ANNALES MATHÉMATIQUES

Lemnouar Noui

Properties of subgroups not containing their centralizers

Volume 16, nº 2 (2009), p. 267-275.

<http://ambp.cedram.org/item?id=AMBP_2009__16_2_267_0>

 $\ensuremath{\mathbb C}$ Annales mathématiques Blaise Pascal, 2009, tous droits réservés.

L'accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

> Publication éditée par le laboratoire de mathématiques de l'université Blaise-Pascal, UMR 6620 du CNRS Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Properties of subgroups not containing their centralizers

Lemnouar Noui

Abstract

In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group G to express as semi-direct product of a divisible subgroup D and some subgroup H. We also apply the main Theorem to the pgroups with center of index p^2 , for some prime p. For these groups we compute $N_c(G)$ the number of conjugacy classes and N_a the number of abelian maximal subgroups and N_{na} the number of nonabelian maximal subgroups.

1. Introduction

We shall recall some definitions:

If H is a subgroup of a group G, a subgroup K is called a complement of H in G if G = HK and $H \cap K = \{1\}$. Therefore if $H \triangleleft G$ and $K \triangleleft G$, then G is said to be the direct product of H and K, in symbols, $G = H \odot K$.

If $H \triangleleft G$, then G is said to be the semi-direct product of H and K, in symbols, $G = H \rtimes K$.

An abelian group D is called divisible if for every $x \in D$ and every positive integer n there is a $y \in D$ so that x = ny, i.e., each element of D is divisible by every positive integer. The main property of divisible groups is that they satisfy the following "injectivity" condition:

Theorem 1.1 (Baer Theorem [3]). If D is a divisible group, then any homomorphism $f: A \to D =$ from any abelian group A into D extends to any abelian group G which contains A i.e., there exists a homomorphism $\overline{f} : G \to D$ so that $\overline{f}_{|A} = f$.

The purpose of this paper is to generalize this result to the nonabelian groups. To this end, we introduce the property "N" in subgroups: Let H be a subgroup of an arbitrary group G.

Keywords: Maximal subgroup, divisible groups, p-groups, center, conjugacy classes. *Math. classification:* 14L05, 20D25, 20K27, 20E28.

H satisfies the condition "N" if and only if $\exists g \in G - H \ [g, H] = 1$.

This is equivalent to saying that $C_G(H) \not\subseteq H$ where $C_G(H)$ is the centralizer of H in G which is defined to be the set of all g in G such that hg = gh for all h in H, it is clearly a subgroup of G.

By the definition of the condition "N" we deduce that

1) If G is abelian, then every proper subgroup H satisfies the condition "N".

2) If G is a nonabelian nilpotent group, then every maximal normal abelian subgroup H of G does not satisfy the condition "N" because $C_G(H) = H$, [3].

3) There exist a nonabelian groups G whose a subgroup H satisfies the condition"N", for example let $G = Q_8 \times \mathbb{Z}/2\mathbb{Z}$ where $H = Q_8$ is the quaternion group of order 8, [2].

2. Main results and proofs

Theorem 2.1. Let G be a group and let H be a subgroup of G such that each proper subgroup H' of G which contains H, satisfies the condition "N". Then any homomorphism $f : H \to D$ from H into divisible group D extends to the group G.

