−n
f0,µ(t) eitydm1(t).

Using the relation (3.10), we obtain

Λ−1
1
(
fk,µ

)
= (−iy)k Λ−1

1
(
f0,µ

)
. (3.14)
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Since the usual Fourier transform Λ1 is an isometric isomorphism from
L2(dm1

)
onto itself, the relation (3.14) involves that∫

R

∣∣fk,µ(λ)
∣∣2dm1(λ) =

∫
R
λ2k∣∣Λ−1

1
(
f0,µ

)
(λ)
∣∣2dm1(λ)

or ∫
R

∣∣∣( ∂
∂λ

)k
F̃α(f)(µ, λ)

∣∣∣2dm1(λ) =
∫

R
λ2k
∣∣∣Fα(f(., λ)

)
(µ)
∣∣∣2dm1(λ).

Integrating over [0,+∞[ with respect to the measure r2α+1 dr

2αΓ(α+ 1)
and using

the fact that the Fourier-Bessel transform Fα is an isometric isomorphism

from L2([0,+∞[, r2α+1

2αΓ(α+ 1)
dr
)

onto itself, we deduce that

∫ +∞

0

∫
R
λ2k∣∣f(µ, λ)

∣∣2dνα(µ, λ) =
∫ +∞

0

∫
R

∣∣∣( ∂
∂λ

)k
F̃α(f)(µ, λ)

∣∣∣2dνα(µ, λ)

<+∞

which shows that for all k ∈ N;∫ +∞

0

∫
R

∣∣xk f(r, x)
∣∣2dνα(r, x) < +∞. (3.15)

By the same way, and using the fact that for all k ∈ N;∫ +∞

0

∫
R

∣∣lkα F̃α(f)(µ, λ)
∣∣2dνα(µ, λ) < +∞,

we deduce that there exists a null set N2 ⊂ R such that for all λ ∈ N c2 ;∫ +∞

0

∣∣lkα F̃α(f)(µ, λ)
∣∣2µ2α+1dµ < +∞.

Let

hnk,λ(r) = 1
2αΓ(α+ 1)

∫ n
0

lkα F̃α(f)(µ, λ) jα(rµ)µ2α+1dµ

then;

lim
n−→+∞

hnk,λ(r) = Fα
(
lkα F̃α(f)(., λ)

)
(r) (3.16)
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in L2([0,+∞[, r2α+1

2αΓ(α+ 1)
dr
)
. Now; integrating by parts; we have

hnk,λ(r) = 1
2αΓ(α+ 1)

{[
jα(rµ)µ2α+1 ∂

∂µ

(
lk−1
α F̃α(f)(µ, λ)

)]n
0

−
[
µ2α+1 ∂

∂µ

(
jα(rµ)

)
lk−1
α F̃α(f)(µ, λ)

]n
0

}
− r2 hnk−1,λ(r). (3.17)

On the other hand, from the hypothesis iii) and by the relation (3.12), we
deduce that for all k ∈ N;

lim
µ2+λ2−→+∞

(
1 + µ

2α+1
2
)
lkαF̃α(f)(µ, λ) = 0.

In particular, for all λ ∈ R;

lim
µ−→+∞

µ
2α+1

2 lkα F̃α(f)(µ, λ) = 0. (3.18)

However, from the relation (3.8) we have,

∣∣∣µ2α+1 ∂

∂µ

(
jα(rµ)

)
lk−1
α F̃α(f)(µ, λ)

∣∣∣
6

Cα+1
2(α+ 1)

r−α+ 1
2µα+ 1

2
∣∣lk−1
α F̃α(f)(µ, λ)

∣∣
and by the relation (3.18), we deduce that for all λ ∈ R

lim
µ−→+∞

µ2α+1 ∂

∂µ

(
jα(rµ)

)
lk−1
α F̃α(f)(µ, λ) = 0.

By the same way, we have

∣∣∣jα(rµ) µ2α+1 ∂

∂µ

(
lk−1
α F̃α(f)(µ, λ)

)∣∣∣
6 Cα r

−α− 1
2

∣∣∣µα+ 3
2

∂

∂µ2
(
lk−1
α F̃α(f)(µ, λ)

)∣∣∣,
372
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using the relation (3.1) and (3.2), we get∣∣∣jα(rµ) µ2α+1 ∂

∂µ

(
lk−1
α F̃α(f)(µ, λ)

)∣∣∣ 6 Cα r
−α− 1

2×
(
λ2 + (µ2 − λ2)

) 2α+3
4

∂

∂µ2 Kkα Fα(f)
(√

µ2 − λ2, λ
)
, if µ > |λ|;

(
λ2 + (i

√
λ2 − µ2)2) 2α+3

4
∂

∂µ2 Kkα Fα(f)
(
i
√
λ2 − µ2, λ

)
, if µ < |λ|.

By the hypothesis iv), it follows that for all λ ∈ R;

lim
µ−→+∞

jα(rµ) µ2α+1 ∂

∂µ

(
lk−1
α F̃α(f)(µ, λ)

)
= 0. (3.19)

Combining the relations (3.16), (3.17), (3.18) and (3.19), we deduce that
for all λ ∈ N c2 ; the function

r 7−→ (−r2) Fα
(
lk−1
α F̃α(f)(., λ)

)
(r)

belongs to L2([0,+∞[, r2α+1

2αΓ(α+ 1)
dr
)

and

Fα
(
lkα F̃α(f)(., λ)

)
(r) = (−r2) Fα

(
lk−1
α F̃α(f)(., λ)

)
(r).

By iteration, for all λ ∈ N c2 , the function

r 7−→ (−r2)k Fα
(
F̃α(f)(., λ)

)
(r)

belongs to L2([0,+∞[, r2α+1

2αΓ(α+ 1)
dr
)

and we have

Fα
(
lkα F̃α(f)(., λ)

)
(r) = (−r2)k Fα

(
F̃α(f)(., λ)

)
(r)

= (−r2)k Λ1
(
f(r, .)

