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Hasse’s problem for monogenic fields

Toru Nakahara

Abstract

In this article we shall give a survey of Hasse’s problem for integral power bases
of algebraic number fields during the last half of century. Specifically, we developed
this problem for the abelian number fields and we shall show several substantial
examples for our main theorem [7] [9], which will indicate the actual method to
generalize for the forthcoming theme on Hasse’s problem [15].

1. Introduction

In 1960’s Hasse proposed to characterize number fields whose rings of
integers have power integral bases. First, we define a power integral basis.

Definition 1.1. Let ZK be the ring of integers in an algebraic number
field K of extension degree n. When the ring ZK is generated by a primitive
element α in K, namely ZK = Z[α] = Z[1, α, · · · , αn−1], we call that ZK

has a power basis or K is monogenic.

Let ζn be a primitive n-th root of unity. When K is any cyclotomic
number field kn = Q(ζn), its maximal real subfield Q(ζn + ζ−1

n ) or any
quadratic number field Q(

√
m) for a square-free m 6= 0, 1, the ring ZK of

integers has a power basis;

Z[ζn], Z[ζn + ζ−1
n ], Z[ω]

respectively. Here

ω =
d +

√
d

2
, d =

{
m if m ≡ 1 (mod 4),
4m if m ≡ 2, 3 (mod 4).

If K is a certain cubic cyclic quartic abelian or a maximal imaginary
abelian subfield of a cyclotomic field kn, such families of infinitely many
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fields have power integral bases [1, 2, 4, 10, 11, 12, 13, 14, 17]. On the
other hand, Dedekind showed that a non-Galois cubic field K = Q(θ) is
non-monogenic, where θ is a root of f(θ) = θ3− θ2− 2θ− 8 = 0 with the
discriminant d(θ) = −NK/Qf ′(θ) = −22 · 503. If K is non-monogenic, by
Stickelberger’s theorem the field discriminant d(K) would equal to −503.
In fact, we can seek for an integer η as a third generator of ZK . Let η =
(θ+θ2)/2 6∈ Z[θ] Then θη = θ2 +θ+4 ∈ Z[θ]. Hence η2 +η = 2θ2 +4θ+6.
Thus η ∈ Z̄K ∩K = ZK , where Z̄K is the integral closure of ZK . Then

 1
θ
η

 = M

 1
θ
θ2

 with M =

 1
1
1
2

1
2

 .

Hence d(1, θ, η) = (detM)2d(1, θ, θ2) namely, d(1, θ, η) = 1
4 · (−4 · 503) =

−503. Thus we have ZK = Z[1, θ, η].
Let K be a cyclic quartic extension field over Q with prime conductor.

Then, before a quarter of a century, K has no power integral basis except
for the 5-th cyclotomic field Q(ζ5) (see [10]).

Next we quote a criterion for non-monogenic phenomena.

Lemma 1.2 ([14, 17]). Let ` be a prime number and let F/Q be a Galois
extension of degree n = efg with ramification index e and the relative
degree f with respect to `. If one of the following conditions is satisfied,
then ZF has no power integral basis, i.e. F is non-monogenic;

(1) e`f < n if f = 1;
or
(2) e`f 5 n + e− 1 if f = 2.

Any cyclic extension F over Q with prime degree ` = [F : Q] = 5 is
non-monogenic except for the maximal real subfield F of the (2` + 1)-th
cyclotomic field with prime conductor 2` + 1, by M.-N. Gras [3] and it is
proved by us that some type of imaginary extension has no power integral
basis [17, 8, 16].

Finally we will propose a few open problems concerning Hasse’s prob-
lem.
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2. The rank r ≤ 2 or r ≥ 4

In the case of any quadratic field K = Q(
√

a) (r = 1), where a 6= 0, 1
square-free, is monogenic. Namely, the ring ZK of integers in K, ZK =
Z[1, ω], where ω is defined in the Section 1.

