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Lp,q-cohomology of warped cylinders

Yaroslav Kopylov

Abstract

We extend some results by Gol′dshtein, Kuz′minov, and Shvedov about the Lp-
cohomology of warped cylinders to Lp,q-cohomology for p 6= q. As an application,
we establish some sufficient conditions for the nontriviality of the Lp,q-torsion of a
surface of revolution.

Cohomologie Lp,q des cylindres tordus
Résumé

On généralise quelques résultats par Gol′dshtein, Kuz′minov et Shvedov sur
la cohomologie Lp des cylindres tordus à cohomologie Lp,q pour p 6= q. Comme
application, on établit des conditions suffisantes pour la non-nullité de la torsion
Lp,q d’une surface de révolution.

1. Introduction

Let M be a Riemannian manifold. For 1 ≤ p ≤ ∞ and a positive con-
tinuous function σ : M → R, denote by Ljp(M,σ) the Banach space of
measurable forms of degree j on M with the finite norm

‖ω‖
Ljp(M,σ) =


{∫

M |ω(x)|pσp(x) dx
}1/p

if 1 ≤ p <∞,

ess sup x∈M |ω(x)|σ(x) if p =∞.

Here dx stands for the volume element of M and |ω(x)| is the modulus
of the exterior form ω(x). In the usual way, we also define the spaces
Lp,loc(M).

Denote by Dj(M) = C∞,j0 (M) the space of smooth forms of degree j
on M having compact support included in IntM . A form ψ ∈ Lj+1

1,loc(M)

Keywords: Differential form, Lp,q-cohomology, Lp,q-torsion, warped cylinder.
Math. classification: 58A12, 46E30.
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is called the (weak) differential dω of ω ∈ Lj1,loc(M) if∫
U

ω ∧ du = (−1)j+1
∫
U

ψ ∧ u

for every orientable domain U ⊂ IntM and every form u ∈ DdimM−j−1(M)
having support in U .

For two weights σj , σj+1 on M , put

W j
p,q(M,σj , σj+1) = {ω ∈ Ljp(M,σj) | dω ∈ Lj+1

q (M,σj+1)}.

The space W j
p,q(M,σj , σj+1) is endowed with the norm

‖ω‖
W jp,q(M,σj ,σj+1) = ‖ω‖

Ljp(M,σj) + ‖dω‖
Lj+1
q (M,σj+1).

If p = q then it is often more convenient to consider the equivalent norm

‖ω‖
W jp (M,σj ,σj+1) =

(
‖ω‖p

Ljp(M,σj)
+ ‖dω‖p

Lj+1
p (M,σj+1)

)1/p
.

In the sequel we let V j
p,q(M,σj , σj+1) denote the closure of Dj(M) in the

norm of W j
p,q(M,σj , σj+1).

Given an arbitrary subset A ⊂ M , let W j
p,q(M,A, σj , σj+1) be the

closure in W j
p,q(M,σj , σj+1) of the subspace spanned by all forms ω ∈

W j
p,q(M,σj , σj+1) which vanish on some neighborhood of A (depending

on ω).
Let Zjq (M,σj) be the subspace in W j

q,q(M,σj , σj) that consists of all
forms ω such that dω = 0 and let

Bj
p,q(M,σj−1, σj) = {θ ∈W j

q,q(M,σj , σj)
| θ = dψ for some ψ ∈W j−1

p,q (M,σj−1, σj)}.

The spaces

Hj
p,q(M,σj−1, σj) = Zjq (M,σj)/Bj

p,q(M,σj−1, σj)

and
H
j
p,q(M,σj−1, σj) = Zjq (M,σj)/B

j
p,q(M,σj−1, σj),

where Bj
p,q(M,σj−1, σj) is the closure of Bj

p,q(M,σj−1, σj) in Ljq(M,σj)
(equivalently, in W j

q,q(M,σj , σj)) are called the jth Lp,q-cohomology and
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the jth reduced Lp,q-cohomology of the Riemannian manifold M with
weights σj−1 and σj . The quotient space

