Lemnouar Noui

Properties of subgroups not containing their centralizers

<http://ambp.cedram.org/item?id=AMBP_2009__16_2_267_0>
Properties of subgroups not containing their centralizers

LEMMOUAR NOUI

Abstract

In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group G to express as semi-direct product of a divisible subgroup D and some subgroup H. We also apply the main Theorem to the p-groups with center of index p^2, for some prime p. For these groups we compute $N_c(G)$ the number of conjugacy classes and N_a the number of abelian maximal subgroups and N_{na} the number of nonabelian maximal subgroups.

1. Introduction

We shall recall some definitions:

If H is a subgroup of a group G, a subgroup K is called a complement of H in G if $G = HK$ and $H \cap K = \{1\}$. Therefore if $H \triangleleft G$ and $K \triangleleft G$, then G is said to be the direct product of H and K, in symbols, $G = H \odot K$.

If $H \triangleleft G$, then G is said to be the semi-direct product of H and K, in symbols, $G = H \rtimes K$.

An abelian group D is called divisible if for every $x \in D$ and every positive integer n there is a $y \in D$ so that $x = ny$, i.e., each element of D is divisible by every positive integer. The main property of divisible groups is that they satisfy the following “injectivity” condition:

Theorem 1.1 (Baer Theorem [3]). *If D is a divisible group, then any homomorphism $f : A \to D$ from any abelian group A into D extends to any abelian group G which contains A i.e., there exists a homomorphism $ar{f} : G \to D$ so that $\bar{f}|_A = f$.***

The purpose of this paper is to generalize this result to the nonabelian groups. To this end, we introduce the property “N” in subgroups: Let H be a subgroup of an arbitrary group G.

Keywords: Maximal subgroup, divisible groups, p-groups, center, conjugacy classes.

Math. classification: 14L05, 20D25, 20K27, 20E28.
L. Noui

H satisfies the condition "N" if and only if $\exists g \in G - H \ [g, H] = 1$.

This is equivalent to saying that $C_G(H) \nsubseteq H$ where $C_G(H)$ is the centralizer of H in G which is defined to be the set of all g in G such that $hg = gh$ for all h in H, it is clearly a subgroup of G.

By the definition of the condition “N” we deduce that

1) If G is abelian, then every proper subgroup H satisfies the condition "N".

2) If G is a nonabelian nilpotent group, then every maximal normal abelian subgroup H of G does not satisfy the condition “N” because $C_G(H) = H$, [3].

3) There exist a nonabelian groups G whose a subgroup H satisfies the condition "N", for example let $G = Q_8 \times \mathbb{Z}/2\mathbb{Z}$ where $H = Q_8$ is the quaternion group of order 8, [2].

2. Main results and proofs

Theorem 2.1. Let G be a group and let H be a subgroup of G such that each proper subgroup H' of G which contains H, satisfies the condition “N”. Then any homomorphism $f : H \rightarrow D$ from H into divisible group D extends to the group G.

Proof. Let us consider the set S of all pairs (H_i, f_i) where H_i is a subgroup of G containing H and $f_i : H_i \rightarrow D$ is an extension of f, i.e., $f_i|_{H_i} = f$. Let $(H_i, f_i) \leq (H_j, f_j)$ if $H_i \subset H_j$ and $f_j|_{H_i} = f_i$. The set S is partially ordered by the relation \leq. We aim to apply Zorn’s Lemma to S and to this end we consider a chain $(H_i, f_i)_{i \in I}$. It has an upper bound $(\bigcup_{i \in I} H_i, f')$ where $f' : \bigcup_{i \in I} H_i \rightarrow D$ is defined by $f'(x_i) = f_i(x_i)$ for every $x_i \in H_i$. This is unambiguous since $x_i \in H_i \subset H_m \Rightarrow f_m(x_i) = f_i(x_i)$. Consequently, by Zorn’s Lemma, S has a maximal element, say $(\overline{H}, \overline{f})$. We claim that $\overline{H} = G$ and \overline{f} is the desired extension of f to G. To see this suppose $\overline{H} \neq G$. By hypotheses \overline{H} satisfies the condition “N”, consequently, there is an $g \in G - \overline{H}$ such that $[g, \overline{H}] = 1$, therefore $\langle \overline{H}, g \rangle = \overline{H} \cdot \langle g \rangle$. There are two cases:

Case 1.