Proof. Let us consider the set S of all pairs (H_i, f_i) where H_i is a subgroup of G containing H and $f_i: H_i \to D$ is an extension of f, i.e., $f_{|H_i} = f_i$. Let $(H_i, f_i) \leq (H_j, f_j)$ if $H_i \subset H_j$ and $f_{j|H_i} = f_i$. The set S is partially ordered by the relation \leq . We aim to apply Zorn's Lemma to S and to this end we consider a chain $(H_i, f_i)_{i \in I}$. It has an upper bound $\left(\bigcup_{i \in I} H_i, f'\right)$ where $f': \bigcup_{i \in I} H_i \to D$ is defined by $f'(x_i) = f_i(x_i)$ for every $x_i \in H_i$. This is unambiguous since $x_i \in H_i \subset H_m \Rightarrow f_m(x_i) = f_i(x_i)$. Consequently, by Zorn's Lemma, S has a maximal element, say $(\overline{H}, \overline{f})$. We claim that $\overline{H} = G$ and \overline{f} is the desired extension of f to G. To see this suppose $\overline{H} \neq G$. By hypotheses \overline{H} satisfies the condition "N", consequently, there is an $g \in G - \overline{H}$ such that $\left[g, \overline{H}\right] = 1$, therefore $\left\langle \overline{H}, g \right\rangle = \overline{H} \cdot \langle g \rangle$. There are two cases:

Case 1.

 $\overline{H} \cap \langle g \rangle \neq \{0\}$. Let *n* the smallest positive integer so that $g^n = u \in \overline{H}$. Since *D* is divisible there is a $x \in D$ so that $\overline{f}(u) = nx$. Let $\overline{f}^* : \overline{H} \cdot \langle g \rangle \rightarrow D$ be defined by $\overline{f}^*(ag^t) = \overline{f}(a) + tx$ where $a \in \overline{H}$ and $0 \leq t \prec n$, if

SUBGROUPS NOT CONTAINING THEIR CENTRALIZERS

 $\begin{array}{l} ag^t=a'g^{t'} \mbox{ then } a'^{-1}a=g^{t'-t}\in H, \mbox{ so } t'-t=0 \mbox{ and } a=a'. \mbox{ Hence } \overline{f}^* \mbox{ is well-defined mapping. Let } z_1=a_1g^{t_1}, \ z_2=a_2g^{t_2} \mbox{ be two elements of the group } \overline{H}\cdot\langle g \ \rangle, \mbox{ then } \overline{f}^*(z_1)+\overline{f}^*(z_2)=\overline{f}(a_1a_2)+(t_1+t_2)x \mbox{ and } t_1+t_2=kn+t_0 \mbox{ where } 0\leq t_0\prec n. \mbox{ In the other hand } \overline{f}^*(z_1z_2)=\overline{f}^*(a_1g^{t_1}a_2g^{t_2}), \mbox{ since } \left[g, \ \overline{H}\right]=1, \ \overline{f}^*(z_1z_2)=\overline{f}^*(a_1a_2g^{t_1+t_2})=\overline{f}^*(a_1a_2u^kg^{t_0}), \mbox{ so } \overline{f}^*(z_1z_2)=\overline{f}(a_1a_2)+(kn+t_0)x. \mbox{ Finally } \overline{f}^*(z_1z_2)=\overline{f}^*(z_1)+\overline{f}^*(z_2), \mbox{ so } \overline{f}^*(z_2), \mbox{ so } \overline{f}^* \mbox{ is a homomorphism so that } \overline{f}_{|\overline{H}}=\overline{f}. \mbox{ This contradicts the maximality of } (\overline{H}, \ \overline{f}). \end{array}$

Case 2.

 $\overline{H} \cap \langle g \rangle = \{0\}$. Then $\overline{H} \cdot \langle g \rangle = \overline{H} \odot \langle g \rangle$. Let x_0 be an element of D, in this case we can define $\overline{f}^* : \overline{H} \odot \langle g \rangle \to D$ by writing $\overline{f}^*(ag^t) = \overline{f}(a) + kx_0$, it is easy to verify that \overline{f}^* is a homomorphism so that $\overline{f}_{|\overline{H}}^* = \overline{f}$ contradicting the maximality of $(\overline{H}, \overline{f})$. Thus $\overline{H} = G$ and \overline{f} is the desired extension of f to G.

Since every subgroup of an abelian group satisfies the condition"N", we can apply Theorem 2.1 to abelian groups, also we deduce the known result, [3]:

Corollary 2.2. Any divisible subgroup D of an abelian group G splits, *i.e.*, D has a complement H so that $G = H \oplus D$.

