ANNALES MATHÉMATIQUES

Lemnouar Noui

Properties of subgroups not containing their centralizers

Volume 16, $\mathrm{n}^{\mathrm{o}} 2$ (2009), p. 267-275.
http://ambp.cedram.org/item?id=AMBP_2009__16_2_267_0
© Annales mathématiques Blaise Pascal, 2009, tous droits réservés. L'accès aux articles de la revue «Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

> Publication éditée par le laboratoire de mathématiques de l'université Blaise-Pascal, UMR 6620 du CNRS
> Clermont-Ferrand - France

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

Properties of subgroups not containing their centralizers

Lemnouar Noui

Abstract

In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group G to express as semi-direct product of a divisible subgroup D and some subgroup H. We also apply the main Theorem to the p groups with center of index p^{2}, for some prime p. For these groups we compute $N_{c}(G)$ the number of conjugacy classes and N_{a} the number of abelian maximal subgroups and $N_{n a}$ the number of nonabelian maximal subgroups.

1. Introduction

We shall recall some definitions:
If H is a subgroup of a group G, a subgroup K is called a complement of H in G if $G=H K$ and $H \cap K=\{1\}$. Therefore if $H \triangleleft G$ and $K \triangleleft G$, then G is said to be the direct product of H and K, in symbols, $G=H \odot K$.

If $H \triangleleft G$, then G is said to be the semi-direct product of H and K, in symbols, $G=H \rtimes K$.

An abelian group D is called divisible if for every $x \in D$ and every positive integer n there is a $y \in D$ so that $x=n y$, i.e., each element of D is divisible by every positive integer. The main property of divisible groups is that they satisfy the following "injectivity" condition:
Theorem 1.1 (Baer Theorem [3]). If D is a divisible group, then any homomorphism $f: A \rightarrow D=$ from any abelian group A into D extends to any abelian group G which contains A i.e., there exists a homomorphism $\bar{f}: G \rightarrow D$ so that $\bar{f}_{\mid A}=f$.

The purpose of this paper is to generalize this result to the nonabelian groups. To this end, we introduce the property "N" in subgroups: Let H be a subgroup of an arbitrary group G.

Keywords: Maximal subgroup, divisible groups, p-groups, center, conjugacy classes. Math. classification: 14L05, 20D25, 20K27, 20E28.

L. Noui

H satisfies the condition " N " if and only if $\exists g \in G-H \quad[g, H]=1$.
This is equivalent to saying that $C_{G}(H) \nsubseteq H$ where $C_{G}(H)$ is the centralizer of H in G which is defined to be the set of all g in G such that $h g=g h$ for all h in H, it is clearly a subgroup of G.

By the definition of the condition " N " we deduce that

1) If G is abelian, then every proper subgroup H satisfies the condition " N ".
2) If G is a nonabelian nilpotent group, then every maximal normal abelian subgroup H of G does not satisfy the condition "N" because $C_{G}(H)=H,[3]$.
3) There exist a nonabelian groups G whose a subgroup H satisfies the condition" N ", for example let $G=Q_{8} \times \mathbb{Z} / 2 \mathbb{Z}$ where $H=Q_{8}$ is the quaternion group of order $8,[2]$.