$\overline{H} \cap \langle g \rangle \neq \{0\}$. Let n the smallest positive integer so that $g^n = u \in \overline{H}$. Since D is divisible there is a $x \in D$ so that $\overline{f}(u) = nx$. Let $\overline{f}^* : \overline{H} \cdot \langle g \rangle \rightarrow D$ be defined by $\overline{f}^*(ag^t) = \overline{f}(a) + tx$ where $a \in \overline{H}$ and $0 \leq t < n$, if
Subgroups not containing their centralizers

Any divisible subgroup \(ag^t = a'g'^t \) then \(a^{t-1}a = g^{t-t} \in H \), so \(t' - t = 0 \) and \(a = a' \). Hence \(x = f(x) = f(y) \). We consider the identity map: \(f \) to abelian groups, also we deduce the known result,

\[
\begin{align*}
H \cap (g) &= \{0\}. \\
H \cdot (g) &= H \circ (g). \\
D &\text{ splits}.
\end{align*}
\]

Let \(x_0 \) be an element of \(D \), in this case we can define \(f^{-1} : H \cdot (g) \to D \) by writing \(f^{-1} (ag^t) = f(a) + kx_0 \), it is easy to verify that \(f^{-1} \) is a homomorphism so that \(f^{-1} = f \) contradicting the maximality of \((H, f) \). Thus \(H = G \) and \(f \) is the desired extension of \(f \) to \(G \).

\text{Case 2.}

Since every subgroup of an abelian group satisfies the condition “\(N \)”, we can apply Theorem 2.1 to abelian groups, also we deduce the known result, [3]:

Corollary 2.2. Any divisible subgroup \(D \) of an abelian group \(G \) splits, i.e., \(D \) has a complement \(H \) so that \(G = H \oplus D \).

If \(G \) is a group (not necessarily abelian), we write:

Corollary 2.3. Let \(G \) be a group and let \(D \) be a divisible subgroup of \(G \) such that every subgroup \(H \) of \(G \) which contains \(D \), satisfies the condition “\(N \)”. Then \(D \) has a complement \(H \) so that \(G = H \ltimes D \).

\text{Proof.} We consider the identity map: \(id_D : D \to D \), by Theorem 2.1, \(id_D \) extends to the group \(G \), i.e., there exists a homomorphism \(f : G \to D \) so that \(f|_D = id_D \). Let \(i : D \to G \) be the inclusion map, then \(f \circ i = id_D \) implies that \(f(G) = D \). Let \(H = Ker \) \(f \), if \(x \in G \), then \(x = x f \). Since \(f \) \(x f \) \(x^{-1} f \) \(x \), we have \(f \) \(x f \) \(x^{-1} f \) \(x = 1 \), so \(G = H.D \). If \(x \) belongs to \(H \cap D \), then \(x = f \) \(x' \) and \(x = f \) \(x' \), that is, \(H \cap D = \{1\} \). Hence \(G = H \ltimes D \).

269
Corollary 2.4. Let G be a finite p-group with center of index p^2. If H is a nonabelian maximal subgroup of G then any homomorphism $f : H \to D$ from H into divisible group D extends to the group G.

To prove Corollary 2.4, we need the following.

Lemma 2.5. Let G be a finite p-group such that its center $Z(G)$ has index p^2. If H is a maximal subgroup of G, then the following properties are equivalent.

i) H is abelian

ii) $Z(G) \subseteq H$

iii) H does not satisfy the condition “N”.

Proof of Lemma 2.5. “i) \Rightarrow ii)” Let us assume that H is abelian. If $Z(G) \not\subseteq H$, there exists $g \in Z(G) - H$ and $G = H \cdot \langle g \rangle$. Then G is abelian, this contradicts $|G : Z(G)| = p^2$.

“ii) \Rightarrow iii)” Assume that $Z(G) \subseteq H$. Then $Z(G) \subseteq Z(H) \subseteq H \subseteq G$. By hypothesis $|G : Z(G)| = p^2$. Since the center does not have a prime index and $|G : H| = p$, $Z(H) = H$, consequently H is abelian. Hence H is a maximal normal abelian subgroup of the nilpotent group G, so $C_G(H) = H$, [3], and H does not satisfy the condition “N”.