If G is a group (not necessarily abelian), we write:

Corollary 2.3. Let G be a group and let D be a divisible subgroup of G such that every subgroup H of G which contains D, satisfies the condition "N". Then D has a complement H so that $G = H \rtimes D$.

Proof. We consider the identity map: $id_D: D \to D$, by Theorem 2.1, id_D extends to the group G, i.e., there exists a homomorphism $\overline{f}: G \to D$ so that $\overline{f}_{|D} = id_D$. Let $i: D \to G$ be the inclusion map, then $\overline{f} \circ i = id_D$ implies that $\overline{f}(G) = D$. Let $H = Ker\overline{f}$, if $x \in G$, then $x = x\overline{f}(x^{-1})\overline{f}(x)$. Since $\overline{f}[x\overline{f}(x^{-1})] = \overline{f}(x).\overline{f} \circ \overline{f}(x^{-1})$ and $\overline{f}_{|D} = id_D$, we have $\overline{f}[x\overline{f}(x^{-1})] = 1$, so G = H.D. If x belongs to $H \cap D$, then $x = \overline{f}(x')$ and $\overline{f}(x) = 1$, thus $\overline{f}(x) = \overline{f} \circ \overline{f}(x') = \overline{f}(x')$, that is, $H \cap D = \{1\}$. Hence $G = H \rtimes D$.

Corollary 2.4. Let G be a finite p-group with center of index p^2 . If H is a nonabelian maximal subgroup of G then any homomorphism $f : H \to D$ from H into divisible group D extends to the group G.

To prove Corollary 2.4, we need the following.

Lemma 2.5. Let G be a finite p-group such that its center Z(G) has index p^2 . If H is a maximal subgroup of G, then the following properties are equivalent.

i)H is abelian

 $ii) Z(G) \subset H$

iii) H does not satisfy the condition "N".

Proof of Lemma 2.5. "i) \Rightarrow ii)". Let us assume that H is abelian. If $Z(G) \notin H$, there exists $g \in Z(G) - H$ and $G = H \cdot \langle g \rangle$. Then G is abelian, this contradicts $|G: Z(G)| = p^2$.

"*ii*) \Rightarrow *iii*)". Assume that $Z(G) \subset H$. Then $Z(G) \subset Z(H) \subset H \subset G$. By hypothesis $|G:Z(G)| = p^2$. Since the center does not have a prime index and |G:H| = p, Z(H) = H, consequently H is abelian. Hence H is a maximal normal abelian subgroup of the nilpotent group G, so $C_G(H) = H$, [3], and H does not satisfy the condition "N".

" $iii) \Rightarrow i$ ". If $C_G(H) \subset H$, then $Z(G) \subset Z(H) \subset H$. By the same way we deduce that H is abelian.

Proof of Corollary 2.4. Let H be a subgroup of G so that $H \subset H'$, since H is nonabelian, by Lemma 2.5, there is $g \in G - H$ so that [g, H] = 1. Then [g, H'] = 1 by maximality of H. Thus the conditions of Theorem 2.1 are satisfied, so we obtain Corollary 2.4.

3. Subgroups satisfying the condition "N"

If A is finitely generated abelian group, the rank of A is defined by rk(A) the minimum number of generators of A.

We denote us by x^G the conjugacy class of x in an arbitrary group G and $C_G(x)$ the centralizer of x in G and $N_c(G)$ the number of the conjugacy classes.

If G is a finite p-group of class c, then from [4], we know that

$$N_c(G) \ge c |G|^{1/c} - c + 1.$$

Let G be a finite p-group of order p^n such that its center has index p^2 . In this section, we compute the number $N_c(G)$ and N_0 the number of maximal subgroups in G satisfying the condition "N".

Theorem 3.1. Let G be a finite p-group of order p^n such that its center has index p^2 , then

1) G has precisely p + 1 abelian maximal subgroups.