T jp,q(M,σj−1, σj) = B
j
p,q(M,σj−1, σj)/Bj

p,q(M,σj−1, σj)
will be referred to as the Lp,q-torsion of M with the given weights. Clearly,
the space T jp,q(M,σj−1, σj) is isomorphic to the closure of the zero in
Hj
p,q(M,σj−1, σj).
Given a subset A ⊂ M , the relative nonreduced and reduced Lp,q-

cohomology spaces Hj
p,q(M,A, σj−1, σj) and H

j
p,q(M,A, σj−1, σj) are de-

fined as
Hj
p,q(M,A, σj−1, σj) = Zjq (M,A, σj)/Bj

p,q(M,A, σj−1, σj)
and

H
j
p,q(M,A, σj−1, σj) = Zjq (M,A, σj)/B

j
p,q(M,A, σj−1, σj),

where the relative spaces Zjq (M,A, σj) and Bj
p,q(M,A, σj−1, σj) are de-

fined as their absolute analogs above with the spaces W j
p,q(M,σj , σj) and

W j−1
p,q (M,σj−1, σj) replaced by the spaces

W j
p,q(M,A, σj , σj) and W j−1

p,q (M,A, σj−1, σj).
For p = q, we write the subscript p instead of p, p throughout. If the

weights involved in the definition of the corresponding space are equal to 1
then they will be omitted.

The spaces Wp,q and Lp,q-cohomology were introduced at the begin-
ning of the 1980’s by Gol′dshtein, Kuz′minov, and Shvedov [3, 4, 5, 6, 7,
8], who obtained many results concerning Wp,q-forms and especially Lp-
cohomology. Later Lp,q-cohomology was considered in [11, 12, 13, 14, 15,
17, 22].

In this paper, we, following [9, 10], look for conditions of the nontrivial-
ity of the Lp,q-cohomology and Lp,q-torsion on warped cylinders, a class of
warped products of Riemannian manifolds. By the warped product X×f Y
of two Riemannian manifolds (X, gX) and (Y, gY ) with the warping func-
tion f : X → R+ we mean the product manifold X × Y endowed with
the metric gX + f2(x)gY . If X = [a, b[ is a half-interval on the real line
then X ×f Y is referred to as the warped cylinder. The study of the L2-
cohomology of warped cylinders was initiated by Cheeger [2].

The structure of the article is as follows. In Section 2, we adapt the
results of [9] about the Lp-cohomology of a half-interval to the case p 6= q.
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After that, using these Lp,q-results, in Section 3, we prove a partial Lp,q-
generalization of Theorem 1 of [9] about the Lp-cohomology of a warped
cylinder [a, b[×fY depending on the analytic properties of the function f .
As an application, we obtain an extension of the necessary condition for
the triviality of the Lp,q-torsion of a surface of revolution in Rn+2 [16]
from the case p = q to arbitrary p,q such that 1

q −
1
p <

1
n+1 .

2. Weighted Lp,q-cohomology of a half-interval

Consider a half-interval [a, b[, −∞ < a < b ≤ ∞ and positive continuous
functions v0, v1 : [a, b[→ R. For 1 < p, q <∞, the space W 0

p,q([a, b[, v0, v1)
can be identified with the space of the functions g ∈ Lp([a, b[, v0) whose
weak derivative g′ ∈ Lq([a, b[, v1). As above, endow W 0

p,q([a, b[, v0, v1) with
the norm

‖g‖W 0
p,q([a,b[,v0,v1) =

(∫ b

a
|g(t)|pvp0dt

)1/p
+
(∫ b

a
|g′(t)|qvq1dt

)1/q
.

From the classical Sobolev Embedding Theorem it follows that the func-
tions of the class W 0

p,q([a, b[, v0, v1) are continuous on [a, b[. Consider also
the space

W 0
p,q([a, b[, {a}, v0, v1) = {f ∈W 0

p,q([a, b[, {a}, v0, v1) | f(a) = 0}.

We have

H1
p,q([a, b[, v0, v1) = W 1

q ([a, b[, v1, v1)/dW 0
p,q([a, b[, v0, v1);

H1
p,q([a, b[, {a}, v0, v1) = W 1

q ([a, b[, {a}, v1, v1)/dW 0
p,q([a, b[, {a}, v0, v1).

The spaces H1
p,q([a, b[, v0, v1) and H1

p,q([a, b[, {a}, v0, v1) are described sim-
ilarly.

We call the following assertion the lemma about the Hardy inequality [1,
10, 21]:

Lemma 2.1. Suppose that 1 ≤ p, q ≤ ∞, 1
q + 1

q′ = 1, α, β ∈ [−∞,∞], Iα,β
is the interval with endpoints α and β, v0 and v1 are continuous positive
functions on Iα,β. Then for the existence of a global constant C such that∣∣∣∣∫ β

α

∣∣∣∣v0(t)
∫ τ

α
g(t)dt

∣∣∣∣pdτ ∣∣∣∣1/p ≤ C∣∣∣∣∫ β

α
|v1(t)g(t)|qdt

∣∣∣∣1/q
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for every g ∈ Lq(Iα,β, v1), it is necessary and sufficient that
χp,q(α, β, v0, v1) <∞ .

