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Bounds For Étale Capitulation Kernels II

Mohsen Asghari-Larimi
Abbas Movahhedi

Abstract

Let p be an odd prime and E/F a cyclic p-extension of number fields. We give
a lower bound for the order of the kernel and cokernel of the natural extension
map between the even étale K-groups of the ring of S-integers of E/F , where S
is a finite set of primes containing those which are p-adic.

Bornes pour les noyaux de capitulations II
Résumé

Soit p un nombre premier impair et E/F une p-extension cyclique de corps
de nombres. Nous donnons une minoration pour l’ordre du noyau et conoyau de
l’application naturelle d’extension entre les K-groupes étales des anneaux de S-
entiers de E/F où S est un ensemble fini de places contenant les places p-adiques.

1. Introduction

Let F be an algebraic number field and let p be an odd prime num-
ber. For a finite set S of primes of F containing the primes above p, let
oS
F denote the ring of S-integers of F . For a Galois p-extension E of F

with Galois group G which is unramified outside S, the kernel and the
cokernel of the natural functorial map between the even étale K-groups
fi : Két

2i−2(o
S
F ) −→ (Két

2i−2(o
S
E))G are described by the cohomology of odd

étale K-groups Két
2i−1(o

S
E). So using Borel’s results on the abelian group

structure of odd K-groups, one can give an upper bound for the rank of
the finite p-groups ker(fi) and coker(fi), as explained by B. KAHN [8,
section 4], by means of the number of real and complex embeddings of the
number field F . In [1], partially answering a question asked by B. KAHN
loc.cit., we gave a lower bound for the order of ker(fi) and coker(fi), in

Keywords: Capitulation, Tate kernel, K-group, Étale cohomology.
Math. classification: 11R70, 19F27.
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the case where the extension E/F is cyclic of degree p in terms of tamely
ramified primes. Our purpose in the present paper is to similarly treat the
case where E/F is cyclic of degree pn, n ≥ 1.

When the number field F contains a primitive p-th root of unity ζp, the
classical Tate kernel DF consists of the non-zero elements a of F , such
that the symbol {a, ζp} is trivial in K2F . Obviously, DF lies between F •,
the multiplicative group of non zero elements of F and F •p . It is known
that the factor group DF /F •p is of rank 1 + r2, where r2 is the number
of complex embeddings of F [14]. When F satisfies Leopoldt’s conjecture
at the prime p, the Kummer radical AF = A

(1)
F of the compositum of the

first layers of Zp-extensions of F has the same size : AF /F •p ∼= DF /F •p.
Answering a question raised by J. COATES [2], R. GREENBERG showed
that even though in general AF 6= DF , they coincide when the base field
F contains enough p-primary roots of unity [4].

More generally, when F contains the pn-th roots of unity, for each inte-
ger i ≥ 2, there exists a subgroup D

(i,n)
F of F • containing F •pn

, such that
Két

2i−1F/pn ∼= D
(i,n)
F /F •pn

, and the order of coker(fi) is minorized by the
norm index in the generalized Tate kernel D

(i,n)
F (Proposition 2.1). Follow-

ing Greenberg’s method, one can show that, once again under Leopoldt’s
conjecture, D

(i,n)
F turns out to be the Kummer radical A

(n)
F of the composi-

tum of the n-th layers of Zp-extensions of F , provided F contains enough
p-primary roots of unity. We then obtain our lower bound by minorizing
the norm index [A(n)

F : A
(n)
F ∩NE/F (E•)] in terms of the ramification in-

dices in E/F of non-p-adic primes belonging to the same "primitive" set
for (F, p) (Proposition 4.3).

At the end of the paper, we treat the case where the base field F
is "p-regular" and all the tamely ramified primes in E/F belong to the
same primitive set. In particular, we show that there are infinitely many
cyclic extensions E/F of degree pn, such that the order of the kernel (or
the cokernel) takes any prescribed value between 1 and the trivial upper
bound pn(1+r2).

