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ANNALES MATHEMATIQUES BLAISE PASCAL 16, 27-45 (2009)

Twists of Hessian Elliptic Curves and Cubic
Fields

KaTsuvyA MIYAKE

Abstract

In this paper we investigate Hesse’s elliptic curves H, : U4+ V34 W2 =
3uUVW, € Q — {1}, and construct their twists, H, + over quadratic fields, and

H(p,t),n,t € Q over the Galois closures of cubic fields. We also show that H,, is
a twist of H(u,t) over the related cubic field when the quadratic field is contained
in the Galois closure of the cubic field. We utilize a cubic polynomial, R(t; X) :=
X3 +tX +t,t € Q— {0,-27/4}, to parametrize all of quadratic fields and cubic
ones. It should be noted that H (u,t) is a twist of H,, as algebraic curves because
it may not always have any rational points over Q. We also describe the set of
Q-rational points of H(u,t) by a certain subset of the cubic field. In the case of
p =0, we give a criterion for H(0,t) to have a rational point over Q.

1. Introduction

In 1840’s L. O. Hesse (1811-74) investigated plane curves in a series of
papers, and found an interesting family of elliptic curves of form

Hy, U+ VP4 W3 =3uUVW

on the projective plane P2(U:V:W) . If u # 1, it is non-singular, and is
an elliptic curve with points of order 3 defined over Q(u) where Q is the
field of rational numbers.

Our concerns in this paper are to introduce systematically twists of the
curves with p in Q — {1} over quadratic fields and the Galois closures
of cubic fields, and, in the latter case, to describe the set of the rational
points of the curve over Q by a certain subset of the related cubic field.
Here we mean by twists of the elliptic curves those as algebraic curves.
This is because the twists we construct may not have any rational points
over Q even though the curves themselves are defined over the field.

Keywords: Hessian elliptic curves, twists of elliptic curves, cubic fields.
Math. classification: 11G05, 12F05.
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We utilize a cubic polynomial with a parameter ¢,
R(t; X):= X3 +tX +t, tecQ—{0,-27/4}.

It parametrizes not only all cubic fields but also all quadratic ones; we
exclude the values 0 and —27/4 of the parameter ¢ to save R(t; X) from
multiple roots; indeed, the discriminant of the polynomial in X is —¢2(4t+
27). Let & be a root of R(t; X) = 0 in the complex number field C and
put K; := Q(&); if R(t; X) = 0 has a root r in Q, then we pick it up as
¢ = r and have K; = Q; in this case, obviously, we have t = —73/(r + 1).
Let K; be the splitting field of the cubic polynomial R(t; X) over Q. If ¢
runs over all such rational values as K; = Q, then K; covers all quadratic
fields as Q(y/— (4t + 27)) besides Q.

First in Section 2 we list some known facts on the Hessian curves. Then
in Section 3 we define a family of curves H(u,t), pu,t € Q,pu # 1,t #
0,—27/4. Each of the curves is of genus 1 and a twist of H, over the
splitting field K; as algebraic curves. In Section 4 we describe the set of
Q-rational points of H(u,t) for such t as R(t : X) is irreducible over Q
by introducing a certain subset of the cubic field Kj.

In general, the curve H(u,t), though defined over Q, may not have any
rational points over Q. If K; = Q, however, it has at least one rational
point over Q, and hence is an elliptic curve defined over Q; it is a quadratic
twist of H, if K, is not Q but a quadratic field.

In Section 5, we show that the curve

Hyp : 20% 4 6dguv® + 0P = 3 (u? = dp?),  dp = —(4¢ +27)

on the projective plane P2(u:v:w) is a twist of H(u,t) over K, and also
a quadratic twist of H,, (Theorem 5.1).

In Section 6, we give simple affine forms A, ; and A, of 3-isogenies of
both H,; and H,, respectively, and show that the former is the quadratic
twist of the latter over Q(v/d;) (Proposition 6.1).