“iii) \Rightarrow i)” If $C_G(H) \subseteq H$, then $Z(G) \subseteq Z(H) \subseteq H$. By the same way we deduce that H is abelian. \square

Proof of Corollary 2.4. Let H be a subgroup of G so that $H \subseteq H'$, since H is nonabelian, by Lemma 2.5, there is $g \in G - H$ so that $[g, H] = 1$. Then $[g, H'] = 1$ by maximality of H. Thus the conditions of Theorem 2.1 are satisfied, so we obtain Corollary 2.4. \square

3. Subgroups satisfying the condition “N”

If A is finitely generated abelian group, the rank of A is defined by $rk(A)$ the minimum number of generators of A.

We denote us by x^G the conjugacy class of x in an arbitrary group G and $C_G(x)$ the centralizer of x in G and $N_c(G)$ the number of the conjugacy classes.

If G is a finite p-group of class c, then from [4], we know that

$$N_c(G) \geq c|G|^{1/c} - c + 1.$$
Let G be a finite p-group of order p^n such that its center has index p^2. In this section, we compute the number $N_c(G)$ and N_0 the number of maximal subgroups in G satisfying the condition “N”.

Theorem 3.1. Let G be a finite p-group of order p^n such that its center has index p^2, then

1) G has precisely $p + 1$ abelian maximal subgroups.

2) The number of maximal subgroups satisfying the condition “N” equals

$$N_0 = (p^r - p^2)/(p - 1)$$

where r is the rank of $G/G' = \mathbb{Z}/p^{n_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{n_r}\mathbb{Z}$.

3) $N_c(G) = p^{n-1} + p^{n-2} - p^{n-3}$ and each nontrivial conjugacy class has p elements.

The proof of Theorem 3.1 results from the following Lemmas.

Lemma 3.2. Let G be an abelian finite p-group, then the number of subgroups of order p equals

$$\left(\frac{p^r - 1}{p - 1}\right) = p^r - 1.$$

Proof of Lemma 3.2. Since $rk(G) = r$, G is isomorphic with the group $\mathbb{Z}/p^{n_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{n_r}\mathbb{Z}$. If g is an element of order p in G, then $g = g_1g_2\cdots g_r$ such that g_i has order p or 1 and $g \neq 1$. The number of such elements g equals

$$(p - 1) \cdot C_1^1 + (p - 1)^2 C_2^2 + \cdots + (p - 1)^r C_r^r = p^r - 1.$$

Since a group of order p has $p - 1$ elements of order p, the number of subgroups of order p is $(p^r - 1)/(p - 1)$.

Lemma 3.3. Let G be a p-group satisfying $|G : Z(G)| = p^m$, then $|G'| \leq p^{m(m - 1)/2}$.

Proof. By induction on m.

Proof of Theorem 3.1. 1) Let H be an abelian maximal subgroup of G, then H does not satisfy the condition “N”, so $Z(G) \subset H$. Consequently $H/Z(G)$ is a subgroup of order p of the elementary p-group $G/Z(G) \cong \mathbb{Z}/p\mathbb{Z} \times \cdots \times \mathbb{Z}/p\mathbb{Z}$ by Lemma 3.2, there is $(p^2 - 1)(p^2 - 1) = p + 1$ such subgroups.

2) By Lemma 3.3, $|G : Z(G)| = p^2$ implies that $|G'| = p$. Let H be a maximal subgroup of G, then $G' \subset H \subset G$ implies that H/G' is a maximal subgroup of G/G'. By using the known result of Steinitz [5]: The number of subgroups of order p^k equals the number of subgroups of order p^{n-k} in a finite abelian group of order p^n, we conclude that the number of the maximal subgroups H is equal to the number of subgroups of order p of G/G'. If $rk(G/G') = r$, then the number of maximal subgroups satisfying
the condition “N” is \((p^r - 1)(p - 1) - (p + 1) = (p^r - p^2)(p - 1)\) by lemma 3.2.

3) If \(x \in Z(G)\), the conjugacy class of \(x\) is trivial, i.e., \(x^G = \{x\}\). If \(x \notin Z(G)\), then \(Z(G) \subsetneq C_G(x) \subsetneq G\) therefore \(|x^G| = |G : C_G(x)| = p\). Let \(k\) the number of nontrivial conjugacy classes, then \(|G| = p^n = p^{n-2} + kp\). Consequently \(k = p^{n-1} - p^{n-3}\) and \(N_c(G) = p^{n-1} + p^{n-2} - p^{n-3}\), so the proof is complete. □

Corollary 3.4. Let \(G\) be a \(p\)-group of order \(p^n\) such that \(|G : Z(G)| = p^2\). If \(G/G'\) is elementary \(p\)-group, then \(G\) has exactly \((p^{n-1} - 1)(p - 1)\) maximal subgroups.