2. A lower bound via the Tate kernel

Suppose that E/F is a cyclic extension of degree pn with Galois group
G, and that F contains the pn-th roots of unity µpn . Denote by S the set
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of p-adic primes, as well as those which ramify in E/F . Throughout this
paper i is an integer ≥ 2. The exact sequence

0 → Zp(i) → Zp(i) → Z/pnZ(i) → 0

induces an injection

Két
2i−1F/pn ∼= H1(F,Zp(i))/pn

↪→ H1(F,Z/pnZ(i))

= H1(F, µpn)(i− 1)

∼= F •/F •pn
(i− 1),

where H1(F, ) denotes the first continuous cochain cohomology group
of the absolute Galois group GF of F and, for any GF -module M , the
notation M(i) is the i-fold Tate twisted module M [14].

Thus there exists a subgroup D
(i,n)
F of F • containing F •pn

- the analogue
of the Tate-kernel in the case of i = 2 and n = 1 -, such that

Két
2i−1F/pn ∼= (D(i,n)

F /F •pn
)(i− 1).

Since the odd étale K-groups satisfy Galois descent, we have [1, Section
1]:

coker(fi) ∼= (Két
2i−1F/pn)/NE/F (Két

2i−1E/pn)

∼= D
(i,n)
F /F •pn

NE/F (D(i,n)
E )(i− 1).

Since F •pn
NE/F (D(i,n)

E ) ⊂ D
(i,n)
F ∩NE/F (E•), we have the following lower

bound for the order of the kernel or the cokernel of the natural natural
functorial map between the even étale K-groups

fi : Két
2i−2(o

S
F ) −→ (Két

2i−2(o
S
E))G

(when G is cyclic, the Herbrand quotient h(G, Két
2i−1(o

S
E)) is trivial, so

that ker(fi) and coker(fi) have the same order):

Proposition 2.1. Let E/F be a cyclic extension of degree pn of algebraic
number fields containing µpn. Then

|coker(fi)| = | ker(fi)| ≥ [D(i,n)
F : D

(i,n)
F ∩NE/F (E•)].
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A detailed account of these generalized Tate kernels D
(i,n)
F can be found

in [6, 15], see also [9] for the case n = 1.

3. Tate kernel and Kummer radical

In this section, we fix a positive integer n and assume that our base number
field F contains the pn-th roots of unity µpn . Let µp∞ := ∪m≥1µpm be the
group of all p-primary roots of unity and F∞ := F (µp∞) be the cyclotomic
Zp-extension of F . Denote by Fn the n-th layer in F∞ and by Γ the Galois
group Gal(F∞/F ). Fix a topological generator γ of Γ in order to identify
the Iwasawa algebra Zp[[Γ]] with the power series algebra Λ := Zp[[T ]].

Let K := F •
∞ ⊗Qp/Zp, considered as a discrete group on which Γ acts

through the first factor. Let F̃ be the compositum of all Zp-extensions of
F and

A
(n)
F = {a ∈ F •/F ( pn√

a) ⊂ F̃}
be the Kummer radical of the compositum of the n-th layers of the Zp-
extensions of F .

Following Greenberg [4],

A
(n)
F = {a ∈ F •/a⊗ (p−n mod Zp) ∈ Div(K(−1)Γ)}

and one can establish as in [1, page 204] that for all i ≥ 2

D
(i,n)
F = {a ∈ F •/a⊗ (p−n mod Zp) ∈ Div(K(i− 1)Γ)}.

Here Div stands for the maximal divisible subgroup.
Let K∞ be the maximal abelian pro-p-extension of F∞. Kummer theory

yields a perfect pairing [7, Section 7]

Gal(K∞/F∞)×K −→ µp∞

(σ, a⊗ (p−mmod Zp)) 7−→ σ( pm√
a)/ pm√

a
.

Now let M∞ be, as usual, the maximal abelian pro-p-extension of F∞
unramified outside p and X∞ := Gal(M∞/F∞). Let N∞ be the subfield of
M∞ fixed by the torsion submodule TorΛ(X∞). Denote byN the subgroup
of K corresponding to the field N∞ by the above pairing. For every integer
i, we then have a perfect pairing

X(−i)×N (i− 1) −→ Qp/Zp,

where X := FrΛX∞ = Gal(N∞/F∞) is the maximal torsion-free quotient
of X∞.
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It is well known that X is a submodule of Λr2 of finite index. The
quotient module HF := Λr2/X is isomorphic as an abelian group to the
kernel of the natural map K2Fn −→ K2F∞, for n large [2]. The exponent
of the finite group HF will play an important role in what follows and will
be henceforth denoted by pe.