)
(λ). (3.20)

Integrating over [0,+∞[×R, with respect to the measure dνα(r, λ) and
using the Fubini’s theorem and Plancherel theorem’s, respectively for Fα
and Λ1; the relation (3.20) leads to∫ +∞

0

∫
R

∣∣r2kf(r, x)
∣∣2 dνα(r, x)

=
∫ +∞

0

∫
R

∣∣lkαF̃α(f)(r, λ)
∣∣2 dνα(r, λ) < +∞.
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This shows that for all k ∈ N;∫ +∞

0

∫
R

∣∣rk f(r, x)
∣∣2dνα(r, x) < +∞. (3.21)

Thus, by the relations (3.15), (3.21) and the Cauchy-Shwartz inequality,
we deduce that for all (k1, k2) ∈ N2, the function

(r, x) 7−→ rk1xk2f(r, x)

belongs to L2(dνα). This completes the proof of theorem 3.3. �

4. Best charcterizations of the spaces S∗(R2)and S∗(Γ).

In this section, using the theorem 3.3, we give new characterizations of
the Schwartz’s spaces S∗(R2) and S∗(Γ). For this, we need the following
important result

Proposition 4.1. Let f be a continuous function on R2, even with respect
to the first variable. Then, the following assumptions are equivalent.

i. For all (k1, k2) ∈ N2; the functions

(r, x) 7−→ rk1 xk2 f(r, x) and (µ, λ) 7−→ µk1 λk2 F̃α(f)(µ, λ)

are bounded on [0,+∞[×R.

ii. For all (k1, k2) ∈ N2; the functions

(r, x) 7−→ rk1 xk2 f(r, x) and (µ, λ) 7−→ µk1 λk2 F̃α(f)(µ, λ)

belong to L2(dνα).

Proof. • It’s clear that, if for all (k1, k2) ∈ N2; the functions

(r, x) 7−→ rk1 xk2 f(r, x) and (µ, λ) 7−→ µk1 λk2 F̃α(f)(µ, λ)

are bounded on [0,+∞[×R, then for all (l1, l2) ∈ N2; the functions

(r, x) 7−→ rl1 xl2 f(r, x) and (µ, λ) 7−→ µl1 λl2 F̃α(f)(µ, λ)

belong to L2(dνα).
• Conversely, suppose that for all (k1, k2) ∈ N2; the functions

(r, x) 7−→ rk1 xk2 f(r, x) and (µ, λ) 7−→ µk1 λk2 F̃α(f)(µ, λ)
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belong to L2(dνα). Then by Hölder’s inequality, we deduce that for all
(l1, l2) ∈ N2; the functions

(r, x) 7−→ rl1 xl2 f(r, x) and (µ, λ) 7−→ µl1 λl2 F̃α(f)(µ, λ)
belong to L1(dνα), and by derivative’s theorem, the relation (3.4) and the
inversion formula for the transform F̃α, that is

f(r, x) =
∫ +∞

0

∫
R

F̃α(f)(µ, λ) jα(rµ) eiλx dνα(µ, λ);

we deduce that the functions f and F̃α(f) are infinitely differentiable on
R2, even with respect to the first variable. Moreover, for all (k1, k2) ∈ N2;

lim
r2+x2−→+∞

( ∂
∂r

)k1( ∂
∂x

)k2f(r, x) = 0 (4.1)

and
lim

µ2+λ2−→+∞

( ∂
∂µ

)k1( ∂
∂λ

)k2F̃α(f)(µ, λ) = 0 (4.2)

1. For all (k1, k2) ∈ N2; such that k1 > 2α+ 1; the function

(r, x) 7−→ rk1 xk2 f(r, x)
belongs to L1([0,+∞[×R, dm2(r, x)

)
. Indeed∫ +∞

0

∫
R

∣∣rk1 xk2 f(r, x)
∣∣dm2(r, x)

=
∫ 1

0

∫
R

∣∣rk1 xk2 f(r, x)
∣∣dm2(r, x)

+
∫ +∞

1

∫
R

∣∣rk1 xk2 f(r, x)
∣∣dm2(r, x)

6
2αΓ(α+ 1)√

2π

{∫ 1

0

∫
R

∣∣xk2 f(r, x)
∣∣dνα(r, x)

+
∫ +∞

1

∫
R

∣∣rk1xk2f(r, x)
∣∣dνα(r, x)

}
6

2αΓ(α+ 1)√
2π

{∫ +∞

0

∫
R

∣∣xk2 f(r, x)
∣∣dνα(r, x)

+
∫ +∞

0

∫
R

∣∣rk1xk2f(r, x)
∣∣dνα(r, x)

}
< +∞.
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2. For all (k1, k2) ∈ N2 and a ∈ R; a > 0, the function

(r, x) 7−→ rk1+a xk2 f(r, x)

is bounded on [0,+∞[×R.

In fact; let m ∈ N; m > 3 and m >
2(α+ 1)

a
. By a simple calculus and

using the fact that f and all its derivatives are bounded on [0,+∞[×R;
we deduce that for all (k1, k2) ∈ N2; there exists Ck1,k2,m,a > 0 such that

∣∣∣ ∂
∂r

∂

∂x

[(
rk1+a xk2 f(r, x)

)m]∣∣∣
6 Ck1,k2,m,a ×

{∣∣rm(k1+a)−1 xmk2−1 f(r, x)
∣∣+ ∣∣rm(k1+a)−1 xmk2 f(r, x)

∣∣
+
∣∣rm(k1+a) xmk2−1 f(r, x)

∣∣+ 2
∣∣rm(k1+a) xmk2 f(r, x)

∣∣},
and by 1) of this proof, we deduce that the function

(r, x) 7−→ ∂

∂r

∂

∂x

[(
rk1+a xk2 f(r, x)

)m]
is integrable on [0,+∞[×R with respect to the measure dm2(r, x) and by
(4.1), we have(

rk1+a xk2 f(r, x)
)m

=



∫ r
0

∫ x
0

∂

∂t

∂

∂y

[(
tk1+a yk2 f(t, y)

)m]
dt dy, if k2 > 1;

∫ r
0

∫ x
−∞

∂

∂t

∂

∂y

[(
tk1+a f(t, y)

)m]
dt dy, if k2 = 0.

This shows that the function

(r, x) 7−→ rk1+a xk2 f(r, x)

is bounded on [0,+∞[×R and for all (r, x) ∈ [0,+∞[×R;∣∣rk1+a xk2 f(r, x)
∣∣ 6 (

2π
∥∥ ∂
∂r

∂

∂x

(
rk1+axk2f

)∥∥
1,m2

) 1
m
.

3. For all (k1, k2) ∈ N2; the function

(r, x) 7−→ rk1 xk2 f(r, x)
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belongs to L1([0,+∞[×R, dm2(r, x)
)
. Indeed∫ +∞

0

∫
R

∣∣rk1 xk2 f(r, x)
∣∣dm2(r, x) =

∫ 1

0

∫
R

∣∣rk1 xk2 f(r, x)
∣∣dm2(r, x)

+
∫ +∞

1

∫
R

∣∣rk1 xk2 f(r, x)
∣∣dm2(r, x).