Here

χp,q(α, β, v0, v1) = sup
τ∈Iα,β

{∣∣∣∣∫ β

τ
|v0(t)|pdt

∣∣∣∣1/p∣∣∣∣∫ τ

α
|v1(t)|−q′dt

∣∣∣∣1/q
′}

if p ≥ q;

χp,q(α, β, v0, v1)

=
∣∣∣∣∣
∫ β

α

(∣∣∣∣∫ τ

α
|v1(t)|−q′dt

∣∣∣∣p−1∣∣∣∣∫ β

τ
|v0(t)|pdt

∣∣∣∣)
q
q−p
|v1(τ)|−q′dτ

∣∣∣∣
q−p
pq

if p < q.
If p = 1 (q′ = ∞) then the corresponding integral must be replaced by

ess sup.
The constant χp,q(α, β, v0, v1) will be referred to as the Hardy constant.
The following lemma was proved in [9] for p = q and v0 = v1. The proof

given in [9] holds for different p and q and different v0 and v1.
Lemma 2.2. Suppose that α, β ∈ [−∞,∞], v0, v1 : Iα,β → R are posi-
tive continuous functions, and χp,q(α, β, v0, v1) = ∞. Then there exists a
nonnegative function h such that∣∣∣∣∫ β

α
vq1(t)hq(t)dt|

∣∣∣∣ <∞, ∣∣∣∣∫ β

α
vp0(τ)

∣∣∣∣∫ τ

α
h(t)dt

∣∣∣∣pdτ ∣∣∣∣ =∞.

As in [9], Lemma 2 yields the following assertion.
Theorem 2.3. If v0, v1 are positive continuous functions on [a, b[ and
1 < p, q <∞ then

(1) H1
p,q([a, b[, {a}, v0, v1) = 0⇐⇒ χp,q(a, b, v0, v1) <∞;

(2) H1
p,q([a, b[, v0, v1)=0⇐⇒χp,q(a, b, v0, v1)<∞ or χp,q(b, a, v0, v1)<∞.

Let
0→ A

ϕ→ B
ψ→ C → 0 (2.1)

be an exact sequence of Banach complexes, i.e., complexes in the category
of Banach spaces and bounded linear operators. Sequence (2.1) yields an
exact sequence of the cohomology spaces

· · · → Hk−1(C) ∂→ Hk(A) ϕ∗→ Hk(B) ψ
∗
→ Hk(C)→ . . .
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with continuous operators ∂∗, ϕ∗, ψ∗ and a semi-exact sequence of the
reduced cohomology spaces

· · · → H
k−1(C) ∂→ H

k(A) ϕ∗→ H
k(B) ψ

∗

→ H
k(C)→ . . . (2.2)

Under certain conditions, sequence (2.2) is exact at some terms (see [10,
18, 20]). In particular, Gol′dshtein, Kuz′minov, and Shvedov proved the
following assertion in [10, Theorem 1(1)]:

Lemma 2.4. If Hk(C) is separated and dim ∂(Hk−1(C)) < ∞ then the

sequence Hk−1(C) ∂→ H
k(A) ϕ∗→ H

k(B) ψ
∗

→ H
k(C) is exact.

As was explained in [12], we can describe the jth weighted Lp,q-cohomo-
logy of an n-dimensional Riemannian manifold M with given weights σj−1
and σj in terms of Banach complexes. To this end, consider an arbitrary
sequence π = {p0, p1, . . . , pn} ⊂ [1,∞] with pj−1 = p and pj = q and a
sequence of positive continuous weights σ = {σk}nk=0 with the given σj−1
and σj . Given a subset A ⊂M , put

W k
π (M,A, σ) = Wpk,pk+1(M,A, σk, σk+1).

Here we have assumed that pn+1 = pn and σn+1 = σn.
Since the exterior differential is a bounded operator

dk−1 : W k−1
π (M,A, σ)→W k

π (M,A, σ),
we obtain a Banach complex

0→W 0
π (M,A, σ) d0

→W 1
π (M,A, σ)→ . . .

dn−1
→ Wn

π (M,A, σ)→ 0. (2.3)
By the k-th Lπ-cohomology Hk

π(M,A, σ) (reduced k-th Lπ-cohomology
H
k
π(M,A, σ)) of the Riemannian manifold M with respect to A with weight