2. Main results and proofs

Theorem 2.1. Let G be a group and let H be a subgroup of G such that each proper subgroup H^{\prime} of G which contains H, satisfies the condition " N ". Then any homomorphism $f: H \rightarrow D$ from H into divisible group D extends to the group G.
Proof. Let us consider the set S of all pairs $\left(H_{i}, f_{i}\right)$ where H_{i} is a subgroup of G containing H and $f_{i}: H_{i} \rightarrow D$ is an extension of f, i.e., $f_{\mid H_{i}}=f_{i}$. Let $\left(H_{i}, f_{i}\right) \leq\left(H_{j}, f_{j}\right)$ if $H_{i} \subset H_{j}$ and $f_{j \mid H_{i}}=f_{i}$. The set S is partially ordered by the relation \leq. We aim to apply Zorn's Lemma to S and to this end we consider a chain $\left(H_{i}, f_{i}\right)_{i \in I}$. It has an upper bound $\left(\cup_{i \in I} H_{i}, f^{\prime}\right)$ where $f^{\prime}: \cup_{i \in I} H_{i} \rightarrow D$ is defined by $f^{\prime}\left(x_{i}\right)=f_{i}\left(x_{i}\right)$ for every $x_{i} \in H_{i}$. This is unambiguous since $x_{i} \in H_{i} \subset H_{m} \Rightarrow f_{m}\left(x_{i}\right)=f_{i}\left(x_{i}\right)$. Consequently, by Zorn's Lemma, S has a maximal element, say (\bar{H}, \bar{f}). We claim that $\bar{H}=G$ and \bar{f} is the desired extension of f to G. To see this suppose $\bar{H} \neq G$. By hypotheses \bar{H} satisfies the condition "N", consequently, there is an $g \in G-\bar{H}$ such that $[g, \bar{H}]=1$, therefore $\langle\bar{H}, g\rangle=\bar{H} \cdot\langle g\rangle$. There are two cases:
Case 1.
$\bar{H} \cap\langle g\rangle \neq\{0\}$. Let n the smallest positive integer so that $g^{n}=u \in \bar{H}$. Since D is divisible there is a $x \in D$ so that $\bar{f}(u)=n x$. Let $\bar{f}^{*}: \bar{H} \cdot\langle g\rangle \rightarrow$ D be defined by $\bar{f}^{*}\left(a g^{t}\right)=\bar{f}(a)+t x$ where $a \in \bar{H}$ and $0 \leq t \prec n$, if
$a g^{t}=a^{\prime} g^{t^{\prime}}$ then $a^{\prime-1} a=g^{t^{\prime}-t} \in H$, so $t^{\prime}-t=0$ and $a=a^{\prime}$. Hence \bar{f}^{*} is well-defined mapping. Let $z_{1}=a_{1} g^{t_{1}}, z_{2}=a_{2} g^{t_{2}}$ be two elements of the group $\bar{H} \cdot\langle g\rangle$, then $\bar{f}^{*}\left(z_{1}\right)+\bar{f}^{*}\left(z_{2}\right)=\bar{f}\left(a_{1} a_{2}\right)+\left(t_{1}+t_{2}\right) x$ and $t_{1}+t_{2}=$ $k n+t_{0}$ where $0 \leq t_{0} \prec n$. In the other hand $\bar{f}^{*}\left(z_{1} z_{2}\right)=\bar{f}^{*}\left(a_{1} g^{t_{1}} a_{2} g^{t_{2}}\right)$, since $[g, \bar{H}]=1, \bar{f}^{*}\left(z_{1} z_{2}\right)=\bar{f}^{*}\left(a_{1} a_{2} g^{t_{1}+t_{2}}\right)=\bar{f}^{*}\left(a_{1} a_{2} u^{k} g^{t_{0}}\right)$, so $\bar{f}^{*}\left(z_{1} z_{2}\right)=\bar{f}\left(a_{1} a_{2}\right)+\left(k n+t_{0}\right) x$. Finally $\bar{f}^{*}\left(z_{1} z_{2}\right)=\bar{f}^{*}\left(z_{1}\right)+$ $\bar{f}^{*}\left(z_{2}\right)$, so \bar{f}^{*} is a homomorphism so that $\bar{f} \left\lvert\, \frac{*}{H}=\bar{f}\right.$. This contradicts the maximality of (\bar{H}, \bar{f}).

Case 2.

$\bar{H} \cap\langle g\rangle=\{0\}$. Then $\bar{H} \cdot\langle g\rangle=\bar{H} \odot\langle g\rangle$. Let x_{0} be an element of D, in this case we can define $\bar{f}^{*}: \bar{H} \odot\langle g\rangle \rightarrow D$ by writing $\bar{f}^{*}\left(a g^{t}\right)=$ $\bar{f}(a)+k x_{0}$, it is easy to verify that \bar{f}^{*} is a homomorphism so that $\bar{f}_{\mid \bar{H}}^{*}=\bar{f}$ contradicting the maximality of (\bar{H}, \bar{f}). Thus $\bar{H}=G$ and \bar{f} is the desired extension of f to G.

Since every subgroup of an abelian group satisfies the condition"N", we can apply Theorem 2.1 to abelian groups, also we deduce the known result, [3]:

Corollary 2.2. Any divisible subgroup D of an abelian group G splits, i.e., D has a complement H so that $G=H \oplus D$.

If G is a group (not necessarily abelian), we write:
Corollary 2.3. Let G be a group and let D be a divisible subgroup of G such that every subgroup H of G which contains D, satisfies the condition " N ". Then D has a complement H so that $G=H \rtimes D$.