From 2) there exists Ck1,k2 > 0 such that

∀ (r, x) ∈ [0,+∞[×R;
∣∣rk1 xk2 f(r, x)

∣∣ 6 Ck1,k2√
r(1 + x2)

,

thus;∫ 1

0

∫
R

∣∣rk1 xk2 f(r, x)
∣∣dm2(r, x) 6

1
2π
Ck1,k2

∫ 1

0

dr√
r

∫
R

1
(1 + x2)

dx

= Ck1,k2 .

On the other hand;∫ +∞

1

∫
R

∣∣rk1 xk2 f(r, x)
∣∣dm2(r, x) 6

2α Γ(α+ 1)√
2π

∥∥rk1xk2f
∥∥

1,να ,

which proves that for all (k1, k2) ∈ N2;∫ +∞

0

∫
R

∣∣rk1 xk2 f(r, x)
∣∣dm2(r, x) < +∞.

4. For all (k1, k2) ∈ N2; the function

(r, x) 7−→ rk1 xk2 f(r, x)
is bounded on [0,+∞[×R. Indeed; for k1 > 1, the result follows from 2)
Let’s prove that for all k ∈ N; k > 1; the function

(r, x) 7−→ xk f(r, x)
is bounded on [0,+∞[×R. From the fact that f and all its derivatives are
bounded, we deduce that there exists Ck > 0 such that;
∀ (r, x) ∈ [0,+∞[×R;∣∣∣ ∂

∂r

∂

∂x

[(
xk f(r, x)

)3]∣∣∣ 6 Ck
{∣∣x3k−1f(r, x)

∣∣+ ∣∣x3kf(r, x)
∣∣},

and by 3) we deduce that the function

(r, x) 7−→ ∂

∂r

∂

∂x

[(
xk f(r, x)

)3]
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belongs to L1([0,+∞[×R, dm2(r, x)
)
, and by (4.1) we have;(

xk f(r, x)
)3 =

∫ r
−∞

∫ x
0

∂

∂t

∂

∂y

[(
yk f(t, y)

)3]
dt dy.

Consequently, for all (r, x) ∈ [0,+∞[×R;∣∣xk f(r, x)
∣∣ 6 (

2π
∥∥ ∂
∂r

∂

∂x

[(
xk f

)3]∥∥
1,m2

) 1
3
.

By the same method and using the relation (4.2), we prove that for all
(k1, k2) ∈ N2; the function

(µ, λ) 7−→ µk1λk2F̃α(f)(µ, λ)

is bounded on [0,+∞[×R.
This achieves the proof of proposition 4.1. �

In the sequel; we give a new description of the Schwartz’s space S∗(R2).
Namely, we have

Theorem 4.2. Let f be a continuous function on R2, even with respect
to the first variable. Then, the following properties are equivalent.

i. For all (k1, k2) ∈ N2; the functions

(r, x) 7−→ rk1 xk2 f(r, x) and (µ, λ) 7−→ µk1 λk2 F̃α(f)(µ, λ)

are bounded on [0,+∞[×R.

ii. The function f is infinitely differentiable on R2, even with respect
to the first variable, bounded together with all its derivatives on
[0,+∞[×R and for all (k1, k2) ∈ N2; the function

(r, x) 7−→ rk1 xk2 f(r, x)

is bounded on [0,+∞[×R.

iii. The function f belongs to the space S∗(R2).

iv. For all (k1, k2) ∈ N2; the functions

(r, x) 7−→ rk1 xk2 f(r, x) and (µ, λ) 7−→ µk1 λk2 F̃α(f)(µ, λ)

belong to L2(dνα).
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Proof. • From the proof of proposition 4.1, we deduce that ii) holds if i)
is satisfied.
• Suppose that f satisfies ii). Then, for all (k1, k2) ∈ N2; we have∫ r

0
t2k1 x2k2

∣∣∂f
∂t

(t, x)
∣∣2dt =

∫ r
0
t2k1 x2k2 ∂f

∂t
(t, x)

(∂f
∂t

)
(t, x)dt

=
[
t2k1 x2k2f(t, x)

(∂f
∂t

)
(t, x)

]r
0
−
∫ r

0
x2k2f(t, x)2k1t

2k1−1(∂f
∂t

)
(t, x)dt

−
∫ r

0
x2k2f(t, x)t2k1

(∂2f

∂t2
)
(t, x)dt

= r2k1 x2k2f(r, x)
(∂f
∂r

)
(r, x)− 2k1

∫ r
0
x2k2t2k1−1f(t, x)

(∂f
∂t

)
(t, x)dt

−
∫ r

0
t2k1x2k2f(t, x)

(∂2f

∂t2
)
(t, x)dt.

And by hypothesis, we deduce that for all (k1, k2) ∈ N2; the function

(r, x) 7−→
∫ r

0
t2k1 x2k2

∣∣∂f
∂t

(t, x)
∣∣2dt (4.3)

is bounded on [0,+∞[×R.
By the same way, for all (k1, k2) ∈ N2; the function

(r, x) 7−→
∫ x

0
r2k1 y2k2

∣∣∂f
∂y

(r, y)
∣∣2dy (4.4)

is bounded on [0,+∞[×R.
On the other hand, for all (k1, k2) ∈ N2;

∂

∂r

(
r3k1 x3k2

(∂f
∂r

(r, x)
)3) = 3k1 r

3k1−1 x3k2
(∂f
∂r

(r, x)
)3

+ 3r3k1 x3k2
(∂f
∂r

(r, x)
)2∂2f

∂r2 (r, x).

Consequently,(
rk1 xk2 ∂f

∂r
(r, x)

)3 = 3k1

∫ r
0
t3k1−1 x3k2

(∂f
∂t

(t, x)
)2(∂f

∂t
(t, x)

)
dt

+ 3
∫ r

0
t3k1 x3k2

(∂f
∂t

(t, x)
)2∂2f

∂t2
(t, x) dt.
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From (4.3), we deduce that for all (k1, k2) ∈ N2; the function

(r, x) 7−→ rk1 xk2 ∂f

∂r
(r, x)

is bounded on [0,+∞[×R. By the same way, and using (4.4) it follows
that the function

(r, x) 7−→ rk1 xk2 ∂f

∂x
(r, x)

is bounded on [0,+∞[×R.