2) The number of maximal subgroups satisfying the condition "N" equals $N_0 = (p^r - p^2)/(p-1)$ where r is the rank of $G/G' = \mathbb{Z}/p^{n_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{n_r}\mathbb{Z}$. 3) $N_c(G) = p^{n-1} + p^{n-2} - p^{n-3}$ and each nontrivial conjugacy class has p elements.

The proof of Theorem 3.1 results from the following Lemmas.

Lemma 3.2. Let G be an abelian finite p- group, then the number of subgroups of order p equals $(p^r - 1)/(p - 1)$ where r is the rank of G.

Proof of Lemma 3.2. Since rk(G) = r, G is isomorphic with the group $\mathbb{Z}/p^{n_1}\mathbb{Z}\times\cdots\times\mathbb{Z}/p^{n_r}\mathbb{Z}$. If g is an element of order p in G, then $g = g_1g_2\ldots g_r$ such that g_i has order p or 1 and $g \neq 1$. The number of such elements g equals

$$(p-1) \cdot C_r^1 + (p-1)^2 C_r^2 + \dots + (p-1)^r C_r^r = p^r - 1.$$

Since a group of order p has p-1 elements of order p, the number of subgroups of order p is $(p^r - 1)(p - 1)$.

Lemma 3.3. Let G be a p-group satisfying $|G: Z(G)| = p^m$, then $|G'| \leq p^{m(m-1)/2}$.

Proof. By induction on m.

Proof of Theorem 3.1. 1) Let H be an abelian maximal subgroup of G, then H does not satisfy the condition "N", so $Z(G) \subset H$. Consequently H/Z(G) is a subgroup of order p of the elementary p- group $G/Z(G) \simeq$ $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ by Lemma 3.2, there is $(p^2-1)(p-1) = p+1$ such subgroups. 2) By Lemma 3.3, $|G:Z(G)| = p^2$ implies that |G'| = p. Let H be a maximal subgroup of G, then $G' \subset H \subset G$ implies that H/G' is a maximal subgroup of G/G'. By using the known result of Steinitz [5]: The number of subgroups of order p^k equals the number of subgroups of order p^{n-k} in a finite abelian group of order p^n , we conclude that the number of the maximal subgroups H is equal to the number of subgroups of order p of G/G'. If rk(G/G') = r, then the number of maximal subgroups satisfying

the condition "N" is $(p^r - 1)(p - 1) - (p + 1) = (p^r - p^2)(p - 1)$ by lemma 3.2.

3) If $x \in Z(G)$, the conjugacy class of x is trivial, i.e, $x^G = \{x\}$. If $x \notin Z(G)$, then $Z(G) \subsetneq C_G(x) \subsetneq G$ therefore $|x^G| = |G : C_G(x)| = p$. Let k the number of nontrivial conjugacy classes, then $|G| = p^n = p^{n-2} + kp$. Consequently $k = p^{n-1} - p^{n-3}$ and $N_c(G) = p^{n-1} + p^{n-2} - p^{n-3}$, so the proof is complete.

Corollary 3.4. Let G be a p-group of order p^n such that $|G : Z(G)| = p^2$. If G/G' is elementary p-group, then G has exactly $(p^{n-1} - 1)(p - 1)$ maximal subgroups.

Proof. This follows easily from Theorem 3.1.

4. Examples

The following examples illustrate some applications of the previous results.

Example 4.1. Let G be a p-group of order p^3 , then

1) The number N of maximal subgroups is given in the following table

G	$\frac{\mathbb{Z}}{p^3\mathbb{Z}}$	$\frac{\mathbb{Z}}{p\mathbb{Z}} \times \frac{\mathbb{Z}}{p^2\mathbb{Z}}$	$rac{\mathbb{Z}}{p\mathbb{Z}} imesrac{\mathbb{Z}}{p\mathbb{Z}} imesrac{\mathbb{Z}}{p\mathbb{Z}}$	G is nonabelian
Ν	1	1+p	$1 + p + p^2$	1 + p

2) The number of conjugacy classes is $N_c(G) = p^2 + p - 1$ (if G is nonabelian).