σ we mean the cohomology (reduced cohomology) of (2.3). Thus,

Hk
π(M,A, σ) = Hk

pk−1,pk(M,A, σk−1, σk)

and

H
k
π(M,A, σ) = H

k
pk−1,pk(M,A, σk−1, σk)

for all k. In particular,
Hj
π(M,A, σ) = Hj

p,q(M,A, σj−1, σj),

H
j
π(M,A, σ) = H

j
p,q(M,A, σj−1, σj).
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Take M = [a, b[, A = {a}, 1 < p, q < ∞, π = {p, q}, and a pair of
weights v = {v0, v1}. We have the following exact sequence of Banach
complexes:

0→W ∗π ([a, b[, {a}, v) j→W ∗π ([a, b[, v) i→ H∗({a})→ 0,

where H∗({a}) is the complex with the only nontrivial term H0({a}) = R.
Here the mappings i and j are defined as follows: j is the inclusion mapping;
if g ∈ W 0

π ([a, b[, v) then ig = g(a) (recall that g is continuous) and in
dimension one j is zero. Lemma 2.4 yields the exact sequence

R = H0({a}) ∂→ H
1
p,q([a, b[, {a}, v0, v1) j

∗

→ H
1
p,q([a, b[, v0, v1).

Thus, we infer the following assertion, proved for p = q in [9]. With
what has been said above, the proof of [9] extends to the case of p 6= q
without change.

Theorem 2.5. If v0, v1 are positive continuous functions on [a, b[, 1 <
p <∞, 1 < q <∞, 1

q + 1
q′ = 1 then

(1) H1
p,q([a, b[, v0, v1) = 0;

(2) H
1
p,q([a, b[, {a}, v0, v1) = 0 if and only if

b∫
a
v−q

′

1 (t)dt = ∞ or
b∫
a
vp0(t)dt <∞;

(3) If Hp,q([a, b[, {a}, v0, v1) 6= 0 then

∂ : R = H0({a})→ H
1
p,q([a, b[, {a}, v0, v1)

is an isomorphism.

3. Lp,q-cohomology of the warped cylinder Cfa,b

Let Y be an orientable manifold of dimension n, Cfa,bY = [a, b[×fY . Put
Ya = {a} × Y . Generally speaking, Cfa,b is a Lipschitz Riemannian mani-
fold in the sense of [3] but we will assume throughout for simplicity that
∂Y = ∅ to make Cfa,b smooth, which will be enough for our purposes.

Suppose that 1 < p <∞ and 1 < q <∞.
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In [9], Gol′dshtein, Kuz′minov, and Shvedov introduced the bilinear
mapping

ν : Lj−1
p (Y )× L1

p([a, b[, f
n
p
−j+1)→ Ljp(C

f
a,bY ),

ν(ϕ, gdt) = gdt ∧ ϕ. In [9] it was proved that ν is continuous and if
ϕ ∈ Zj−1

p (Y ) then νϕ = ν(ϕ, ·) : L1
p([a, b[, f

n
p
−j+1) → Ljp(C

f
a,bY ) induces

continuous mappings

ν∗ϕ : H1
p ([a, b[, f

n
p
−j+1)→ Hj

p(Cfa,bY );

ν̃∗ϕ : H1
p ([a, b[, {a}, f

n
p
−j+1)→ Hj

p(Cfa,bY, Ya).

Supposing that ϕ ∈ Zj−1
p (Y )∩Zj−1

q (Y ), we similarly become convinced
that the mapping νϕ = ν(ϕ, ·) induces continuous mappings

ν∗ϕ : H1
p,q([a, b[, f

n
p
−j+1

, f
n
q
−j+1)→ Hj

p,q(C
f
a,bY );

ν̃∗ϕ : H1
p,q([a, b[, {a}, f

n
p
−j+1

, f
n
q
−j+1)→ Hj

p,q(C
f
a,bY, Ya).

Now, assume that ψ ∈ Ln+1−j
p′ (Y ) (p′ = p

p−1) and ω ∈ Ljp(Ca,bY ). Write
ω in the form ω = ωA + dt ∧ ωB, where ωA, ωB do not contain dt [10].
Following [9], introduce the continuous operator

µψ : Ljp(C
f
a,bY )→ L1

p([a, b[, f
n
p
−j+1)

by the formula

µψω =
(∫

Y
ωB(t) ∧ ψ

)
dt.

The following lemma was proved in [9] for p = q and ψ ∈ V n−j+1
p′ (Y ).