Thus, the functions ∂f
∂r

and ∂f

∂x
satisfy the same hypothesis as the function

f . By iteration, we deduce that for all (l1, l2) ∈ N2; the function

(r, x) 7−→ rk1xk2
( ∂
∂r

)l1( ∂
∂x

)l2f(r, x)

is bounded on [0,+∞[×R.
Which means that the function f lies in S∗(R2).
• It’s clear that if f belongs to S∗(R2), then for all (k1, k2) ∈ N2; the
functions

(r, x) 7−→ rk1 xk2 f(r, x) and (µ, λ) 7−→ µk1 λk2 F̃α(f)(µ, λ)

belong to L2(dνα), because the transform F̃α is an isomorphism from
S∗(R2) onto itself.
• Lastly, if the hypothesis iv) is satisfied, then by proposition 4.1 we deduce
that i) holds. �

Corollary 4.3. Let f be a continuous function on Γ, even with respect to
the first variable. Then the following assertions are equivalent.

i. For all (k1, k2) ∈ N2;

sup
(µ,λ)∈Γ+

∣∣∣(µ2 + λ2) k1
2 λk2f(µ, λ)

∣∣∣ < +∞

and
sup

(r,x)∈R+×R

∣∣∣rk1 xk2 F−1
α (f)(r, x)

∣∣∣ < +∞.

ii. The function f is infinitely differentiable on Γ, bounded together
with all its derivatives on Γ+, and for all (k1, k2) ∈ N2; the func-
tion

(µ, λ) 7−→
(
µ2 + λ2) k1

2 λk2f(µ, λ)
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is bounded on Γ+.

iii. The function f belongs to S∗(Γ).

iv. For all (k1, k2) ∈ N2; the functions

(µ, λ) 7−→
(
µ2 + λ2) k1

2 λk2f(µ, λ)
respectively

(r, x) 7−→ rk1 xk2 F−1
α (f)(r, x)

belong in L2(dγα), respectively L2(dνα).

Proof. let f be a continuous function on Γ, even with respect to the first
variable. We consider the function g defined on [0,+∞[×R by

g(r, x) =


f
(√
r2 − x2, x

)
, if r > |x|;

f
(
i
√
x2 − r2, x

)
, if r < |x|.

Then,

• For all (µ, λ) ∈ Γ;
B(g)(µ, λ) = g ◦ θ(µ, λ) = f(µ, λ).

•

sup
(r,x)∈R+×R

∣∣rk1 xk2 g(r, x)
∣∣ = sup

(µ,λ)∈Γ+

∣∣(µ2 + λ2) k1
2 λk2f(µ, λ)

∣∣.
• For every (r, x) ∈ [0,+∞[×R;

F̃α(g)(r, x) = F−1
α (f)(r,−x).

So, if the function f satisfies the assertion i) of this corollary; then for all
(k1, k2) ∈ N2; the functions

(r, x) 7−→ rk1 xk2 g(r, x)
and

(µ, λ) 7−→ µk1λk2F̃α(g)(µ, λ)
are bounded on [0,+∞[×R. Consequently, the result follows from theorem
4.2 and the fact that for all g ∈ S∗(R2); the function f = g ◦ θ belongs to
S∗(Γ). �
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5. Fourier transform of functions with bounded supports.

In this section, we characterize some spaces of functions by their Fourier
transforms. More precisely, we establish a real Paley-Wiener theorem and
a Paley-Wiener-Schwartz theorem for the Fourier transform connected
with the Riemann-Liouville operator.

Theorem 5.1. (Paley-Wiener) Let f be a function in L2(dγα) and
g = F−1

α (f).

i. If g has a compact support, then f satisfies the assertion 2) of
theorem 3.3. Moreover, the sequence

(∥∥AnαFα(g)
∥∥ 1

2n
2,γα

)
n

converges
to σg, where

σg = sup
{
|(r, x)|; (r, x) ∈ supp g

}
;

∣∣(r, x)
∣∣ =

√
r2 + x2.

ii. Conversely, let g ∈ L2(dνα) such that Fα(g) satisfies the assertion
2) of theorem 3.3 and the sequence

(∥∥AnαFα(g)
∥∥ 1

2n
2,γα

)
n

has a finite
limit σ, then g has a compact support and σ = σg.

Proof. i. Suppose that g has a compact support, then for all
(k1, k2) ∈ N2; the function

(r, x) 7−→ rk1 xk2 g(r, x)

belongs to L2(dνα). By theorem 3.3, we deduce that the function
f = Fα(g) satisfies the assertion 2) of theorem 3.3. From the relation
(3.3), we have;

∀ n ∈ N; Anα Fα(g) = B
(
LnαF̃α(g)

)
.

Then, by (2.8), we get∥∥AnαFα(g)
∥∥

2,γα =
∥∥LnαF̃α(g)

∥∥
2,να

=
∥∥F̃α(− (r2 + x2)ng

)∥∥
2,να .

Applying Plancherel theorem for the transform F̃α, it follows that for all
n ∈ N; ∥∥AnαFα(g)

∥∥ 1
2n
2,γα =

∥∥(r2 + x2)ng
∥∥ 1

2n
2,να . (5.1)
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Thus, for every n ∈ N;∥∥AnαFα(g)
∥∥ 1

2n
2,γα 6 σg ‖g‖

1
2n
2,να

and consequently;

lim sup
n−→+∞

∥∥AnαFα(g)
∥∥ 1

2n
2,γα 6 σg. (5.2)

On the other hand, from (5.1), for all ε > 0 and n ∈ N; we have

∥∥AnαFα(g)
∥∥ 1

2n
2,γα >

( ∫ ∫
(r2+x2)>(σg−ε)2

(r2 + x2)2n|g(r, x)|2dνα(r, x)
) 1

4n

> (σg − ε)
( ∫ ∫

(r2+x2)>(σg−ε)2
|g(r, x)|2dνα(r, x)

) 1
4n
.

where, ∫ ∫
r2+x2>(σg−ε)2

∣∣g(r, x)
∣∣2dνα(r, x) > 0.