Proof. We consider the identity map: $i d_{D}: D \rightarrow D$, by Theorem $2.1, i d_{D}$ extends to the group G, i.e., there exists a homomorphism $\bar{f}: G \rightarrow D$ so that $\bar{f}_{\mid D}=i d_{D}$. Let $i: D \rightarrow G$ be the inclusion map, then $\bar{f} \circ i=$ $i d_{D}$ implies that $\bar{f}(G)=D$. Let $H=\operatorname{Ker} \bar{f}$, if $x \in G$, then $x=x \bar{f}$ $\left(x^{-1}\right) \bar{f}(x)$. Since $\bar{f}\left[x \bar{f}\left(x^{-1}\right)\right]=\bar{f}(x) . \bar{f} \circ \bar{f}\left(x^{-1}\right)$ and $\bar{f}_{\mid D}=i d_{D}$, we have $\bar{f}\left[x \bar{f}\left(x^{-1}\right)\right]=1$, so $G=H$.D. If x belongs to $H \cap D$, then $x=\bar{f}\left(x^{\prime}\right)$ and $\bar{f}(x)=1$, thus $\bar{f}(x)=\bar{f} \circ \bar{f}\left(x^{\prime}\right)=\bar{f}\left(x^{\prime}\right)$, that is, $H \cap D=\{1\}$. Hence $G=H \rtimes D$.

L. Noui

Corollary 2.4. Let G be a finite p-group with center of index p^{2}. If H is a nonabelian maximal subgroup of G then any homomorphism $f: H \rightarrow D$ from H into divisible group D extends to the group G.

To prove Corollary 2.4, we need the following.
Lemma 2.5. Let G be a finite p-group such that its center $Z(G)$ has index p^{2}. If H is a maximal subgroup of G, then the following properties are equivalent.
i) H is abelian
ii) $Z(G) \subset H$
iii) H does not satisfy the condition " N ".

Proof of Lemma 2.5. " $i) \Rightarrow i i)$ ". Let us assume that H is abelian. If $Z(G) \nsubseteq H$, there exists $g \in Z(G)-H$ and $G=H \cdot\langle g\rangle$. Then G is abelian, this contradicts $|G: Z(G)|=p^{2}$.
"ii) \Rightarrow iii)". Assume that $Z(G) \subset H$. Then $Z(G) \subset Z(H) \subset H \subset G$. By hypothesis $|G: Z(G)|=p^{2}$. Since the center does not have a prime index and $|G: H|=p, Z(H)=H$, consequently H is abelian. Hence H is a maximal normal abelian subgroup of the nilpotent group G, so $C_{G}(H)=H,[3]$, and H does not satisfy the condition "N".
"iii) \Rightarrow)". If $C_{G}(H) \subset H$, then $Z(G) \subset Z(H) \subset H$. By the same way we deduce that H is abelian.

Proof of Corollary 2.4. Let H be a subgroup of G so that $H \subset H^{\prime}$, since H is nonabelian, by Lemma 2.5, there is $g \in G-H$ so that $[g, H]=1$. Then $\left[g, H^{\prime}\right]=1$ by maximality of H. Thus the conditions of Theorem 2.1 are satisfied, so we obtain Corollary 2.4.

3. Subgroups satisfying the condition " N "

If A is finitely generated abelian group, the rank of A is defined by $\operatorname{rk}(A)$ the minimum number of generators of A.

We denote us by x^{G} the conjugacy class of x in an arbitrary group G and $C_{G}(x)$ the centralizer of x in G and $N_{c}(G)$ the number of the conjugacy classes.

If G is a finite p-group of class c, then from [4], we know that

$$
N_{c}(G) \geq c|G|^{1 / c}-c+1
$$

Subgroups not containing their centralizers

Let G be a finite p-group of order p^{n} such that its center has index p^{2}. In this section, we compute the number $N_{c}(G)$ and N_{0} the number of maximal subgroups in G satisfying the condition " N ".

Theorem 3.1. Let G be a finite p-group of order p^{n} such that its center has index p^{2}, then

1) G has precisely $p+1$ abelian maximal subgroups.
2) The number of maximal subgroups satisfying the condition " N " equals $N_{0}=\left(p^{r}-p^{2}\right) /(p-1)$ where r is the rank of $G / G^{\prime}=\mathbb{Z} / p^{n_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{n_{r}} \mathbb{Z}$.
3) $N_{c}(G)=p^{n-1}+p^{n-2}-p^{n-3}$ and each nontrivial conjugacy class has p elements.