The proof in [9] easily extends to p 6= q:

Lemma 3.1. If ψ ∈ Dn−j+1(Y ) and dψ = 0 then µψ induces continuous
mappings

µ∗ψ : Hj
p,q(C

f
a,bY )→ H1

p,q([a, b[, f
n
p
−j+1

, f
n
q
−j+1);

µ̃∗ψ : Hj
p,q(C

f
a,bY, Ya)→ H1

p,q([a, b[, {a}, f
n
p
−j+1

, f
n
q
−j+1)

We have the following theorem partially generalizing item 7 of Theo-
rem 1 in [9]:

Theorem 3.2. Suppose that Y is an orientable n-dimensional Riemann-
ian manifold, ∞ < a < b ≤ ∞, f : [a, b[→ R is a positive continu-
ous function, 1 < p < ∞, 1 < q < ∞. Assume that there exists ϕ ∈
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Zj−1
p (Y )∩Zj−1

q (Y ) such that
∫
Y ϕ∧γ 6= 0 for some form γ ∈ Dn−j+1(Y ),

dγ = 0.
The following hold:
(1) if χp,q(a, b, f

n
p
−j+1

, f
n
q
−j+1) =∞ then Hj

p,q(C
f
a,bY, Ya) 6= 0;

(2) if χp,q(a, b, f
n
p
−j+1

, f
n
q
−j+1) = ∞ and χp,q(b, a, f

n
p
−j+1

, f
n
q
−j+1)=

∞ then T jp,q(C
f
a,bY ) 6= 0 and, hence, dimHj

p,q(C
f
a,bY ) =∞.

Proof. Let ϕ ∈ Zj−1
p (Y ) ∩ Zj−1

q (Y ) be a cocycle having the property
mentioned in the theorem and let γ ∈ Dn−j+1(M) be a form such that∫
Y ϕ ∧ γ = 1. Then µ∗γ ◦ ν∗ϕ = id, µ̃∗γ ◦ ν̃∗ϕ = id [9]. Consequently, the

mappings

ν∗ϕ : H1
p,q([a, b[, f

n
p
−j+1

, f
n
q
−j+1)→ Hj

p,q(C
f
a,bY )

and

ν̃∗ϕ : H1
p,q([a, b[, {a}, f

n
p
−j+1

, f
n
q
−j+1)→ Hj

p,q(C
f
a,bY, Ya)

are injective.
Suppose that χp,q(a, b, f

n
p
−j+1

, f
n
q
−j+1) = ∞. Then, by Theorem 2.3,

H1
p,q([a, b[, {a}, f

n
p
−j+1

, f
n
q
−j+1) 6= 0. Therefore, Hj

p,q(C
f
a,bY, Ya) 6= 0.

Assume now that

χp,q(a, b, f
n
p
−j+1

, f
n
q
−j+1) =∞

and

χp,q(b, a, f
n
p
−j+1

, f
n
q
−j+1) =∞.

Then, by Theorem 2.3, H1
p,q([a, b[, f

n
p
−j+1

, f
n
q
−j+1) 6= 0. Since, by Theo-

rem 2.5, Hp,q([a, b[, f
n
p
−j+1

, f
n
q
−j+1) = 0, we have

T 1
p,q([a, b[, f

n
p
−j+1

, f
n
q
−j+1) 6= 0.

Now, if we had T jp,q(C
f
a,bY ) = 0, ν∗ϕ would be a continuous injective map-

ping with values in the Hausdorff space Hj
p,q(C

f
a,bY ), and so the coho-

mology space H1
p,q([a, b[, f

n
p
−j+1

, f
n
q
−j+1) would also be Hausdorff, i.e.,

without torsion. Thus, T jp,q(C
f
a,bY ) 6= 0. The theorem is proved. �
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Lp,q-torsion of a surface of revolution

Let M be a surface of revolution in Rn+2, i.e., the (n + 1)-dimensional
surface defined by the equation

f2(x1) = x2
2 + · · ·+ x2

n+2, (x1, . . . , xn+2) ∈ Rn+2, x1 ≥ 0, (3.1)

where f : [0,∞[→ R is a positive smooth function. The manifold M is the
product [0,∞[×Sn endowed with the metric

gM = (1 + f ′2(x1))dx2
1 + f2(x1)dy2

induced from Rn+2, where dx2
1 and dy2 are the conventional Riemannian

metrics on [0,∞[ and the sphere Sn. In other words, M may be consid-
ered as the warped product [0,∞[×FSn, where F = f ◦ G−1, G(x) =∫ x

0
√

1 + f ′2(t)dt.
In [17], we have proved the following fact:

Theorem 3.3. Suppose that f is unbounded, p, q ∈ [1,∞[, 1
q −

1
p <

1
n+1 ,

1 ≤ j ≤ n+ 1. Then T jp,q(M) 6= 0.