If K is a biquadratic extension field (r = 2), the author showed that
there exist infinitely many monogenic fields and non-monogenic ones within
the estimation of the field indices:

m̃(K) = min
primitive α∈K

{Ind(α)}, where Ind(α) =

√∣∣∣∣dK(α)
dK

∣∣∣∣
for the discriminant dK(α) of a number α and the field discriminant dK

[11]. M. N. Gras and T. Tanoé obtained a necessary and sufficient con-
dition such that F = Q(

√
a1,

√
a2) is a monogenic biquadratic field [4].

Specifying their result, Y.Motoda proved that there exist infinitely many
such fields [5].

Applying Lemma 1.2 for the prime number ` = 2, by the ideal decom-
position of a principal ideal (2) in K, we obtain for any such a field K of
higher rank r = 4.

Proposition 2.1 ([7]). Let a1, a2, · · · , ar be square-free rational integers
and F be the field Q(

√
a1,

√
a2, · · · ,

√
ar) of degree 2r, r = 4. Then F is

non-monogenic.

Next we obtained the followings for the octic field over Q whose Galois
group is 2-elementary abelian.

Theorem 2.2 ([15]). Let F = Q(
√

a1,
√

a2,
√

a3) be any octic field over Q.
Then F is non-monogenic except for the field Q(

√
−1,

√
2,
√
−3), namely

the cyclotomic field Q(ζ24) of conductor 24.

In this article we explain the basic idea and show prospective examples
for the theorem.

3. The rank r=3

If an octic field Q(
√

a1,
√

a2,
√

a3) with aj ≡ 1 (mod 4), that is, K has an
odd conductor, then we have e · `f 5 1 · 22 < 8 by Lemma 1.2 since prime
number (2) is not ramified in K and the inert group T with respect to 2
in the Galois group G(K/Q) is cyclic, hence the order f of T is less or
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equal to 2. Thus K is non-monogenic. On the other hand, we have in the
case a1 ≡ 3 (mod 4), a2 ≡ a3 ≡ 1 (mod 4), e = 2 and f 5 2 with rspect
to (2). Then

e · `f = 2 · 21 < 8 if f = 1,

e · `f = 2 · 22 5 8 + 2− 1 if f = 2.

Then without loss of generality, for any octic field K, it is enough for us
to investigate

K = Q
(√

4a1,
√

4a2,
√

a3

)
where a1 = mn ≡ 3 (mod 4), a2 = dn ≡ 2 (mod 4), a3 = d1m1n1` ≡
1 (mod 4), d = d1d2, m = m1m2, n = n1n2, d2 ≡ 2 (mod 4), d1,m1, n1 = 1
and dmn` is square-free.

Let k = Q
(√

d1m1n1`
)

and L = Q
(√

4mn,
√

4dn.
)
. When k and L are

linearly disjoint, namely d1m1n1 = 1, it is known that any such an octic
field K = kL is non-monogenic except for K = Q

(√
−4,

√
8,
√
−3

)
=

Q(ζ24) (see [6]).
In general, for d1m1n1 = 1 we obtain

Theorem 3.1 ([15]). Let

K = Q
(√

4mn,
√

4dn,
√

d1m1n1l
)

where a1 = mn ≡ 3 (mod 4), a2 = dn ≡ 2 (mod 4), a3 = d1m1n1 ≡ 1 ≡
3 (mod 4), d = d1d2, m = m1m2 n = n1n2 d2 ≡ 2 (mod 4), d1,m1, n1 = 1
and dmnl is square-free. Then K is non-monogenic except for the 24-th
cyclotomic number field Q(ζ24).