We have infinitely many one parameter subfamilies of H (1, t) which
have rational points over Q. In the final Section 7 we show a few simple
ones; namely,

Proposition 1.1. Suppose that the cubic polynomial R(t; X) is irreducible
over Q fort e Q—{0,—-27/4}. Then ﬁ(,u, t) has a rational point over Q
in each of the following three cases: (1) in case of u = t/3+1 # 1, the point
(t:0:1) belongs to € H(u,t)[Q], (2) in case of p=1— 3t # 1, the point
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(1:1:0) belongs to € ﬁ(u,t)[Qj, and (8) in case of p =1 —2t/3 # 1,
the point (0:0: 1) belongs to € H(u,1)[Q).

Here we denote the set of Q-rational points of H(u,t) by H(u,t)[Q].

In the special case of u = 0, we give a necessary and sufficient condition
on t for H(0,t) to have a rational point over Q;

Proposition 1.2. In case of p = 0, the curve I;T(O, t) has a rational point
over Q fort € Q — {0,—27/4} if and only if either t = —r3/(r +1),7 €
Q — {0, -1}, or H(0,t) is isomorphic over Q to H(0,t'),t' = h3/(2h —
1)%2,h e Q—{0,1/2}.

It should be noted that we have infinitely many those rational functions
1= f(t) of t for each of which the one-parameter family H(f(t),t) has a
rational point over Q(¢). In deed, for example, take those rational functions
of t, x = z(t),y = y(t),z = z(t), with coefficients in Q which satisfy
Det(M (z,y,2)) # 0. (The 3x3 matrix M (z,y, z) will be given in Section 3
to define H(p,t).) Then we are able to determine p = u(t) as a rational
function of ¢ in Q(¢) so as to have the point (x(t) : y(t) : 2(t)) over Q(t)
on H(p,t).

It may be of some help for interested readers to see the recent works
[3], [4] and [5] of the author to understand the background of the present
article.

2. Some facts on the Hessian curves I,

In this section we pick up some facts on the Hessian curves H,, defined in
the introduction from the textbooks of D. Husemoller [2, Chapter 4], and
L. J. Mordell [6, Chapter 3].

Proposition 2.1. (1) If p # 1, H, is an elliptic curve defined over Q(p).
If we take, in this case, the point Px, = (1 : —1 : 0) as the origin of the
addition on the elliptic curve, then all of its points of order 3 are given by
the list (excluding P,),

0:-1:1), (1:0:-1), (1:-1:0)= Px,
(0:—w:1), (w:0:-w?), (-1:w?:0),
0:-w?:1), (W?:0:-w), (—1:w:0),

where w is a primitive third root of unity.

(2) If p = 1, then H,, is singular and consists of a line and a quadratic

29



K. MIYAKE

curve.
-1
U V3W3-3UVW = - (U+VAW{(UAVAW) 23U+ V2 ?)].

Proposition 2.2. The affine elliptic curve
Ay y? 3y +y=2a®
s a 3-isogeny of an affine model
uwd 402 =1—3uuw

of Hy,(u = =U/W,v = =V/W). The isogeny is given by x = —uv,y =
3
—v°,

Theorem 2.3. Suppose that 3 belongs to the ring of rational integers Z..

(1) Case of 3u # —1,3,5 :

(1-1) H,, has only three Q-rational points, or

(1-2) H,, has infinitely many Q-rational points.
(2) Case of 3= —1 : H,, has siz Q-rational points

0:-1:1),(1:0:-1),(1:=1:0),(1:1:—-1),(1:=1:1),(=1:1:1).

(3) Case of 3 =5 : Hy, has siz Q-rational points
(0:-1:1),(1:0:=-1),(1:=1:0),(1:1:2),(1:2:1),(2:1:1).
(4) Case of 3u=3 :

H,, is singular, and has infinitely many Q-rational points.