Proof. This follows easily from Theorem 3.1. □

4. Examples

The following examples illustrate some applications of the previous results.

Example 4.1. Let \(G\) be a \(p\)-group of order \(p^3\), then

1) The number \(N\) of maximal subgroups is given in the following table

<table>
<thead>
<tr>
<th>(G)</th>
<th>(\frac{\mathbb{Z}}{p^3\mathbb{Z}})</th>
<th>(\frac{\mathbb{Z}}{p^2\mathbb{Z}} \times \frac{\mathbb{Z}}{p^2\mathbb{Z}})</th>
<th>(\frac{\mathbb{Z}}{p\mathbb{Z}} \times \frac{\mathbb{Z}}{p^2\mathbb{Z}} \times \frac{\mathbb{Z}}{p^2\mathbb{Z}})</th>
<th>(G) is nonabelian</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>1</td>
<td>1 + (p)</td>
<td>1 + (p + p^2)</td>
<td>1 + (p)</td>
</tr>
</tbody>
</table>

2) The number of conjugacy classes is \(N_c(G) = p^2 + p - 1\) (if \(G\) is nonabelian).

To prove the result 1) we consider the two cases

a) If \(G\) is abelian, we apply Lemma 2.5.

b) If \(G\) is nonabelian, \(|G : Z(G)| = p^2\) because the index of center does not equal to a prime, so \(G' = Z(G)\) and \(G\) is extra-special, [3]. Now \(G' \subset \text{Frat}(G) \subset G\) implies that \(|\text{Frat}(G)| = p^2\) or \(p\), the first case is impossible because, by Burnside Basis Theorem, [3], \(|G : \text{Frat}(G)| = p\) implies that \(G\) is generated by one element, that is, \(G\) is cyclic. Hence \(G' = Z(G) = \text{Frat}(G)\). If \(G/G'\) is not elementary \(p\)-group, then by Theorem 3.1 \(G\) has one maximal subgroup, so \(|\text{Frat}(G)| = p^2\), a contradiction. Thus \(G/G'\) is elementary \(p\)-group and the result is an immediate consequence of Corollary 3.4.
Subgroups not containing their centralizers

2) Since \(|G : Z(G)| = p^2\), to calculate \(N_c(G)\) it is enough to apply Theorem 3.1 for \(n = 3\).

Example 4.2. Let \(G\) be a \(p\)-group of order \(p^4\) such that \(|G : Z(G)| = p^2\).

1) If \(G/G'\) is an elementary \(p\)-group, then \(G\) has exactly \(p + 1\) abelian maximal subgroups and \(p^2\) nonabelian maximal subgroups.

2) If \(G/G'\) is not an elementary \(p\)-group, \(G\) has \(p + 1\) maximal subgroups, all abelian.

In order to prove this, we consider two cases.

1) In the first place, if \(G/G'\) is an elementary \(p\)-group, then \(G\) has \(p^3 - 1\) maximal subgroups by Corollary 3.4. To calculate the number of nonabelian maximal subgroups we can apply the second assertion of Theorem 3.1.

2) Now assume that \(G/G'\) is not an elementary \(p\)-group, then the rank \(rk(G/G') = 1\) or \(2\), the first case implies that \(|G : Frat(G)| = p^1\) and \(G\) is cyclic. Hence \(rk(G/G') = 2\), by Theorem 3.1, \(G\) has not a nonabelian maximal subgroup and it has exactly \(p + 1\) maximal subgroups, all abelian, as required.

Example 4.3. Let \(G\) be a \(p\)-group of order \(p^4\) such that \(|G : Z(G)| = p^3\). Then

1) \(G\) has one maximal abelian subgroup and \(p\) nonabelian maximal subgroups.

2) \(G\) has exactly \(2p^2 - 1\) conjugacy classes.

In order to prove this result, we first note that every element \(x\) of \(G\) belongs to a maximal subgroup. Second, we establish two Lemmas.

Lemma 4.4. Let \(G\) be a \(p\)-group of order \(p^4\) such that \(|G : Z(G)| = p^3\). Then

\[|x^G| = p \iff x \in M - Z(G), \]

where \(M\) is an abelian maximal subgroup of \(G\).