From the above pairing we see that for all i ∈ Z, pnDiv(N (i − 1)Γ) is
the Pontryagin dual of FrZp(X(i)Γ)/pn.

The following lemma generalizes [1, Lemma 2.1] to the case of cyclic
extensions of degree pn with which we are dealing:

Lemma 3.1. ([4, page 1242]]) Let j ≡ i (mod pr) for an integer r ≤ n+e.
Then

FrZp(X(i)Γ)/pn = FrZp(X(j)Γ)/pn (i− j)

provided µpn+e−r ⊂ F .

Proof. As in the proof of [1, Lemma 2.1], we have, for each integer i,

FrZp(X(i)Γ)/pn ∼= X(i)/(X(i) ∩ T (Λr2(i)) + pnX(i)).

Let Yi := X(i) ∩ T (Λr2(i)) + pnX(i). We have to show that the two sub-
modules Yi and Yj are the same for any two integers i and j such that
j ≡ i (mod pr).

Let κ be the cyclotomic character and recall that γ, which we have
already fixed, is a topological generator of Γ. Denote the action of T on
Λr2(i) by T (i) := κ(γ)iγ − 1. Each element y ∈ Yi can be written as
y = T (i)λ + pnx, with T (i)λ ∈ X, for a λ ∈ Λr2 and an x ∈ X. Write
y = (T (i) − T (j))λ + T (j)λ + pnx. Since, by hypothesis µpn+e−r ⊂ F , we
have

κ(γ) ≡ 1(mod pn+e−r).

Moreover pr dividing i− j, we obtain from the preceding congruence

κ(γ)i−j ≡ 1(mod pn+e).

Thus (T (i) − T (j))Λr2 is contained in pn+eΛr2 . On the other hand, as an
abelian group X/Yj ' (Z/pnZ)r2 is of exponent pn, so the exponent of
Λr2/Yj is at most pn+e. Thus (T (i) − T (j))Λr2 ⊂ Yj . The element T (j)λ

of T (Λr2(j)) is also in X because y, (T (i) − T (j))λ and pnx are in X. We
conclude that y is in Yj . The lemma follows. �
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By duality, the previous lemma then shows that under the same condi-
tions

pnDiv(N (i)Γ) = pnDiv(N (j)Γ)(i− j).
In particular, putting j = 0:

pnDiv(N (i)Γ) = pnDiv(N Γ)(i).

Recall now that for any rational integer i ≥ 2 [13]

Div(N (i− 1)Γ) = Div(K(i− 1)Γ)

and for any i 6= 1 the above equality is conjectured to be true (Green-
berg, Schneider). The case i = 0 corresponds to the Leopoldt conjecture
for the base number field F at the prime p. Thus we have the following
corollaries:

Corollary 3.2. For two integers i ≥ 2 and j ≥ 2, if j ≡ i (mod pr) for
an integer r ≤ n + e, then

D
(i,n)
F = D

(j,n)
F (i− j)

provided µpn+e−r ⊂ F . Recall our assumption that F always contains at
least µp.

In the following corollaries, we put j = 0 and i ≥ 2.

Corollary 3.3. Assume the number field F contains µp and satisfies
Leopoldt’s conjecture at the prime p. Then

D
(i,n)
F = D

(0,n)
F (i) = A

(n)
F (i)

provided µpn+e−r ⊂ F for an integer r ≤ n + e such that pr | i.

Since µp ⊂ F , for m large, the m-th layer Fm of the cyclotomic Zp-
extension of F contains enough p-primary roots of unity and the condition
µpn+e−r ⊂ Fm is automatically satisfied:

Corollary 3.4. Assume that the layers Fm of the cyclotomic Zp-extension
of F satisfy Leopoldt’s conjecture at the prime p. Then, we have

D
(i,n)
Fm

= D
(0,n)
Fm

(i) = A
(n)
Fm

(i)

for m large enough.