Hence, for all ε > 0;

lim inf
n−→+∞

∥∥AnαFα(g)
∥∥ 1

2n
2,γα > σg − ε,

which implies that

lim inf
n−→+∞

∥∥AnαFα(g)
∥∥ 1

2n
2,γα > σg. (5.3)

>From (5.2) and (5.3), we deduce that the sequence
(∥∥AnαFα(g)

∥∥ 1
2n
2,γα

)
n

is convergent and

lim
n−→+∞

∥∥AnαFα(g)
∥∥ 1

2n
2,γα = σg.

ii. Let g ∈ L2(dνα) such that Fα(g) satisfies the assertion 2) of theorem
3.3 and the sequence

(∥∥AnαFα(g)
∥∥ 1

2n
2,γα

)
n

has a finite limit σ.
Suppose that there exists ε > 0 such that the set{

(r, x) ∈ R+ × R;
√
r2 + x2 > σ + ε; g(r, x) 6= 0

}
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has a positive measure. Then∥∥AnαFα(g)
∥∥ 1

2n
2,γα =

∥∥(r2 + x2)ng
∥∥ 1

2n
2,να

=
( ∫ +∞

0

∫
R

(
r2 + x2)2n∣∣g(r, x)

∣∣2dνα(r, x)
) 1

4n

>
( ∫ ∫

r2+x2>(σ+ε)2

(
r2 + x2)2n∣∣g(r, x)

∣∣2dνα(r, x)
) 1

4n

>
(
σ + ε

)( ∫ ∫
r2+x2>(σ+ε)2

∣∣g(r, x)
∣∣2dνα(r, x)

) 1
4n
,

and by hypothesis, we get;
σ > σ + ε

which is impossible. This shows that g has a bounded support and by the
proof of i) we can show that σ = σg. �

In the following, we shall give a new characterization of infinitely dif-
ferentiable functions with bounded supports, by means of their Fourier
transforms. For this, let (σ1, σ2) ∈ (R∗+)2; we denote by

• H(σ1,σ2)(C2); the space of entire functions g on C2, slowly increas-
ing of exponential type, i.e, there exists an integer k such that

sup
(µ,λ)∈C2

∣∣g(µ, λ)
∣∣e−σ1|=mµ|−σ2|=mλ|(

1 + |µ|2 + |λ|2
)k < +∞.

• H(σ1,σ2)(C2); the space of entire functions f on C2, rapidly de-
creasing of exponential type, i.e for all k ∈ N;

sup
(µ,λ)∈C2

∣∣f(µ, λ)
∣∣(1 + |µ|2 + |λ|2

)k
e−σ1|=mµ|−σ2|=mλ| < +∞.

and H(σ1,σ2)
∗ (C2), its subset consisting of even functions with re-

spect to the first variable.

• H∗(C2) =
⋃

(σ1,σ2)∈(R∗+)2

H(σ1,σ2)
∗ (C2).

• E (R2), the space of infinitely differentiable functions on R2.
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• E
′

(σ1,σ2)(R
2); the space of distributions on R2, with support in

[−σ1, σ1]× [−σ2, σ2].

• S′(R2), the space of tempered distributions on R2.

• D
(σ1,σ2)
∗ (R2), the space of infinitely differentiable functions, even

with respect to the first variable and with support in
[−σ1, σ1]× [−σ2, σ2].

• D∗(R2) =
⋃

(σ1,σ2)∈(R∗+)2

D
(σ1,σ2)
∗ (R2)

• For all f ∈ H(σ1,σ2)(C2);

σf,i = sup
{∣∣Pi(r, x)

∣∣; (r, x) ∈ suppΛ−1
2 (Tf )

}
; i ∈ {0, 1},

with P0(r, x) = r and P1(r, x) = x; (r, x) ∈ R2, and Tf the tem-
pered distribution given by the function f .

The following result is a consequence of Bernstein’s inequality and the
theorem of Kolmogoroff [1, 5, 17].

Proposition 5.2. Let σ = (σ1, σ2) ∈ (R∗+)2. For all f ∈ Hσ(C2) ∩

Lp
(
dm2

)
; p ∈ [1,+∞], the functions ∂f

∂r
and ∂f

∂x
belong to Hσ(C2) ∩

Lp
(
dm2

)
; and we have

i. ∥∥ ∂
∂r
f
∥∥
p,m2

6 σ1
∥∥f∥∥
p,m2

.

ii. ∥∥ ∂
∂x
f
∥∥
p,m2

6 σ2
∥∥f∥∥
p,m2

.

Proposition 5.3. Let p ∈ [1,+∞] and f ∈ E (R2) such that, for all
(l1, l2) ∈ N2; the function

(r, x) 7−→
( ∂
∂r

)l1( ∂
∂x

)l2f(r, x)

belongs to Lp
(
dm2

)
. Then, for all n ∈ N∗ and k ∈ N; 0 < k < n, we have
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i. ∥∥∥( ∂
∂r

)k
f
∥∥∥n
p,m2

6
(π

2
)n ∥∥f∥∥n−k

p,m2

∥∥( ∂
∂r

)n
f
∥∥k
p,m2

.

ii.. ∥∥∥( ∂
∂x

)k
f
∥∥∥n
p,m2

6
(π

2
)n ∥∥f∥∥n−k

p,m2

∥∥( ∂
∂x

)n
f
∥∥k
p,m2

.

Proof. • In the case p = +∞, the proof can be found in [17].

• Suppose that p ∈ [1,+∞[ and let

h1(r, x) =
(
∂
∂r

)k
f(r, x)∣∣( ∂

∂r

)k
f(r, x)

∣∣
∣∣( ∂
∂r

)k
f(r, x)

∣∣p−1∥∥∣∣( ∂
∂r

)k
f
∣∣p−1∥∥

p′,m2

where p′ is the conjugate exponent of p. Then∥∥h1
∥∥
p′,m2

= 1 (5.4)

and∫ ∫
R2
h1(r, x)

( ∂
∂r

)k
f(r, x)dm2(r, x) =

∥∥∥( ∂
∂r

)k
f
∥∥∥
p,m2

. (5.5)

Let
F (r) =

∫ ∫
R2
h1(t, x)f(r + t, x)dm2(t, x).

Applying lemma 8 of [17] and using the hypothesis, we deduce that
the function F is infinitely differentiable on R, and we have

F (k)(r) =
∫ ∫

R2
h1(t, x)

( ∂
∂r

)k
f(r + t, x)dm2(t, x); 0 < k < n.

Then, by Hölder’s inequality, we get∣∣F (k)(r)
∣∣ 6 ∥∥h1

∥∥
p′,m2

∥∥∥( ∂
∂r

)k
f
∥∥∥
p,m2

,

and by (5.4), we deduce that for all k ∈ N; 0 < k < n∥∥F (k)∥∥
∞,m2

6
∥∥∥( ∂
∂r

)k
f
∥∥∥
p,m2

. (5.6)

On the other hand, using the relation (5.5) we have∣∣F (k)(0)
∣∣ =

∥∥∥( ∂
∂r

)k
f
∥∥∥
p,m2

. (5.7)
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However, applying the theorem of Kolmogoroff to F [11, 17], we
obtain ∥∥F (k)∥∥n

∞,m2
6
(π

2
)n∥∥F∥∥n−k∞,m2

∥∥F (n)∥∥k
∞,m2

. (5.8)

Combining the relations (5.6), (5.7) and (5.8) we obtain∥∥∥( ∂
∂r

)k
f
∥∥∥n
p,m2

6
(π

2
)n∥∥f∥∥n−k

p,m2

∥∥∥( ∂
∂r

)n
f
∥∥∥k
p,m2

.