Remark 2.4. Mordell uses the tangential method to show the contents of
this theorem. The supposition that 3u is an integer is essential for the
proof of the theorem.

3. The Twist H(u,1)
As we introduced them in Section 1, let R(t; X) be the cubic polynomial
Rt; X):=X>+tX +t, teQ—{0,-27/4},

and, define the fields K; and K; as follows: let £ be a root of R(t; X) = 0 in
the complex number field C and put K; = Q(¢); if the equation R(t; X) =
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0 has a root r in Q, then we pick it up as & = r and have K; = Q. Let
K, be the splitting field of the cubic polynomial R(t; X) over Q. Then the
degree [K; : Q] varies over all the divisors of 6, and the degree [K; : Q] is
either 3 or 1.

Now let us introduce an algebraic curve H(u,t) for p,t € Q,t #
0,—27/4 which is a twist of H, as algebraic curves over the splitting
field K;. We define it by making use of 3 x 3 matrices. Put

0 1 0
=10 0 1].
-t -t 0

The following proposition is easily verified; the proof is omitted:

Proposition 3.1. The characteristic polynomial of the matriz = is equal
to the cubic polynomial R(t; X).

To define our curve, take independent variables x,y, z and put
M (z,y, 2) = xl3 + y= + 222

where 13 is the unit matrix of size 3. The curve H(u,t) is defined on the
projective plane P?(x:y:z) by

H(p,t): Tr (M(x, Y, z)3) = 3pDet(M(x,y, z))

where Tr and Det denote the trace and the determinant of matrices, re-
spectively.

It should be noted again that, in general, the curve H (i, t) may not
have any rational points over Q, even though it is defined over Q.

Theorem 3.2. For u,t € Q,u # 1,t # 0, —27/4, the curve H(u,t) is
isomorphic to H,, over K;.

Proof. Let «a, 8 and ~ be the distinct three roots of R(¢ : X) = 0 in C.
Since R(t : X) is the characteristic polynomial of =, these roots are the
eigen values of =; let &, xg and x., be eigen vectors in the 3-dimensional

column vector space over K; for the corresponding eigen values, respec-
tively, and put
A= (xq, 3, xy).

Then this is a 3 x 3 matrix with entries in K;. Since the eigen values are
different from each other, A is invertible. By definition, furthermore, we
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e
ZA=A 16} .
g
Therefore, we see

(6 a2
A—15A=< & ) A—152A:( (2 )
¥ o

Since «, 8 and v are different from each other, the matrix

1 a o?
()
1 v 42

have

is invertible. Put

and

1 a? 1 1 a o 0
(5 2)nel) (52)-()
1 ~? 0 1 v A2 0
1
(1
1

Now we take

S e e
=2 ®
NN N
N~ —

IS

w

Il
//

_= O O
N~ —

Ej=aijlz+ayE+a3 5, j=1,23,
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1 0
AlElAZ( 0 ), A1E2A2< 1 ),
0 0
0
A'Es A= 0 ,
1

and, hence,

to have

E;E; = E; E; = 65 B, 1<4,5 <3.
These Fj;,j = 1,2,3, belong to K;-subspace of dimension 3 spanned by
15,2, 22 in the space of 3 x 3 full matrix algebra over K,. Tt is clear that
E;,j = 1,2,3, are linearly independent over K;. Therefore, we can find
such b;; € f(t, 1<14,57 <3, as we have

13 = b11 B + ba1 Bg + b3y E3,
2 =bia E1 + bao E5 + b3y Es,
E? = b1z E1 + byz B + bsz Bs.
Then we see the equality
M(z,y,z) =213+ y= 4 222
=uF1+vEy+wkEs

determine a linear transformation over K; which send (z,, 2) to (u, v, w).