To prove the result 1) we consider the two cases

a) If G is abelian, we apply Lemma 2.5.

b) If G is nonabelian, $|G : Z(G)| = p^2$ because the index of center does not equal to a prime, so G' = Z(G) and G is extra-special, [3]. Now $G' \subset \operatorname{Frat}(G) \subset G$ implies that $|\operatorname{Frat}(G)| = p^2$ or p, the first case is impossible because, by Burnside Basis Theorem, [3], $|G : \operatorname{Frat}(G)| = p$ implies that G is generated by one element, that is, G is cyclic. Hence G' = $Z(G) = \operatorname{Frat}(G)$. If G/G' is not elementary p-group, then by Theorem 3.1 G has one maximal subgroup, so $|\operatorname{Frat}(G)| = p^2$, a contradiction. Thus G/G' is elementary p-group and the result is an immediate consequence of Corollary 3.4. 2) Since $|G: Z(G)| = p^2$, to calculate $N_c(G)$ it is enough to apply Theorem 3.1 for n = 3.

Example 4.2. Let G be a p-group of order p^4 such that $|G: Z(G)| = p^2$.

1) If G/G' is an elementary p-group, then G has exactly p+1 abelian maximal subgroups and p^2 nonabelian maximal subgroups.

2) If G/G' is not an elementary p- group, G has p+1 maximal subgroups, all abelian.

In order to prove this, we consider two cases.

1) In the first place, if G/G' is an elementary p- group, then G has $\frac{p^3-1}{p-1} = p^2 + p + 1$ maximal subgroups by Corollary 3.4. To calculate the number of nonabelian maximal subgroups we can apply the second assertion of Theorem 3.1.

2) Now assume that G/G' is not an elementary p-group, then the rank rk(G/G') = 1 or 2, the first case implies that $|G: Frat(G)| = p^1$ and G is cyclic. Hence rk(G/G') = 2, by Theorem 3.1, G has not a nonabelian maximal subgroup and it has exactly p+1 maximal subgroups, all abelian, as required.

Example 4.3. Let G be a p-group of order p^4 such that $|G: Z(G)| = p^3$. Then

1) G has one maximal abelian subgroup and p nonabelian maximal subgroups.

2) G has exactly $2p^2 - 1$ conjugacy classes.

In order to prove this result, we first note that every element x of G belongs to a maximal subgroup. Second, we establish two Lemmas.

Lemma 4.4. Let G be a p-group of order p^4 such that $|G: Z(G)| = p^3$. Then

$$\left|x^{G}\right| = p \Longleftrightarrow x \in M - Z(G),$$

where M is an abelian maximal subgroup of G.

Proof of Lemma 4.4. If $|x^G| = p$, then $|C_G(x)| = p^3$, let $M = C_G(x)$. Since G is a finite nilpotent group, $M \triangleleft G$ and G/M is abelian, consequently $G' \subset M$. If G/Z(G) is abelian, then $G' \subset Z(G) \Rightarrow G' = Z(G)$, so G is extra-special and $|G| = p^{2k+1}$, [3], a contradiction. Hence G/Z(G) is not abelian, since G is nilpotent, $G' \cap Z(G) \neq \{1\}$, so $Z(G) \subsetneq G' \subsetneq M$ and $|G'| = p^2$. Assume that M is not abelian, then $Z(G) \subset Z(M) \subset M$.

Since the index of center does not equal to a prime, Z(G) = Z(M). If $y \in M$, yx = xy so $x \in Z(M)$ and we reach the contradiction $x \in Z(G)$. Hence M is abelian. Conversely, let M be an abelian maximal subgroup of G and $x \in M - Z(G)$. If $|x^G| = p^2$, then $|C_G(x)| = p^2$. Since M is abelian, $M \subset C_G(x) \subsetneq G$, so $M = C_G(x)$ and $|C_G(x)| = p^3$, by this contradiction we obtain $|x^G| = p$.