Kuz′minov and Shvedov [19] established that when f is bounded from
above, T jp (M) is zero for all j, 2 ≤ j ≤ n and that, for j = 1, n + 1,
the triviality of T jp (M) depends on the finiteness of some Hardy con-
stants. This is due to the connection between the Lp-cohomology of the
warped product Cfa,bY and the weighted Lp-cohomology of [a, b[ given in
the mentioned papers [9, 10]. Above we have shown that there is a con-
nection of this type for Lp,q-cohomology. Namely, by Theorem 3.2, since
Sn is compact and the de Rham cohomology Hj−1(Sn) of Sn is nontrivial
if j = 1, n + 1, for T jp,q(M) (j = 1, n + 1) to be zero, it is necessary that
χp,q(0,∞, F

n
p
−j+1

, F
n
q
−j+1) <∞ or χp,q(∞, 0, F

n
p
−j+1

, F
n
q
−j+1) <∞.

The main result of this section is a generalization of Theorems 2 and 2′
of [16] and is formulated as follows:

Theorem 3.4. Let M be the surface of revolution (3.1). Suppose that
1 < p <∞, 1 < q <∞, 1

q −
1
p <

1
n+1 , j ∈ {1, n+ 1}. If T jp,q(M) = 0 then

lim
x→∞

f(x) = 0 and volM <∞.

Proof. Put k = j − 1, q′ = q
q−1 .
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We have the following equalities:

χ0
p,q ≡ χp,q(0,∞, F

n
p−k, F

n
q−k)

= sup
τ>0

{( ∞∫
τ

fn−kp(t)
√

1 + f ′2(t)dt
)1/p( τ∫

0

f−(nq−k)q
′
(t)
√

1 + f ′2(t)dt
)1/q′}

;

χ∞p,q ≡ χp,q(∞, 0, F
n
p−k, F

n
q−k)

= sup
τ>0

{( τ∫
0

fn−kp(t)
√

1 + f ′2(t)dt
)1/p( ∞∫

τ

f−(nq−k)q
′
(t)
√

1 + f ′2(t)dt
)1/q′}

if p ≥ q;

χ0
p,q ≡ χp,q(0,∞, F

n
p
−k
, F

n
q
−k)

=
( ∞∫

0

[(H(x)∫
0

f
−(n
q
−k)q′(t)

√
1 + f ′2(t)dt

)p−1 ∞∫
H(x)

fn−kp(t)
√

1 + f ′2(t)dt
] q
q−p

× f−(n
q
−k)q′(x)

√
1 + f ′2(x)dx

) q−p
qp

; (3.2)

χ∞p,q ≡ χp,q(∞, 0, F
n
p
−k
, F

n
q
−k)

=
( ∞∫

0

[( ∞∫
H(x)

f
−(n
q
−k)q′(t)

√
1 + f ′2(t)dt

)p−1 H(x)∫
0

fn−kp(t)
√

1 + f ′2(t)dt
] q
q−p

× f−(n
q
−k)q′(x)

√
1 + f ′2(x)dx

) q−p
qp

if p < q. Here H(x) is the function inverse to the arc length function
G(x) =

∫ x
0
√

1 + f ′2(t)dt.
The main element in the proof of Theorem 3.4 is the following lemma

which has some independent interest.

Lemma 3.5. If 1
q −

1
p <

1
n+1 , 1 < p < ∞, 1 < q < ∞, 0 ≤ k ≤ n, then

the following hold:
(1) if χ0

p,q <∞ or χ∞p,q <∞ then lim
t→∞

f(t) = 0;

331



Ya. Kopylov

(2) if n
p − k ≤ 0 then χ0

p,q =∞;
(3) if n

q − k ≥ 0 then χ∞p,q =∞.

Proof. Suppose first that p ≥ q.
Assume that χ0

p,q <∞. Then

∫ ∞
0

fn−kp(t)
√

1 + f ′2(t)dt <∞ (3.3)

Since

fn−kp(t)
√

1 + f ′2(t) ≥ fn−kp(t)|f ′(t)|,

it follows that the integral

∫ ∞
0

fn−kp(t)f ′(t)dt

=


1

n−kp+1 lim
t→∞

(fn−kp+1(t)− fn−kp+1(0)) if n− kp 6= −1,

lim
t→∞

log f(t)
f(0) if n− kp = −1

(3.4)

is finite.
There appear several possibilities:
(a) n

p−k > 0. The above implies that there exists a finite limit lim
t→∞

f(t),
which is zero by (3.3).