• We obtain the result by the same way and using the function

G(x) =
∫ ∫

R2
h2(t, y) f(t, x+ y) dm2(t, y)

where

h2(r, x) =
(
∂
∂x

)k
f(r, x)∣∣( ∂

∂x

)k
f(r, x)

∣∣
∣∣( ∂
∂x

)k
f(r, x)

∣∣p−1∥∥∣∣( ∂
∂x

)k
f
∣∣p−1∥∥

p′,m2

.

�

Theorem 5.4. Let p ∈ [1,+∞] and let f be a function satisfying the
hypothesis of proposition 5.3.

1. If σf,0 + σf,1 < +∞, then the sequences
(∥∥( ∂

∂r

)k
f
∥∥ 1
k
p,m2

)
k

and(∥∥( ∂
∂x

)k
f
∥∥ 1
k
p,m2

)
k

converge respectively to σf,0 and σf,1.

2. If there exist (M1,M2) ∈ (R∗+)2 such that for all (l1, l2) ∈ N2

∥∥( ∂
∂r

)l1( ∂
∂x

)l2f∥∥
p,m2

6 M l11 M l22
∥∥f∥∥
p,m2

then, σf,0 < +∞ and σf,1 < +∞. Moreover, the sequences(∥∥( ∂
∂r

)k
f
∥∥ 1
k
p,m2

)
k

and
(∥∥( ∂

∂x

)k
f
∥∥ 1
k
p,m2

)
k

converge respectively to
σf,0 and σf,1.

Proof. 1. If f satisfies the hypothesis of Proposition 5.3, then Tf and
Λ−1

2 (Tf ) belong to S′(R2). Suppose that σf,0 + σf,1 < +∞.
Since the Fourier transform Λ2 is an isomorphism from E

′

(σf,0,σf,1)(R
2)

onto H(σf,0,σf,1)(C2), the function f lies in H(σf,0,σf,1)(C2).

387



L.T. Rachdi and A. Rouz

On the other hand, by proposition 5.3, for all n ∈ N∗ and k ∈ N;
0 < k < n; we have∥∥∥( ∂

∂r

)k
f
∥∥∥ 1
k

p,m2
6
(π

2
) 1
k
∥∥f∥∥ 1

k
− 1
n

p,m2

∥∥∥( ∂
∂r

)n
f
∥∥∥ 1
n

p,m2
. (5.9)

Applying the proposition 5.2, we get∥∥∥( ∂
∂r

)k
f
∥∥∥ 1
k

p,m2
6 σf,0

(π
2
) 1
k
∥∥f∥∥ 1

k
p,m2

,

then,

lim inf
k−→+∞

∥∥∥( ∂
∂r

)k
f
∥∥∥ 1
k

p,m2
6 σf,0. (5.10)

Now, from the inequality (5.9), we deduce that for all k ∈ N∗;∥∥∥( ∂
∂r

)k
f
∥∥∥ 1
k

p,m2

(π
2
)− 1
k
∥∥f∥∥− 1

k
p,m2

6 lim inf
n−→+∞

∥∥( ∂
∂r

)n
f
∥∥ 1
n
p,m2

then,

lim sup
k−→+∞

∥∥( ∂
∂r

)k
f
∥∥ 1
k
p,m2

6 lim inf
k−→+∞

∥∥( ∂
∂r

)k
f
∥∥ 1
k
p,m2

.

This shows that the sequence
(∥∥( ∂

∂r

)k
f
∥∥ 1
k
p,m2

)
k

converges and by (5.10)

lim
k−→+∞

∥∥( ∂
∂r

)k
f
∥∥ 1
k
p,m2

= σ0 6 σf,0.

Let’s prove that σ0 = σf,0. Indeed, suppose that σ0 < σf,0

• The case p = +∞.
let ε > 0 such that

σ0 + 2ε < σf,0 (5.11)

then, there exists M > 0 such that

∀ k ∈ N;
∥∥( ∂
∂r

)k
f
∥∥
∞,m2

6 M (σ0 + ε)k. (5.12)

From proposition 5.2 and the relation (5.12), we deduce that, for
all (l1, l2) ∈ N;∥∥( ∂

∂r

)l1( ∂
∂x

)l2f∥∥∞,m2
6 M (σ0 + ε)l1 σl2f,1.
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Let (µ, λ) ∈ C2, µ = x1 + iy1 and λ = x2 + iy2, we have

+∞∑
l1,l2=0

∣∣( ∂
∂r

)l1( ∂
∂x

)l2f(x1, x2)(iy1)l1(iy2)l2
∣∣

l1! l2!

6 M
( +∞∑
l1=0

(σ0 + ε)l1 |y1|l1
l1!

)( +∞∑
l2=0

σl2f,1|y2|l2

l2!

)
= M exp

(
(σ0 + ε)|=mµ|+ σf,1|=mλ|

)
.

This shows that f belongs to the space H(σ0+ε,σf,1)(C2). Again, by
Paley-Wiener Theorem’s it follows that

supp Λ−1
2 (Tf ) ⊂ [−σ0 − ε, σ0 + ε]× [−σf,1, σf,1].

Consequently;
σf,0 6 σ0 + ε,

which contradicts (5.11).

• The case p ∈ [1,+∞[.
Let ϕ ∈ D∗(R2); 0 6 ϕ 6 1 such that∫ ∫

R2
ϕ(r, x) dm2(r, x) = 1.

We put;
ϕn(r, x) = n2ϕ(nr, nx); n ∈ N∗

and

Fn(r, x) =
∫ ∫

R2
f(r + t, x+ y) ϕn(t, y) dm2(t, y). (5.13)

By applying lemma 8 of [17] and using the hypothesis, we deduce
that for all n ∈ N∗; the function Fn is infinitely differentiable on
R2 and for all k ∈ N; we have( ∂
∂r

)k
Fn(r, x) =

∫ ∫
R2

( ∂
∂r

)k
f(r + t, x+ y)ϕn(t, y) dm2(t, y).