The preceding corollaries generalize those of [1, Section 2] where the
case of cyclic extensions of degree p is treated.
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4. Bounds For The Higher étale capitulation Kernels

Let E/F be a cyclic extension of algebraic number fields of degree pn,
containing µpn , with Galois group G. The set S consists of a finite set of
primes containing Sp and those primes which ramify in E/F . Since the
étale K-groups Két

2i−1F are finitely generated Zp-modules of rank r2 and
have cyclic torsion subgroup, we have the following upper bound for the
kernel or the cokernel of the natural extension map fi : Két

2i−2(o
S
F ) −→

(Két
2i−2(o

S
E))G:

| ker(fi)| = |coker(fi)| ≤ pn(1+r2),

where i ≥ 2 and r2 is the number of complex places of F .
We also recall that the maps fi are not injective once a non-p-adic prime

ramifies in E/F [1, Proposition 4.2].
Assume that the number field F contains µpn . Let F̃n be the composi-

tum of the n-th layers of the Zp-extensions of F . By the definition of the
Kummer radical A

(n)
F , we have a perfect pairing

Gal(F̃n/F ) × A
(n)
F /F •pn

−→ µpn

(σ, a) 7−→ σ( pn√
a)/ pn√

a.

Definition 4.1. ([3, 10, 11, 12]) A set S of finite primes of F containing Sp

is called primitive for (F, p) if the Frobenius "attached" to the primes v in
S−Sp generate a direct summand in Gal(F̃ /F ) of Zp-rank the cardinality
of S − Sp, where F̃ is the compositum of all the Zp-extensions of F .

Let S−Sp = {v1, v2, · · · , vs} be the set of non-p-adic primes which ram-
ify in E/F . We extract from this a set Sp ∪ {v1, v2, · · · , vt} primitive for
(F, p). Denote by σj := σj(F̃n/F ) the Frobenius "attached" to the prime vj

in the extension F̃n/F . We consider Gal(F̃n/F ) as a naturally free Z/pnZ-
module. By the definition of primitivity, the set {σ1, · · · , σt} is Z/pnZ-
free and could be extended to a basis {σ1, · · · , σt, σt+1, · · · , σ1+r2+δF

}
of Gal(F̃n/F ). Here δF dentoes the default of Leopoldt’s conjecture for
(F, p). Introduce the dual basis {a1, · · · , a1+r2+δF

} with respect to the
above pairing:{

σj( pn√aj) = ζpn pn√aj for all j = 1, · · · , 1 + r2 + δF

σj( pn√
ak) = pn√

ak whenever k 6= j.
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Here ζpn is a fixed primitive pn-th root of unity. In particular, for each
j, the prime vj remains inert in F ( pn√aj) and splits in

F ( pn√
a1, · · · , pn√ai−1, pn√ai+1, · · · , pn√a1+r2+δF

).

Let v be any of the primes in {v1, v2, · · · , vt}. Denote by w a prime of
E above v. Let Fv, Ew be the completion of F and E at v and w respec-
tively. The natural composite map A

(n)
F ↪→ F • ↪→ F •

v induces the following
injection

A
(n)
F /A

(n)
F ∩NEw/Fv

(E•
w) ↪→ F •

v /NEw/Fv
(E•

w) ∼= Gal(Ew/Fv)

showing that A
(n)
F /A

(n)
F ∩NEw/Fv

(E•
w) is cyclic. The following lemma gives

the order of this cyclic group:

Lemma 4.2. Let v = vj for a j = 1, 2, · · · , t and w a prime of E dividing
v. Denote by pe ≥ p the ramification index of v in E/F . The factor group
A

(n)
F /A

(n)
F ∩NEw/Fv

(E•
w) is cyclic of order pe.