In this section, we show a prospective example for Theorem 3.1. We
consider the octic field

K = Q
(√

4 · 3,
√

4 · 2,
√

21
)

,

where m = m1m2 = 3, n = n1n2 = 1, d = d1d2 = 2 and d1m1n1` =
1 · 3 · 1 · 7. Then K contains seven quadratic subfields;
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k1 = Q(
√

4 ·mn) = Q(
√

4 · 3),
k2 = Q(

√
4 · dn) = Q(

√
4 · 2),

k3 = Q(
√

4 ·mn · dn) = Q(
√

4 · 6),
k4 = Q(

√
d1m1n1`) = Q(

√
21),

k5 = Q(
√

4mn · d1m1n1`) = Q(
√

4 · 7),
k6 = Q(

√
4dn · d1m1n1`) = Q(

√
4 · 42),

k7 = Q(
√

4mn · 4dn · d1m1n1`) = Q(
√

4 · 14),
and seven biquadratic subfields;

L1 = k1k2 = Q(
√

4 · 3,
√

4 · 2), L2 = k3k5 = Q(
√

4 · 6,
√

4 · 7),
L3 = k2k4 = Q(

√
4 · 2,

√
21), L4 = k4k5 = Q(

√
21,

√
4 · 7),

L5 = k3k7 = Q(
√

4 · 6,
√

4 · 14), L6 = k6k7 = Q(
√

4 · 42,
√

4 · 14),
L7 = k4k7 = Q(

√
21,

√
4 · 14).

Let G =< τ, σ, ρ > be the Galois group of the octic extension K over Q,
where three automorphisms are defined by

τ :
√

3 7→ −
√

3,
√

2 7→
√

2,
√

21 7→
√

21,

σ :
√

3 7→
√

3,
√

2 7→ −
√

2,
√

21 7→
√

21,

ρ :
√

3 7→
√

3,
√

2 7→
√

2,
√

21 7→ −
√

21.

Let G(L/M) be the Galois group of an extension field L over an alge-
braic number field M . Denote G(L/Q) by G(L) and G(K) by G. Then
we have

G(k1) ∼= G/ < σ, ρ >∼=< τ̃ >, G(k2) ∼= G/ < τ, ρ >∼=< σ̃ >,
G(k3) ∼= G/ < τσ, ρ >∼=< τ̃ >, G(k4) ∼= G/ < τ, σ >∼=< ρ̃ >,
G(k5) ∼= G/ < τρ, σ >∼=< τ̃ >, G(k6) ∼= G/ < τ, σρ >∼=< σ̃ >,
G(k7) ∼= G/ < τσ, τρ >∼=< τ̃ >,

and
G(L1) ∼= G/{< σ, ρ > ∩ < τ, ρ >} ∼= G/ < ρ > ∼= < τ̃, σ̃ >,
G(L2) ∼= G/{< τσ, ρ > ∩ < τρ, σ >} ∼= G/ < τσρ > ∼= < τ̃, ρ̃ >,
G(L3) ∼= G/{< τ, ρ > ∩ < τ, σ >} ∼= G/ < τ > ∼= < σ̃, ρ̃ >,
G(L4) ∼= G/{< τ, σ > ∩ < τρ, σ >} ∼= G/ < σ > ∼= < τ̃, ρ̃ >,
G(L5) ∼= G/{< τσ, ρ > ∩ < τρ, τσ >} ∼= G/ < τσ > ∼= < τ̃, ρ̃ >,
G(L6) ∼= G/{< τ, σρ > ∩ < τσ, τρ >} ∼= G/ < σρ > ∼= < τ̃, σ̃ >,
G(L7) ∼= G/{< τ, σ > ∩ < τσ, τρ >} ∼= G/ < τσ > ∼= < τ̃, ρ̃ >,

where for a subgroup H of G and α ∈ G, α̃ means a coset αH in the
residue class group G/H.
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Assume the ring ZK has a power basis; ZK = Z[ξ] for a suitable prim-
itive integer in K. Then the different

dK(ξ) = (ξ − ξτ )(ξ − ξσ)(ξ − ξρ)(ξ − ξτσ)(ξ − ξτρ)(ξ − ξσρ)(ξ − ξτσρ)

of a number ξ is equal to the field different dK of the field K. Then it
holds that

(dK(ξ)) = (NK(dK(ξ))) = NK(dK) = (dK),
where for a number α and an ideal a in an algebraic number field F/Q,
NF (α) and NF (a) mean the norm map of α and of a with respect to
F/Q, respectively and for a number β in K, (β) means the principal ideal
generated by β. We denote the discriminant of a number α and of a field
F by dF (α) and dF , respectively.