By Hölder’s inequality, we get∥∥( ∂
∂r

)k
Fn
∥∥
∞,m2

6
∥∥( ∂
∂r

)k
f
∥∥
p,m2

∥∥ϕn∥∥p′,m2

6 n
1
p
∥∥( ∂
∂r

)k
f
∥∥
p,m2

(5.14)
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where p′ is the conjugate exponent of p, then,∥∥( ∂
∂r

)k
Fn
∥∥ 1
k
∞,m2

6 n
1
kp
∥∥( ∂
∂r

)k
f
∥∥ 1
k
p,m2

. (5.15)

>From the relation (5.13), we deduce that the function Fn can be
written in the form

Fn(r, x) = f ∗ ϕn(r, x),

where ∗ is the usual convolution product in R2.
So,

Λ−1
2 (TFn) = Λ2(ϕn) Λ−1

2 (Tf ).
In particular,

σFn,0 + σFn,1 < +∞.
Using the case p = +∞ and the relation (5.15), we deduce that

∀n ∈ N∗; σFn,0 6 σ0 6 σf,0. (5.16)

Consequently,
lim inf
n−→+∞

σFn,0 6 σf,0.

Suppose that
lim inf
n−→+∞

σFn,0 < σf,0,

then, there exists r ∈ P0
(
supp Λ−1

2 (Tf )
)

such that∣∣r∣∣ > lim inf
n−→+∞

σFn,0 = a.

We assume that r > 0 (the same proof holds if r < 0).
Let ε > 0 such that a < r − 3ε. There exists a subsequence(
σFθ(n),0

)
n

satisfying,

∀n ∈ N∗; σFθ(n),0 < r − 2ε. (5.17)

Now, since the sequence (ϕn)n is an approximate identity and
using the relation (5.13), we deduce that

lim
n−→+∞

∥∥Fθ(n) − f
∥∥
p,m2

= 0

and consequently,

lim
n−→+∞

Λ−1
2
(
TFθ(n)

)
= Λ−1

2 (Tf ) (5.18)
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in S′(R2).
Let ψ ∈ D∗(R2) such that

P0
(
supp(ψ)

)
⊂
[
r − ε, r + ε

]
and

< Λ−1
2 (Tf ), ψ > 6= 0.

However, by (5.17) for all n ∈ N;
< Λ−1

2
(
TFθ(n)

)
, ψ >= 0

and by (5.18)
< Λ−1

2 (Tf ), ψ > = 0.
Which gives a contradiction. Hence,

lim inf
n−→+∞

σFn,0 = σf,0.

Using, the relation (5.16), we deduce that
σ0 = σf,0

which means that

lim
k−→+∞

∥∥( ∂
∂r

)k
f
∥∥ 1
k
p,m2

= σf,0.

By the same way, we prove that

lim
k−→+∞

∥∥( ∂
∂x

)k
f
∥∥ 1
k
p,m2

= σf,1.

2. Suppose that there exists (M1,M2) ∈ (R∗+)2 such that

∀(k1, k2) ∈ N2;
∥∥∥( ∂
∂r

)k1( ∂
∂x

)k2f
∥∥∥
p,m2

6 Mk1
1 Mk2

2
∥∥f∥∥
p,m2

• The case p = +∞.
Let z1 = x1 + iy1 and z2 = x2 + iy2; we have

∑
(k1,k2)∈N2

∣∣∣
( ∂
∂z1

)k1( ∂
∂z2

)k2f(x1, x2) (iy1)k1(iy2)k2

k1! k2!

∣∣∣
6
∥∥f∥∥∞,m2

∞∑
k1=0

(
M1|y1|

)k1

k1!

∞∑
k2=0

(
M2|y2|

)k2

k2!

=
∥∥f∥∥∞,m2

eM1|=mz1|+M2|=mz2|.
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This shows that the function f is entire on C2, slowly increasing
of exponential type and by Paley-Wiener theorem’s for the distri-
butions, we deduce that

supp Λ−1
2 (Tf ) ⊂ [−M1,M1]× [−M2,M2].

In particular, σf,0 + σf,1 is finite and from the first assumption of
this theorem, the sequences(∥∥( ∂

∂r

)k
f
∥∥ 1
k
p,m2

)
k

and
(∥∥( ∂

∂x

)k
f
∥∥ 1
k
p,m2

)
k

converge respectively to σf,0 and σf,1.

• The case p ∈ [1,+∞[.
Let

(
Fn
)
n

be the sequence defined by

Fn(r, x) =
∫ ∫

R2
f(r + t, x+ y) ϕn(t, y) dm2(t, y).

By the relation (5.14); for all (k1, k2) ∈ N2;∥∥( ∂
∂r

)k1( ∂
∂x

)k2Fn
∥∥
∞,m2

6
∥∥f∥∥
p,m2

n
1
p Mk1

1 Mk2
2 .

>From the case p = +∞; we deduce that for all n ∈ N, the function
Fn is entire on C2, and for all (z1, z2) ∈ C2;∣∣Fn(z1, z2)

∣∣ 6 n
1
p
∥∥f∥∥∞,m2

eM1|=mz1|+M2|=mz2|,

which implies that for all n ∈ N∗;
supp Λ−1

2 (TFn) ⊂ [−M1,M1]× [−M2,M2].
Since,

(
Λ−1

2 (TFn)
)
n

converges to Λ−1
2 (Tf ) in S′(R2), we deduce

that;
supp Λ−1

2 (Tf ) ⊂ [−M1,M1]× [−M2,M2].
This achieves the proof.

�

We denote by

• γ̃α the measure defined on Γ+ by

dγ̃α(µ, λ) = 2αΓ(α+ 1)
√

2π
(
µ2 + λ2)α+ 1

2
dγα(µ, λ).
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• Lp(dγ̃α); 1 6 p 6 +∞ the space of measurable functions on Γ+
satisfying

∥∥f∥∥
p,γ̃α

=



(∫ ∫
Γ+

∣∣f(µ, λ)
∣∣pdγ̃α(µ, λ)

) 1
p

< +∞, if 1 6 p < +∞;

ess sup
(µ,λ)∈Γ+

∣∣f(µ, λ)
∣∣ < +∞, if p = +∞.

Lemma 5.5. The mapping Wα defined on D∗(R2) by

Wα(g)(r, x) = 1
2α+ 1

2 Γ(α+ 1
2)

∫ +∞

r

(
t2 − r2)α− 1

2 g(t, x) 2t dt

is a topological isomorphism from D∗(R2) onto itself.
The inverse isomorphism is given by

W−1
α (f) = (−1)[α]+1 W[α]+1−α

(( ∂
∂r2

)[α]+1(f)
)
.