Proof. By construction, all the ak for k 6= j belong to NEw/Fv
(E•

w) (since
pn√

ak ∈ Fv), so that A
(n)
F /A

(n)
F ∩NEw/Fv

(E•
w) is generated by the class of

a = aj .
Let E = F ( pn√

b). Let ( , )v be the Hilbert symbol in the local field Fv

with values in µpn . For any integer α, we have the following equivalences:
apα ∈ NEw/Fv

(E•
w) ⇐⇒ (apα

, b)v = 1
⇐⇒ (a, bpα

)v = 1
⇐⇒ bpα ∈ N

Fv( pn√
a)/Fv

(Fv( pn√
a)).

Since the extension Fv( pn√
a)/Fv is unramified of degree pn, this last

norm group consists of all elements whose valuation is exactly pn. Accord-
ingly, apα ∈ NEw/Fv

(E•
w) precisely when pn−α divides the valuation of b

in Fv. Finally, we have: apα
is a norm in Ew/Fv precisely when the local

extension Fv(
pn−α√

b)/Fv is unramified.
Now, by definition of e, Fv(

pn−e√
b) being the maximal unramified ex-

tension of Fv contained in Ew = Fv(
pn√

b), we conclude that the order
of the class of a in A

(n)
F /A

(n)
F ∩ NEw/Fv

(E•
w) is exactly pe, as was to be

shown. �
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Now consider the canonical map

A
(n)
F /A

(n)
F ∩v∈T\Sp

NEw/Fv
(E•

w)
ϕ−→

∏
v∈T\Sp

A
(n)
F /A

(n)
F ∩NEw/Fv

(E•
w)

where the set T := Sp ∪ {v1, v2, · · · , vt} consists of a primitive set for
(F, p) inside S. The map ϕ is obviously injective. On the other hand, by
the construction of the dual basis aj , we have

ϕ(a1) = (a1, 0, · · · , 0)
ϕ(a2) = (0, a2, 0, · · · , 0)
· · ·
ϕ(at) = (0, · · · , 0, at).

Therefore, the map ϕ is in fact an isomorphism. Now by the previous
lemma, the target group is of order pe1+···+et where pej ≥ p is the rami-
fication index of the non-p-adic prime vj in the cyclic p-extension E/F .
Accordingly

Proposition 4.3. Let E/F be a cyclic extension of degree pn containing
µpn. Let {v1, · · · , vt} consist of a set of tamely ramified primes in E/F
belonging to a primitive set for (F, p). We then have the following lower
bound for the norm index in the Kummer radical A

(n)
F of the n-th layers

of the Zp-extensions of F :

[A(n)
F : A

(n)
F ∩NE/F (E•)] ≥ pe1+···+et ,

where pej is the ramification index of vj in E/F .

Combining this proposition with the results of the previous sections we
get the following lower bound for the kernel or the cokernel of the natural
map fi : Két

2i−2(o
S
F ) −→ Két

2i−2(o
S
E)G, i ≥ 2, which we are interested in.

Theorem 4.4. Let F be a number field satisfying Leopoldt’s conjecture at
the prime p. Let E/F be a cyclic extension of degree pn. Let {v1, · · · , vt}
consist of a set of tamely ramified primes in E/F belonging to a primitive
set for (F, p). Denote by pej ≥ p the ramification index of vj in E/F and
by pe the exponent of HF . Then

| ker(fi)| = |coker(fi)| ≥ pe1+···+et ,

provided µpn+e−r ⊂ F for an integer r ≤ n + e such that pr | i.

Proof. We successively have
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| ker(fi)| = |coker(fi)| ≥ [D(i,n)
F : D

(i,n)
F ∩NE/F (E•)]

= [A(n)
F : A

(n)
F ∩NE/F (E•)]

≥ pe1+···+et .

�

In the classical case of i = 2, we necessarily have r = 0 and obtain:

Corollary 4.5. Let F be a number field satisfying Leopoldt’s conjecture
at the prime p and let µpn ⊂ F . Let E/F be a cyclic extension of degree
pn. Let {v1, · · · , vt} consist of a maximal set of tamely ramified primes
in E/F belonging to a primitive set for (F, p). Denote by pej ≥ p the
ramification index of vj in E/F . If µpn+e ⊂ F , then we have the following
lower bound

| ker(f)| = |coker(f)| ≥ pe1+···+et ,

for the kernel and the cokernel of the natural extension map of the tame
kernels f : K2(oS

F ) −→ K2(oS
E)G.