Lemma 4.5. Let G be a p-group of order p^4 such that $|G: Z(G)| = p^3$ and let M be a maximal subgroup of G. Then

1) If M is abelian, M contains exactly p^2-1 nontrivial conjugacy classes which has p elements.

2) If M is not abelian, M-G' contains exactly p-1 nontrivial conjugacy classes which has p^2 elements.

Proof of Lemma 4.5. 1) Assume that M is abelian. Let $x \in M - Z(G)$, since $M \triangleleft G$, $x^G \subset M$. By Lemma 13, $|x^G| = p$, consequently G has $\frac{p^3 - p}{p} = p^2 - 1$ nontrivial conjugacy classes which has p elements.

 $\frac{p^3-p}{p} = p^2 - 1$ nontrivial conjugacy classes which has p elements. 2) If M is not abelian, let $x \in M - G'$. From Lemma 13 it follows that $\left|x^{G}\right| = p^2$, so M - G' has exactly $\frac{p^3-p^2}{p^2} = p - 1$ nontrivial conjugacy classes which has p^2 elements.

We will prove the last result as following. If M_1 and M_2 are two maximal subgroups in G, it is clear that $M_1 \cap M_2 = G'$. We denote by k_a (respectively k_{na}) the number of abelian (respectively nonabelian) maximal subgroups in G. If $x \in G' - Z(G)$, $x^G \subset G'$, so $|x^G| = p$ and $|C_G(x)| = p^3$, we have shown in the proof of Lemma 4.4 that $C_G(x)$ is abelian, consequently $k_a \neq 0$.

Let M_1, M_2 be two abelian maximal subgroups of G. Let $x \in G' - Z(G)$, then $G' \subset M_1 \subsetneq G$ and by Lemma 4.4, $|x^G| = p$.

Let $x \in M_1$. Since M_1 is abelian, $M_1 \subset C_G(x) \subsetneq G$, so $M_1 = C_G(x)$. By the same way we obtain $M_2 = C_G(x)$. Hence $M_1 = M_2$ and $k_a = 1$. Each maximal subgroup M satisfy $G' \subset M \subset G$, so $\frac{M}{G'}$ is a subgroup of order p of the group $G/G' \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. By Lemma 3.2, G has p+1maximal subgroups, so $k_{na} = p$.

2) By using Lemma 4.4 and Lemma 4.5 and the first assertion of Example 4.2, we obtain $N_c(G) = p + (p^2 - 1) + p(p - 1) = 2p^2 - 1$.

SUBGROUPS NOT CONTAINING THEIR CENTRALIZERS

Remark 4.6. In [1], M. Reid proved that if G is a finite group whose order is not divisible by 3, and G has m conjugacy classes, then the congruence $|G| \equiv m \mod 3$ holds. With the hypotheses of Theorem 3.1, we have the congruence $|G| \equiv N_c(G) \mod 6$ because

$$|G| - N_c(G) = p^n - p^{n-1} - p^{n-2} + p^{n-3} = p^{n-3}(p-1)^2(p+1).$$

Acknowledgements. I would like to thank the referee for his comments and remarks.

References

- M. REID The number of conjugacy classes, Amer. Math. Monthly 105 (1998), no. 4, p. 359–361.
- [2] D. J. S. ROBINSON Finiteness conditions and generalized soluble groups. Part 1, Springer-Verlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62.
- [3] _____, A course in the theory of groups, second éd., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996.
- [4] G. SHERMAN A lower bound for the number of conjugacy classes in a finite nilpotent group, *Pacific J. Math.* **80** (1979), no. 1, p. 253–254.
- [5] N. WATSON Subgroups of finite abelian groups, 1995, Summer research paper, Haverford College.

LEMNOUAR NOUI Department of Mathematics Faculty of Science University of Batna, Algeria nouilem@yahoo.fr