Moreover, for all g ∈ D∗(R2);
sup

{∣∣Pi(r, x)
∣∣; (r, x) ∈ supp Wα(g)

}
= sup

{∣∣Pi(r, x)
∣∣; (r, x) ∈ supp g

}
(5.19)

The proof of this lemma can be found in [19, 20]

Proposition 5.6. Let f be a function in S∗(R2). Then, the function
F̃−1
α (f)

belongs to the space D∗(R2) if, and only if for all p ∈ [1,+∞], there exist
(M1,M2) ∈ (R∗+)2 such that

∀(k1, k2) ∈ N2;
∥∥∥( ∂
∂r

)k1( ∂
∂x

)k2f
∥∥∥
p,m2

6 Mk1
1 Mk2

2
∥∥f∥∥
p,m2

.

Moreover, the sequences
(∥∥( ∂

∂r

)k
f
∥∥ 1
k
p,m2

)
k

and
(∥∥( ∂

∂x

)k
f
∥∥ 1
k
p,m2

)
k

converge
respectively to σf,0 and σf,1.

Proof. • Suppose that F̃−1
α (f) belongs to the space D∗(R2).

Since, the transform F̃α is an isomorphism from D∗(R2) onto
H∗(C2), then there exist (σ1, σ2) ∈ (R∗+)2 such that

f ∈ H(σ1,σ2)(C2) ⊂ H(σ1,σ2)(C2),
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and from Proposition 5.2, we have∥∥( ∂
∂r

)k1f
∥∥
p,m2

6 σk1
1
∥∥f∥∥
p,m2

and ∥∥( ∂
∂x

)k2f
∥∥
p,m2

6 σk2
2
∥∥f∥∥
p,m2

.

Then, for all (k1, k2) ∈ N2;∥∥∥( ∂
∂r

)k1( ∂
∂x

)k2f
∥∥∥
p,m2

6 σk1
1 σk2

2
∥∥f∥∥
p,m2

and by assertion 2) of theorem 5.4, we deduce that the sequences(∥∥( ∂
∂r

)k
f
∥∥ 1
k
p,m2

)
k

and
(∥∥( ∂

∂x

)k
f
∥∥ 1
k
p,m2

)
k

converge respectively to
σf,0 and σf,1.

• Conversely, suppose that there exists (M1,M2) ∈ (R∗+)2 such that

∀(k1, k2) ∈ N2;
∥∥∥( ∂
∂r

)k1( ∂
∂x

)k2f
∥∥∥
p,m2

6 Mk1
1 Mk2

2
∥∥f∥∥
p,m2

.

Again, From the second assertion of theorem 5.4, we deduce that
the distribution Λ−1

2 (Tf ) has a bounded support. Since, the map-
ping Λ2 is a topological isomorphism from S∗(R2) onto itself, then
Λ−1

2 (f) lies in D∗(R2). Now, from the relation

F̃−1
α = W−1

α ◦ Λ−1
2

and by lemma 5.5, it follows that F̃−1
α (f) belongs to D∗(R2).

�

Remark 5.7. For every f ∈ S∗(R2) and (k1, k2) ∈ N2, we have

Ek1 Ck2 B(f) = B
(( ∂
∂r

)k1( ∂
∂x

)k2f
)

where
E =

(
µ2 + λ2) 1

2
∂

∂µ2 ,

B and C are defined as above. Then, by the relation (2.8), we deduce that∥∥Ek1 Ck2 B(f)
∥∥
p,γ̃α

=
∥∥∥( ∂
∂r

)k1( ∂
∂x

)k2f
∥∥∥
p,m2

. (5.20)
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Theorem 5.8. (Paley-Wiener-Schwartz) Let f be a function in S∗(Γ).
Then, the function F−1

α (f) belongs to the space D∗(R2) if, and only if for
all p ∈ [1,+∞], there exist (M1,M2) ∈ (R∗+)2 such that

∀(k1, k2) ∈ N2;
∥∥∥Ek1 Ck2 (f)

∥∥∥
p,γ̃α

6 Mk1
1 Mk2

2
∥∥f∥∥
p,γ̃α

.

Moreover, the sequences
(∥∥Ek(f)

∥∥ 1
k

p,γ̃α

)
k

and
(∥∥Ck(f)

∥∥ 1
k

p,γ̃α

)
k

converge re-
spectively to δf,0 and δf,1; where

δf,i = sup
{∣∣Pi(r, x)

∣∣; (r, x) ∈ supp F−1
α (f)

}
; i ∈ {0, 1}.

Proof. We know that the Fourier transform Fα is a topological isomor-
phism from S∗(R2) onto S∗(Γ), where the isomorphism inverse is given
by

F−1
α (f)(r, x) =

∫ ∫
Γ+
f(µ, λ)ϕµ,λ(r, x)dγα(µ, λ).

Also; the Fourier-Bessel transform F̃α is a topological isomorphism from
S∗(R2) onto itself. Then, from the relation (2.6), we deduce that the map-
ping B defined by the relation (2.7) is an isomorphism from S∗(R2) onto
S∗(Γ).
Let f ∈ S∗(Γ) and g = B−1(f), we have;

F−1
α (f) = F̃−1

α (g).

>From proposition 5.6, F̃−1
α (g) belongs to D∗(R2) if, and only if for all

p ∈ [1,+∞], there exists (M1,M2) ∈ (R∗+)2 such that

∀(k1, k2) ∈ N2;
∥∥∥( ∂
∂r

)k1( ∂
∂x

)k2g
∥∥∥
p,m2

6 Mk1
1 Mk2

2
∥∥g∥∥
p,m2

. (5.21)

Using the relation (5.20), when applied to the function g and the fact that∥∥f∥∥
p,γ̃α

=
∥∥g∥∥
p,m2

,

we deduce that, the function F−1
α (f) belongs to D∗(R2) if, and only if,

for all p ∈ [1,+∞], there exists (M1,M2) ∈ (R∗+)2 such that

∀(k1, k2) ∈ N2;
∥∥∥Ek1 Ck2 f

∥∥∥
p,γ̃α

6 Mk1
1 Mk2

2
∥∥f∥∥
p,γ̃α

.

From the relation (5.21) and proposition 5.6, the sequences(∥∥( ∂
∂r

)k
g
∥∥ 1
k
p,m2

)
k

and
(∥∥( ∂

∂x

)k
g
∥∥ 1
k
p,m2

)
k
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converge respectively to σg,0 and σg,1. However,

∀i ∈ {0, 1}; σg,i = sup
{∣∣Pi(r, x)

∣∣; (r, x) ∈ supp Λ−1
2 (g)

}
and by the relation (5.19);

σg,i = sup
{∣∣Pi(r, x)

∣∣; (r, x) ∈ supp W−1
α

(
Λ−1

2 (g)
)}

= sup
{∣∣Pi(r, x)

∣∣; (r, x) ∈ supp F−1
α (f)

}
= δf,i.

�
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