The proof of Theorem 3.1 results from the following Lemmas.
Lemma 3.2. Let G be an abelian finite p - group, then the number of subgroups of order p equals $\left(p^{r}-1\right) /(p-1)$ where r is the rank of G.

Proof of Lemma 3.2. Since $\operatorname{rk}(G)=r, \mathrm{G}$ is isomorphic with the group $\mathbb{Z} / p^{n_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{n_{r}} \mathbb{Z}$. If g is an element of order p in G, then $g=g_{1} g_{2} \ldots g_{r}$ such that g_{i} has order p or 1 and $g \neq 1$. The number of such elements g equals

$$
(p-1) \cdot C_{r}^{1}+(p-1)^{2} C_{r}^{2}+\cdots+(p-1)^{r} C_{r}^{r}=p^{r}-1
$$

Since a group of order p has $p-1$ elements of order p, the number of subgroups of order p is $\left(p^{r}-1\right)(p-1)$.

Lemma 3.3. Let G be a p-group satisfying $|G: Z(G)|=p^{m}$, then $\left|G^{\prime}\right| \leq$ $p^{m(m-1) / 2}$.

Proof. By induction on m.
Proof of Theorem 3.1. 1) Let H be an abelian maximal subgroup of G, then H does not satisfy the condition "N", so $Z(G) \subset H$. Consequently $H / Z(G)$ is a subgroup of order p of the elementary $p-\operatorname{group} G / Z(G) \simeq$ $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ by Lemma 3.2, there is $\left(p^{2}-1\right)(p-1)=p+1$ such subgroups. 2) By Lemma 3.3, $|G: Z(G)|=p^{2}$ implies that $\left|G^{\prime}\right|=p$. Let H be a maximal subgroup of G, then $G^{\prime} \subset H \subset G$ implies that H / G^{\prime} is a maximal subgroup of G / G^{\prime}. By using the known result of Steinitz [5]: The number of subgroups of order p^{k} equals the number of subgroups of order p^{n-k} in a finite abelian group of order p^{n}, we conclude that the number of the maximal subgroups H is equal to the number of subgroups of order p of G / G^{\prime}. If $r k\left(G / G^{\prime}\right)=r$, then the number of maximal subgroups satisfying

L. Noui

the condition " N " is $\left(p^{r}-1\right)(p-1)-(p+1)=\left(p^{r}-p^{2}\right)(p-1)$ by lemma 3.2.
3) If $x \in Z(G)$, the conjugacy class of x is trivial, i.e, $x^{G}=\{x\}$. If $x \notin Z(G)$, then $Z(G) \nsubseteq C_{G}(x) \nsubseteq G$ therefore $\left|x^{G}\right|=\left|G: C_{G}(x)\right|=p$. Let k the number of nontrivial conjugacy classes, then $|G|=p^{n}=p^{n-2}+k p$. Consequently $k=p^{n-1}-p^{n-3}$ and $N_{c}(G)=p^{n-1}+p^{n-2}-p^{n-3}$, so the proof is complete.
Corollary 3.4. Let G be a p-group of order p^{n} such that $|G: Z(G)|=p^{2}$. If G / G^{\prime} is elementary p-group, then G has exactly $\left(p^{n-1}-1\right)(p-1)$ maximal subgroups.

Proof. This follows easily from Theorem 3.1.

4. Examples

The following examples illustrate some applications of the previous results.
Example 4.1. Let G be a p-group of order p^{3}, then

1) The number N of maximal subgroups is given in the following table

G	$\frac{\mathbb{Z}}{p^{3} \mathbb{Z}}$	$\frac{\mathbb{Z}}{p \mathbb{Z}} \times \frac{\mathbb{Z}}{p^{2} \mathbb{Z}}$	$\frac{\mathbb{Z}}{p \mathbb{Z}} \times \frac{\mathbb{Z}}{p \mathbb{Z}} \times \frac{\mathbb{Z}}{p \mathbb{Z}}$	G is nonabelian
N	1	$1+p$	$1+p+p^{2}$	$1+p$

2) The number of conjugacy classes is $N_{c}(G)=p^{2}+p-1$ (if G is nonabelian).