Since we have
U
A_lM(Zan?Z)A: v ’
w

it is clear that we have the equations

Tr (M(:U, Y, z)3> =ud + 03+ 23,

Det(M (z,y, 2)) = vvw.
This shows that the curve H(u,t) is isomorphic to H,, over Kj. O
Remark 3.3. Actually, (b;; ) is the inverse matrix of (a;; ); hence, we have

1 a o?
(bij>:(aij)_1:(1 B 52),
1oy 9
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and
U =x+ay+a22, T = ajju -+ ajpv+ ajsw,
v o =x+fBy+ 3%z Yy = a21u + a2 + a3w,
w =z+vy+7*z, Z = a31u + azv + agsw.

4. The Set of Q-rational Points of H(y,t)

In this section, we assume that the cubic polynomial R(¢; X) with ¢t € Q
is irreducible over Q. As in the preceding section, let «, 3 and 7 be the
distinct three roots of R(t : X) = 0 in C. They are conjugates to each
other by our present assumption. Pick up £ := ~ without loss of generality.
Then K; = Q(&) is a cubic field.

Proposition 4.1. The splitting field K, of the cubic polynomial R(t; X)
over Q contains \/dy, di = —(4t + 27), and K; = K;(v/dy).

(1) We have [K; : Q] = 3 if and only if d; is a square in Q; in the case,
we have f(t = K;.

(2) We have [f(t : Q] = 6 if and only if d; is not a square in Q; in the
case, K; contains the quadratic field Q(Vdy), and K, = Ki(V/dy).

Proof. The proposition immediately follows from the following lemma. [
Lemma 4.2. The notation and the assumptions being as above, we have

Ky =Q(¢ o, ), and
_53

Rt; X)= (X —&) (X2 4+ X +62+1), t:§+1.

The discriminant D of the quadratic factor is given by

§
28+ 3

The proof of the lemma is easily obtained and hence omitted.

2
D:—(3£2—|—4t):dt< ) R dt:—(4t+27).

Let H(u,t)[Q] be the set of all Q-rational points on the curve H(u,t).
To describe this set we define a subset S, ; of the cubic field K; by

Spe = {n € K[ | Tr, jq(n®) = 3uNy, ,q(n)}-
Here Trg,/q and N, /q are the trace map and the norm map of K; over
Q, respectively. It is clear that the multiplicative group Q* naturally acts
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on the set S, ;. We denote the set of orbits by Su,t/NQX.

Theorem 4.3. Let the notation and the assumptions be as above. Then
there exists a canonical one-to-one and onto correspondence between the
two sets, Sy1/~qx and H(u,t)[Q].

Proof. An element 7 of K; is uniquely expressed as
n=a+b&+cE a,b,c € Q.
Then the conjugates of n over Q are given by
W =a+ba+ca?
"' =a+bp+cp.

Therefore, if we use the notation in the proof of Theorem 3.2 in the pre-
ceding Section 3, we have

,’7/
A~ M(a,b,c) A= n" .
n

It is, hence, clear that n = a +b¢& + c&* € K, belongs to S, if and only
if the point (a : b : ¢) on the projective plane P?(z : y : z) belongs to

H(11,t)[Q]. The theorem is now clear. O

We transfer the well-known tangential method on elliptic curves into
our Sy 4.

Proposition 4.4. If n € Ky belongs to S, then \/din (7]’3 — 7]”3) also
belongs to S, +.

Proof. The proposition easily follows from the following Lemma 4.5 and
Corollary 4.7. O

Lemma 4.5. If n belongs to K;, then \/din (77’3 —77”3) in Ky also be-
longs to K;. The conjugates of p := \/din (77’3 - 17”3) over Q are p' =
Vi (1" = n?) and p" = Vi (= ')