Proof of Lemma 4.4. If \(|x^G| = p\), then \(|C_G(x)| = p^3\), let \(M = C_G(x)\). Since \(G\) is a finite nilpotent group, \(M \triangleleft G\) and \(G/M\) is abelian, consequently \(G' \subset M\). If \(G/Z(G)\) is abelian, then \(G' \subset Z(G) \Rightarrow G' = Z(G)\), so \(G\) is extra-special and \(|G| = p^{2k+1}\), [3], a contradiction. Hence \(G/Z(G)\) is not abelian, since \(G\) is nilpotent, \(G' \cap Z(G) \neq \{1\}\), so \(Z(G) \nsubseteq G' \nsubseteq M\) and \(|G'| = p^2\). Assume that \(M\) is not abelian, then \(Z(G) \subset Z(M) \subset M\).
L. Noui

Since the index of center does not equal to a prime, $Z(G) = Z(M)$. If $y \in M$, $yx = xy$ so $x \in Z(M)$ and we reach the contradiction $x \in Z(G)$. Hence M is abelian. Conversely, let M be an abelian maximal subgroup of G and $x \in M - Z(G)$. If $|x^G| = p^2$, then $|C_G(x)| = p^2$. Since M is abelian, $M \subset C_G(x) \subset G$, so $M = C_G(x)$ and $|C_G(x)| = p^3$, by this contradiction we obtain $|x^G| = p$. □

Lemma 4.5. Let G be a p–group of order p^4 such that $|G : Z(G)| = p^3$ and let M be a maximal subgroup of G. Then

1) If M is abelian, M contains exactly $p^2 - 1$ nontrivial conjugacy classes which has p elements.

2) If M is not abelian, $M - G'$ contains exactly $p - 1$ nontrivial conjugacy classes which has p^2 elements.

Proof of Lemma 4.5. 1) Assume that M is abelian. Let $x \in M - Z(G)$, since $M \triangleleft G$, $x^G \subset M$. By Lemma 13, $|x^G| = p$, consequently G has

$$\frac{p^3 - p}{p} = p^2 - 1$$

nontrivial conjugacy classes which has p elements.

2) If M is not abelian, let $x \in M - G'$. From Lemma 13 it follows that $|x^G| = p^2$, so $M - G'$ has exactly $\frac{p^3 - p^2}{p^2} = p - 1$ nontrivial conjugacy classes which has p^2 elements. □

We will prove the last result as following. If M_1 and M_2 are two maximal subgroups in G, it is clear that $M_1 \cap M_2 = G'$. We denote by k_a (respectively k_{na}) the number of abelian (respectively nonabelian) maximal subgroups in G. If $x \in G' - Z(G)$, $x^G \subset G'$, so $|x^G| = p$ and $|C_G(x)| = p^3$, we have shown in the proof of Lemma 4.4 that $C_G(x)$ is abelian, consequently $k_a \neq 0$.

Let M_1, M_2 be two abelian maximal subgroups of G. Let $x \in G' - Z(G)$, then $G' \subset M_1 \subset G$ and by Lemma 4.4, $|x^G| = p$.

Let $x \in M_1$. Since M_1 is abelian, $M_1 \subset C_G(x) \subset G$, so $M_1 = C_G(x)$. By the same way we obtain $M_2 = C_G(x)$. Hence $M_1 = M_2$ and $k_a = 1$. Each maximal subgroup M satisfy $G' \subset M \subset G$, so M/G' is a subgroup of order p of the group $G/G' \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. By Lemma 3.2, G has $p + 1$ maximal subgroups, so $k_{na} = p$.

2) By using Lemma 4.4 and Lemma 4.5 and the first assertion of Example 4.2, we obtain $N_c(G) = p + (p^2 - 1) + p(p - 1) = 2p^2 - 1$. 274
Remark 4.6. In [1], M. Reid proved that if G is a finite group whose order is not divisible by 3, and G has m conjugacy classes, then the congruence $|G| \equiv m \mod 3$ holds. With the hypotheses of Theorem 3.1, we have the congruence $|G| \equiv N_c(G) \mod 6$ because
\[|G| - N_c(G) = p^n - p^{n-1} - p^{n-2} + p^{n-3} = p^{n-3}(p - 1)^2(p + 1). \]

Acknowledgements. I would like to thank the referee for his comments and remarks.

References

Lemnouar Noui
Department of Mathematics
Faculty of Science
University of Batna,
Algeria
nouilem@yahoo.fr