To prove the result 1) we consider the two cases
a) If G is abelian, we apply Lemma 2.5 .
b) If G is nonabelian, $|G: Z(G)|=p^{2}$ because the index of center does not equal to a prime, so $G^{\prime}=Z(G)$ and G is extra-special, [3]. Now $G^{\prime} \subset \operatorname{Frat}(\mathrm{G}) \subset G$ implies that $|\operatorname{Frat}(G)|=p^{2} \quad$ or p, the first case is impossible because, by Burnside Basis Theorem, $[3],|G: \operatorname{Frat}(G)|=p$ implies that G is generated by one element, that is, G is cyclic. Hence $G^{\prime}=$ $Z(G)=\operatorname{Frat}(G)$. If G / G^{\prime} is not elementary p-group, then by Theorem 3.1 G has one maximal subgroup, so $|\operatorname{Frat}(G)|=p^{2}$, a contradiction. Thus G / G^{\prime} is elementary p-group and the result is an immediate consequence of Corollary 3.4.

Subgroups not containing their centralizers

2) Since $|G: Z(G)|=p^{2}$, to calculate $N_{c}(G)$ it is enough to apply Theorem 3.1 for $n=3$.

Example 4.2. Let G be a p-group of order p^{4} such that $|G: Z(G)|=p^{2}$.

1) If G / G^{\prime} is an elementary p-group, then G has exactly $p+1$ abelian maximal subgroups and p^{2} nonabelian maximal subgroups.
2) If G / G^{\prime} is not an elementary $p-$ group, G has $p+1$ maximal subgroups, all abelian.

In order to prove this, we consider two cases.

1) In the first place, if G / G^{\prime} is an elementary p - group, then G has $\frac{p^{3}-1}{p-1}=p^{2}+p+1$ maximal subgroups by Corollary 3.4. To calculate the number of nonabelian maximal subgroups we can apply the second assertion of Theorem 3.1.
2) Now assume that G / G^{\prime} is not an elementary p-group, then the rank $\operatorname{rk}\left(G / G^{\prime}\right)=1$ or 2 , the first case implies that $|G: \operatorname{Frat}(G)|=p^{1}$ and G is cyclic. Hence $\operatorname{rk}\left(G / G^{\prime}\right)=2$, by Theorem 3.1, G has not a nonabelian maximal subgroup and it has exactly $p+1$ maximal subgroups, all abelian, as required.

Example 4.3. Let G be a p-group of order p^{4} such that $|G: Z(G)|=p^{3}$. Then

1) G has one maximal abelian subgroup and p nonabelian maximal subgroups.
2) G has exactly $2 p^{2}-1$ conjugacy classes.

In order to prove this result, we first note that every element x of G belongs to a maximal subgroup. Second, we establish two Lemmas.
Lemma 4.4. Let G be a p-group of order p^{4} such that $|G: Z(G)|=p^{3}$. Then

$$
\left|x^{G}\right|=p \Longleftrightarrow x \in M-Z(G)
$$

where M is an abelian maximal subgroup of G.
Proof of Lemma 4.4. If $\left|x^{G}\right|=p$, then $\left|C_{G}(x)\right|=p^{3}$, let $M=C_{G}(x)$. Since G is a finite nilpotent group, $M \triangleleft G$ and G / M is abelian, consequently $G^{\prime} \subset M$. If $G / Z(G)$ is abelian, then $G^{\prime} \subset Z(G) \Rightarrow G^{\prime}=Z(G)$, so G is extra-special and $|G|=p^{2 k+1},[3]$, a contradiction. Hence $G / Z(G)$ is not abelian, since G is nilpotent, $G^{\prime} \cap Z(G) \neq\{1\}$, so $Z(G) \varsubsetneqq G^{\prime} \varsubsetneqq M$ and $\left|G^{\prime}\right|=p^{2}$. Assume that M is not abelian, then $Z(G) \subset Z(M) \subset M$.

L. Noui

Since the index of center does not equal to a prime, $Z(G)=Z(M)$. If $y \in M, y x=x y$ so $x \in Z(M)$ and we reach the contradiction $x \in Z(G)$. Hence M is abelian. Conversely, let M be an abelian maximal subgroup of G and $x \in M-Z(G)$. If $\left|x^{G}\right|=p^{2}$, then $\left|C_{G}(x)\right|=p^{2}$. Since M is abelian, $M \subset C_{G}(x) \nsubseteq G$, so $M=C_{G}(x)$ and $\left|C_{G}(x)\right|=p^{3}$, by this contradiction we obtain $\left|x^{G}\right|=p$.