(b) n
p − k = 0. This is impossible in view of (3.3).

(c) −1
p <

n
p − k < 0. Then n− kp+ 1 > 0 and f(t) has a finite limit as

t→∞, which contradicts (3.3).
(d) n

p − k = −1
p . A contradiction to (3.3).

(e) n
p − k < −

1
p . In this case, n− kp < −1. Hence, lim

t→∞
f(t) =∞.
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Note that, since 1
q −

1
p <

1
n+1 , we have k + 1 > n+1

p + 1 > n+1
q , whence

−(nq − k)q′ + 1 > 0. We infer

(∫ ∞
τ

fn−kp(t)
√

1 + f ′2(t)dt
)1/p(∫ τ

0
f
−(n
q
−k)q′(t)

√
1 + f ′2(t)dt

)1/q′

≥
(∫ ∞

τ
fn−kp(t)|f ′(t)|dt

)1/p(∫ τ

0
f
−(n
q
−k)q′(t)|f ′(t)|dt

)1/q′

≥
∣∣∣∣∫ ∞
τ

fn−kp(t)f ′(t)dt
∣∣∣∣1/p∣∣∣∣∫ τ

0
f
−(n
q
−k)q′(t)f ′(t)dt

∣∣∣∣1/q
′

≥
(
fn−kp+1(τ)
|n− kp+ 1|

)1/p∣∣∣∣f−
n
q
−k)q′+1(τ)− f−(n

q
−k)q′+1(0)

−(nq − k)q′ + 1

∣∣∣∣1/q
′

= C · f
n+1
p
−n+1
q

+1(τ)|1− f−(n
q
−k)q′+1(0)f (n

q
−k)q′−1(τ)|1/q′ . (3.5)

The last quantity in (3.5) is equivalent to Cf
n+1
p
−n+1
q

+1(τ) as τ →∞ and,
hence, tends to infinity. Therefore, χ0

p,q = ∞, and we obtain a contradic-
tion.

Thus, if χ0
p,q <∞ then lim

t→0
f(t) = 0 and n

p − k > 0.
Suppose now that χ∞p,q <∞. Then

∫ ∞
0

f
−(n
q
−k)q′(t)

√
1 + f ′2(t)dt <∞ (3.6)

and, hence, there exists a finite integral

∫ ∞
0

f
−(n
q
−k)q′(t)f ′(t)dt

=


lim
t→∞

f
−(nq −k)q′+1(t)−f−(nq −k)q′+1(0)

−(n
q
−k)q′+1 if −(nq − k)q′ 6= −1,

lim
t→∞

log f(t)
f(0) if −(nq − k)q′ = −1.

(3.7)
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As in the case χ0
p,q <∞, we infer that either n

q − k < 0 and lim
t→∞

f(t) = 0
or (nq − k)q′ > 1 and lim

t→∞
f(t) =∞. In the latter case we have:

χ∞p,q ≥ sup
τ>0

{(
f
−(n
q
−k)q′+1(τ)

1− (nq − k)q′

)1/q′∣∣∣∣fn−kp+1(τ)− fn−kp+1(0)
n− kp+ 1

∣∣∣∣1/p}
= C sup

τ>0

{
f
n+1
p
−n+1
q

+1(τ)|1− fn−kp+1(0)f−(n−kp+1)(τ)|1/p
}
, (3.8)

where C = const > 0. Since k < n+1
q − 1 < n+1

p , we have n− kp+ 1 > 0,

and, hence, the last quantity in (3.8) behaves like Cf
n+1
p
−n+1
q

+1(τ) and,
consequently, tends to infinity as τ → ∞. Hence, χ∞p,q = ∞; a contradic-
tion.

Thus, if χ∞p,q <∞ then lim
t→0

f(t) = 0 and n
q − k < 0.

We now pass to the case p < q.
Suppose that χ0

p,q < ∞. Then, as above, we have (3.3) and (3.4) and
conclude that either n

p − k > 0 and lim
t→∞

f(t) = 0 or n
p − k < −1

p and
lim
t→∞

f(t) =∞. Show that the latter case is impossible. By (3.2), we infer

(χ0
p,q)

pq
q−p ≥

∞∫
0

[ ∣∣∣∣
H(x)∫
0

f
−(n
q
−k)q′(t)f ′(t)dt

∣∣∣∣p−1∣∣∣∣
∞∫

H(x)

fn−kp(t)f ′(t)dt
∣∣∣∣ ]

q
q−p

× f−(n
q
−k)q′(x)