A set T primitive for (F, p) is said to be maximal when T − Sp is as
large as possible. When F satisfies Leopoldt’s conjecture, this is the case
where T −Sp contains exactly 1 + r2 primes, r2 being the number of non-
conjugate complex embeddings of F . When amongst totally and tamely
ramified primes in E/F one can extract a set {v1, · · · , v1+r2} sitting in
a primitive set, then the method developed here gives the exact size of
| ker(fi)| = |coker(fi)|:

Corollary 4.6. Let F be a number field satisfying Leopoldt’s conjecture
at the prime p and let µpn ⊂ F . Let E/F be a cyclic extension of degree
pn. Assume there exists a primitive set T for (F, p) which is maximal,
and such that each v ∈ T − Sp is totally ramified in E/F . Then

| ker(fi)| = |coker(fi)| = pn(1+r2),

provided µpn+e−r ⊂ F for an integer r ≤ n + e such that pr | i.

To finish, we establish that for each non-negative integer t ≤ 1 + r2,
there exist cyclic extensions E/F of degree pn where the order of ker(fi)
is exactly pnt. Start with the following short exact sequence

0 −→ Két
2i−2(oF ) −→ Két

2i−2(o
S
F ) −→ ⊕v∈S−SpH

2(Fv,Zp(i)) −→ 0.
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We choose the ground number field F to be p-regular (that is to say
Két

2i−2(oF ) = 0). This is for example the case of any cyclotomic field
Q(µpn), provided the prime p is regular. Furthermore, we suppose that
the set S is primitive for (F, p) so that the number field E is also p-
regular. In this way, we get the following commutative diagramme

Két
2i−2(o

S
E)G ∼−→ (⊕v∈S−Sp(⊕w|vH

2(Ew,Zp(i))))G

fi ↑ ⊕v∈S−Spfv ↑
Két

2i−2(o
S
F ) ∼−→ ⊕v∈S−SpH

2(Fv,Zp(i))
and all that remains to do is to estimate the order of the kernel of the
right vertical map. For each prime v, by local duality, the kernel of fv has
the same order as the cokernel of the canonical map

(⊕w|vH
0(Ew,Qp/Zp(1− i)))G −→ H0(Fv,Qp/Zp(1− i))

induced by the norm. Let E′
w be the inertia field in Ew/Fv. Then E′

w is
obtained from Fv by adjoining p-primary roots of unity (it is in fact a layer
of the cyclotomic Zp-extension of Fv, namely E′

w = Fv,∞∩Ew). From this
follows that the map

⊕w|vH
0(E′

w,Qp/Zp(1− i))) −→ H0(Fv,Qp/Zp(1− i))

is in fact surjective, whereas in the totally ramified extension Ew/E′
w the

cokernel of the map

⊕w|vH
0(Ew,Qp/Zp(1− i))) −→ H0(E′

w,Qp/Zp(1− i))

is of order pev = [Ew : E′
w], the ramification index of v in E/F (for details

see [5, Lemma 4.2.1]).
Thus we have the following:

Proposition 4.7. Let F be a p-regular number field containing the pn-th
roots of unity and let E/F be a cyclic extension of degree pn. Then

| ker(fi) |=| coker(fi) |= p

∑
v∈S−Sp

ev
,

provided the set S of the p-adic prime of F and those which ramify in E
is primitive for (F, p).

Čebotarev’s density theorem guarantees that for each number field F
there exist infinitely many cyclic extensions E of F of degree pn, such
that the set S of the p-adic primes of F and the tamely ramified primes
in E/F is primitive for (F, p), and such that each v ∈ S − Sp has the
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prescribed ramified index pev in E/F . Thus, according to the preceding
proposition, for each p-regular number field F with r2 non-conjugate com-
plex embeddings, and for each p-power (given in advance) pm ≤ pn(1+r2),
we can find infinitely many cyclic extensions E of F of degree pn, such
that | ker(fi) |=| coker(fi) |= pm.
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