By Hasse’s discriminant-conductor formula, we have

dK =
7∏

j=1

dkj
= (4 · 3)(4 · 2)(4 · 6)(21)(4 · 7)(4 · 42)(4 · 14) = 216 · 34 · 74,

We consider the following identity whose terms are fixed by the subgroup
< σ, ρ >= Hk1 in G;

(ξ − ξσ)(ξ − ξσ)ρ − (ξ − ξρ)(ξ − ξρ)σ + (ξ − ξσρ)(ξ − ξσρ)σ = 0. (3.1)

Since the difference ξ − ξσ is divisible by the relative different dK/L4
,

the product (ξ−ξσ)(ξ−ξσ)ρ is divisible by dK/L4
·dρ

K/L4
By the transitive

law of different,
dK = dL4 · dK/L4

,

we have NKdK = NK/L4
(NL4(dL4))NL4(NK/L4

(dK/L4
)), where for a field

tower Q ⊂ F ⊂ L of algebraic number fields, NL/F means the rel-
ative norm map with respect to L/F and we denote the relative dis-
criminant NL/F dL/F by dL/F . Then we obtain (dK) = (dL4)

2(dK/L4
)4,

namely 216 · 34 · 74 = (24 · 32 · 72)2(dK/L4
)4. Then (22) = dK/L4

, hence
(2)(2) = dK/L4

(dK/L4
)ρ. In the same way since the differences ξ − ξρ,

ξ − ξσρ are divisible by dK/L1
, dK/L6

, respectively, we have (7) = dK/L1

and (1) = dK/L6
, hence (7) = dK/L1

dσ
K/L1

and (1) = dK/L6
dσ

K/L6
.

Since the number ξ generates a power basis, then using the identity (3.1)
we obtain

7E1 + 22E2 + 1E3 = 0
for suitable units Ej(1 5 j 5 3) in the fixed field F<σ,ρ> = k1 = Q(

√
4 · 3)

with notations 7 = l, 22 = 2d2, 1 = d1, for three partial products in the
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equation (3.1), because it should follow that (ξ − ξρ)(ξ − ξρ)σ = dK/L1
,

(ξ − ξσ)(ξ − ξσ)ρ = dK/L4
, (ξ − ξσρ)(ξ − ξσρ)σ = dK/L6

as ideals.
With general notations 7 = `, 22 = 2d2, 1 = d1, we have

`E1 + 2d2E2 + d1E3 = 0 in Q
(√

4mn
)

, (3.2)

`Ē1 + 2d2Ē2 + d1Ē3 = 0 in Q
(√

4mn
)

. (3.3)

If the rank r4·3 of the equations (3.2), (3.3) in Q(
√

4 · 3) is one, we have
` ± 2d2 ± d1 = 0 i.e. ` = ±2d2 ± d1 < 2d2 + d1 = 5, which is impossible.
Then the rank r4·3 is two. By Ej = εej , let e1 = min15j53{ej}. Thus
` + 2d2ε

e + d1ε
f = 0 and e, f = 0 holds.

Put
εg = ug + vg

√
3.

Then, for unknown valuables `, 2d2 and d1, it holds that

2d2 : d1 =

∣∣∣∣∣εf 1
ε̄f 1

∣∣∣∣∣ :
∣∣∣∣1 εe

1 ε̄e

∣∣∣∣ = 2vf

√
3 : −2ve

√
3.

Hence, 2d2/d1 = 4/1 = vf/−ve, namely |vf | = 4|ve|.

` : d1 =

∣∣∣∣∣εe εf

ε̄e ε̄f

∣∣∣∣∣ :
∣∣∣∣1 εe

1 ε̄e

∣∣∣∣ = εe · ε̄e

∣∣∣∣∣1 εf−e

1 ε̄f−e

∣∣∣∣∣ :
∣∣∣∣1 εe

1 ε̄e

∣∣∣∣ = −2vf−e : −2ve.