√
1 + f ′2(x)dx

=
∞∫

0

[ ∣∣∣∣f−(n
q
−k)q′+1(H(x))− f−(n

q
−k)q′+1(0)

−(nq − k)q′ + 1

∣∣∣∣p−1∣∣∣∣fn−kp+1(H(x))
n− kp+ 1

∣∣∣∣]
q
q−p

× f−(n
q
−k)q′(x)

√
1 + f ′2(x)dx

=
∞∫

0

[ ∣∣∣∣F−(nq −k)q′+1(s)−F−(nq −k)q′+1(0)
−(n
q
−k)q′+1

∣∣∣∣p−1∣∣∣∣Fn−kp+1(s)
n−kp+1

∣∣∣∣]
q
q−p
F
−(n
q
−k)q′(s)ds

= C

∞∫
0

FN (s)|1− F−(n
q
−k)q′+1(0)F (n

q
−k)q′−1(s)|ds. (3.9)

334



Lp,q-cohomology of warped cylinders

Here C = const > 0 and

N =
((
−
(
n

q
− k

)
q′ + 1

)
(p− 1) + n− kp+ 1

)
q

q − p
−
(
n

q
− k

)
q′

=
[(

1− p− 1
q − 1

)
q

q − p
− 1
q − 1

]
n−

[(
q(p− 1)
q − 1

−p
)

q

q − p
+ 1
q − 1

]
k+ pq

q − p

= n− k + pq

q − p
> 0.

Moreover, (nq−k)q′−1 < 0, since n
q <

n+1
q < n+1

p < k. Consequently, the
expression under the last integral in (3.9) is equivalent to CFn−k+ pq

q−p (s),
i.e., tends to ∞ as s → ∞ and, thus, the integral does not exist. A con-
tradiction.

Suppose now that χ∞p,q < ∞. Then we have (3.6) and (3.7) and infer
that, in this case, either n

q − k < 0 and lim
t→∞

f(t) = 0 or q′(nq − k) > 1 and
lim
t→∞

f(t) =∞. In the latter case, we infer

(χ∞p,q)
pq
q−p ≥

∞∫
0

[ ∣∣∣∣
H(x)∫
0

fn−kp(t)f ′(t)dt
∣∣∣∣ ∣∣∣∣
∞∫

H(x)

f
−(n
q
−k)q′(t)f ′(t)dt

∣∣∣∣p−1 ] q
q−p

× f−(n
q
−k)q′(x)

√
1 + f ′2(x)dx

=
∞∫

0

[ ∣∣∣∣fn−kp+1(H(x))− fn−kp+1(0)
n− kp+ 1

∣∣∣∣∣∣∣∣f−(n
q
−k)q′+1(H(x))

−(nq − k)q′ + 1

∣∣∣∣p−1] q
q−p

× f−(n
q
−k)q′(x)

√
1 + f ′2(x)dx

=
∞∫

0

[ ∣∣∣∣Fn−kp+1(s)− Fn−kp+1(0)
n− kp+ 1

∣∣∣∣∣∣∣∣F−(n
q
−k)q′+1(s)

−(nq − k)q′ + 1

∣∣∣∣p−1] q
q−p
F
−(n
q
−k)q′(s)ds

= C

∞∫
0

FN (s)|1− Fn−kp+1(0)F−(n−kp+1)(s)|ds. (3.10)

Here, as above, C = const > 0, N = n − k + pq
q−p > 0, and

−(n − kp + 1) < 0. Thus, the expression under the integral is equiva-
lent to CFn−k+ pq

q−p (s), i.e., tends to infinity as s→∞.
Lemma 3.5 is completely proved. �
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Now, return to the proof of Theorem 3.4. Suppose that T jp,q(M) = 0 for
j = 1 or j = n+ 1. Then, by Theorem 3.2,

χp,q(0,∞, F
n
p
−j+1

, F
n
q
−j+1) <∞

(and, hence,
∫∞

0 f
(n
p
−j+1)p(t)

√
1 + f ′2(t)dt <∞) or

χp,q(∞, 0, F
n
p
−j+1

, F
n
q
−j+1) <∞

(and, hence,
∫∞

0 f
−(n
q
−j+1)q′(t)

√
1 + f ′2(t)dt < ∞). By Lemma 3.5, this

implies that lim
t→∞

f(t) = 0 and, in both cases,

volM = sn

∫ ∞
0

fn(t)
√

1 + f ′2(t)dt <∞.

Here sn stands for the volume of the n-dimensional unit sphere in Rn+1.
The theorem is proved. �
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