Lemma 4.5. Let G be a p-group of order p^{4} such that $|G: Z(G)|=p^{3}$ and let M be a maximal subgroup of G. Then

1) If M is abelian, M contains exactly $p^{2}-1$ nontrivial conjugacy classes which has p elements.
2) If M is not abelian, $M-G^{\prime}$ contains exactly p-1 nontrivial conjugacy classes which has p^{2} elements.

Proof of Lemma 4.5. 1) Assume that M is abelian. Let $x \in M-Z(G)$, since $M \triangleleft G, x^{G} \subset M$. By Lemma $13,\left|x^{G}\right|=p$, consequently G has $\frac{p^{3}-p}{p}=p^{2}-1$ nontrivial conjugacy classes which has p elements.
2) If M is not abelian, let $x \in M-G^{\prime}$. From Lemma 13 it follows that $\left|x^{G}\right|=p^{2}$, so $M-G^{\prime}$ has exactly $\frac{p^{3}-p^{2}}{p^{2}}=p-1$ nontrivial conjugacy classes which has p^{2} elements.

We will prove the last result as following. If M_{1} and M_{2} are two maximal subgroups in G, it is clear that $M_{1} \cap M_{2}=G^{\prime}$. We denote by k_{a} (respectively $k_{n a}$) the number of abelian (respectively nonabelian) maximal subgroups in G. If $x \in G^{\prime}-Z(G), x^{G} \subset G^{\prime}$, so $\left|x^{G}\right|=p$ and $\left|C_{G}(x)\right|=p^{3}$, we have shown in the proof of Lemma 4.4 that $C_{G}(x)$ is abelian, consequently $k_{a} \neq 0$.

Let M_{1}, M_{2} be two abelian maximal subgroups of G. Let $x \in G^{\prime}-Z(G)$, then $G^{\prime} \subset M_{1} \nsubseteq G$ and by Lemma 4.4, $\left|x^{G}\right|=p$.

Let $x \in M_{1}$. Since M_{1} is abelian, $M_{1} \subset C_{G}(x) \varsubsetneqq G$, so $M_{1}=C_{G}(x)$. By the same way we obtain $M_{2}=C_{G}(x)$. Hence $M_{1}=M_{2}$ and $k_{a}=1$. Each maximal subgroup M satisfy $G^{\prime} \subset M \subset G$, so $\frac{M}{G^{\prime}}$ is a subgroup of order p of the group $G / G^{\prime} \simeq \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$. By Lemma $3.2, G$ has $p+1$ maximal subgroups, so $k_{n a}=p$.
2) By using Lemma 4.4 and Lemma 4.5 and the first assertion of Example 4.2, we obtain $N_{c}(G)=p+\left(p^{2}-1\right)+p(p-1)=2 p^{2}-1$.

Subgroups not containing their centralizers

Remark 4.6. In [1], M. Reid proved that if G is a finite group whose order is not divisible by 3 , and G has m conjugacy classes, then the congruence $|G| \equiv m \bmod 3$ holds. With the hypotheses of Theorem 3.1, we have the congruence $|G| \equiv N_{c}(G) \bmod 6$ because

$$
|G|-N_{c}(G)=p^{n}-p^{n-1}-p^{n-2}+p^{n-3}=p^{n-3}(p-1)^{2}(p+1)
$$

Acknowledgements. I would like to thank the referee for his comments and remarks.

References

[1] M. Reid - The number of conjugacy classes, Amer. Math. Monthly 105 (1998), no. 4, p. 359-361.
[2] D. J. S. Robinson - Finiteness conditions and generalized soluble groups. Part 1, Springer-Verlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62.
[3] \qquad , A course in the theory of groups, second éd., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996.
[4] G. Sherman - A lower bound for the number of conjugacy classes in a finite nilpotent group, Pacific J. Math. 80 (1979), no. 1, p. 253-254.
[5] N. Watson - Subgroups of finite abelian groups, 1995, Summer research paper, Haverford College.

[^0]
[^0]: Lemnouar Noui
 Department of Mathematics
 Faculty of Science
 University of Batna,
 Algeria
 nouilem@yahoo.fr