Hence, `/d1 = 7/1 = vf−e/ve, namely |vf−e| = 7|ve| and f − e > e, which
is a contradiction to 0 < |vf−e| < |vf | = 4|ve|.

Then the equations (3.2), (3.3) are impossible in Q(
√

3). Therefore the
octic field Q(

√
3,
√

2,
√

21) is non-monogenic.
However we could not always determine the monogenesis of the quartic

subfields in K from the following necessary condition (3.4). In fact we can
find an integral power basis for the field L1 = k1k2 = Q(

√
4 · 3,

√
4 · 2) as

follows.
We can confirm that the ring ZL1 of integers in L1 has an integral power

basis Z[1, α, β, (α + 1)β/2] for α =
√

3 and β =
√

2. We select an integer
ξ = β − (α + 1)β/2. Then it holds that

dL1(ξ) = 32 · 28 = 1 · (4 · 3)(4 · 2)(4 · 6) = dL1 .

Then the field L1 is monogenic. In fact, the identity (−6)−(−4)−(−2) = 0
holds for (ξ− ξτ )(ξ− ξτ )σ = −6, (ξ− ξσ)(ξ− ξσ)τ = −4 and (ξ− ξτσ)(ξ−
ξτσ)σ = −2.
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Next we consider the second quartic subfield L2 := Q(
√

4 · 6,
√

4 · 7) in
K. Since the Galois group G(L2/Q) coincides with < τ, % >, we have for
an integer ξ ∈ ZL2 ,

(ξ − ξτ )(ξ − ξτ )% − (ξ − ξ%)(ξ − ξ%)τ − (ξ − ξτ%)(ξ − ξτ%)% = 0 (3.4)

For three quadratic subfields

k3 = Q(
√

4 · 6), k5 = Q(
√

4 · 7), k6 = Q(
√

4 · 42),

in L2, we calculate each of the relative discriminants

±dL2/k3
=

√
dL2/d2

k3
=

√
28 · 32 · 72/(23 · 3)2 = 2 · 7,

±dL2/k5
=

√
dL2/d2

k5
=

√
28 · 32 · 72/(22 · 7)2 = 22 · 3,

±dL2/k6
=

√
dL2/d2

k6
=

√
28 · 32 · 72/(23 · 3 · 7)2 = 2.

If the ring ZL2 has an integral power basis, which is generated by ξ, then
the equation (3.4) should hold. However since

2± 2 · 7± 22 · 3 = 2− 14 + 12 = 0!

would happen, we can not deduce a contradiction. But, on the first partial
different (ξ− ξτ )(ξ− ξτ )ρ for any integer ξ = aα+ bβ + cγ in ZL2 , we have
the value (2a + c)2 · 6− (2b)2 · 7 = 2[3(2a + c)2 − 14b2]. Then we consider
the Diophantine equation 3X2 − 14Y 2 = ±1. Assume that this equation
has an integral solution. Then in the case of −1, Y 2 ≡ −1 (mod 3); which
is impossible. In the case of +1, it holds that X2

1 − 3 · 2 · 7Y 2 = 3 with
X1 = 3X. Since 3 is a quadratic non-residue modulo 7, this case is also
impossible. Then we obtain that |(ξ−ξτ )(ξ−ξτ )ρ| > 2. Namely the integral
closure ZL2 in the second quartic subfield has no integral power basis.

Problems.
• Characterize Hasse’s Problem for the cyclic quartic fields over the ratio-
nals Q.
• Let the fields K run through all the real octic fields whose Galois groups
are 2-elementary abelian. Then evaluate the values of

inf
K

m̃(K) and inf
K

m(K),

respectively. Here, m̃(K) denotes the field index of K and m(K) the com-
mon index gcd(Ind(α);α ∈ ZK) for the integral closure ZK of the field
K.
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