Proof. 1f K, = K;, then the lemma is obvious. Suppose K, 2 K;. Let 0 and
7 be the generators of the Galois groups Gal(K;/K;) and Gal(K:/Q(V/dy),
respectively. Then we have 02 = 73 = id. Since K; = K;(\/d;), we have
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Vd 7 = —/dy. Since Ky = Q(§), and ¢ = a and £ = § by our nota-
tion, we have K; = Ky(¢') = K(£"), and hence ¢7 = ¢” and ¢"7 = ¢.
Therefore, /" = " and "° = n’. We also have n° = 1. We now see

(Vin (o =)} = =V (™ =) = Vdin (of° =),
and v/d;n (n® — n"®) € K;. Since we have
VaiT=Na, =, 0 =,
the lemma is now clear. U
Lemma 4.6. We have:
oy =2 +ylz—a)’ +2(e—y)° = (@ +y+2) (y - 2) (2 — 2) (x — y).

Proof. The proof is omitted because it is obtained by strait-forward cal-
culation. O

Corollary 4.7.
{z(y’ = 2P + {y(2® = )P + {2(® — )}’
= (2" +¢° +2°) (* - ) (2" = 2%) (2" — o).

Proof. Just replace the x,y, z in the identity of the lemma by z3, 33, 23,
respectively. O

5. The Twist H,, of H(u,t) over K,

In this section we give a twist H,,; of H(y,t) over Ky, and also show that
H,; is a quadratic twist of the Hessian curve H,.
Let H,; be the curve on the projective plane P?(u:v:w) defined by

H,;: 2u® + 6dyuv?® + w? = 3pu <u2 - dtUQ) w
where d; = —(4t + 27) as above.
Theorem 5.1. Suppose that p,t € Q,u # 1,t #0,—27/4.

(1) The curve H(u,t) is isomorphic to H,; over Ki.
(2) The curve H,; is a twist of the Hessian curve H, over Q(/d;) =
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QGL/—(4t +27)), and an elliptic curve defined over Q with a Q-rational
point (w:v:w)=(0:1:0). The isomorphism is given by

U=u++dv, u=U+V)/2,
V =u—+dv, v=(U-V)/(2Vdy),
W = w, w=W.

Proof. This time we only use the root £ of R(t; X) = 0. By Lemma 4.2 we
have

—& 2 £
Rt X)=(X - (X2 +eX+E2+1), t= , +t= .
(6X)= (X -9 (XP+EX 4848, 1=, €4t=gg
The discriminant D of the quadratic factor was also given by
3 )2
D=—(3+4t)=d dy = —(4t +27).
(367 +41) t<2£+3 ) t (4t +27)
Put p:= 3 and
2(2¢+3)

Pt;X):=X24+€6X + &+t
Then we easily see
P(t; X) = (X +£/2)° = p’dy = (X — &) (X +28) +36° + 1.

Since R(t; X) does not have any multiple roots, we have 3¢2 4+t # 0.
Therefore,

1= @B+t P( X)-(B+1)7'Q(5X),  QtX) = (X =) (X+2¢).

Define 3 x 3 matrices F7 and Fs this time by ‘inserting’ X := = as
2 -1 =
B = — (35 + t) Q(t; =),
-1
By := (3¢ +1) P(t:3).

(The constant terms of () and P should be replaced by scalar matrices.)
These belong to the linear span by 13, =, =2 over K, in the space of full
matrix algebra of size 3 over K;. By definition and from R(t;Z) = 0, we
easily see

Ei + Ey = 13, ElEJ = EJEl = 6ijEia E,==2F; 1<2,5 <2

Since E? = FE;, the eigen values of E;,i = 1,2, should be either 0 or
1. Let us show rank(FE3) = 1; then we also have rank(F;) = 2 because

37



K. MIYAKE

E1 + By = 13 and BBy = ExEy. As in the proof of Theorem 3.2, we
diagonalize = over Kj; namely,

o
ATl=Z A= I6] .
§
Then we see

AT'Pt;E)A=A"HE - al3) (E—P13) A

0 a— 0 0
(o )00 ) 0o
(-« §—0 P(t;€)

Since R(t; X) does not have any multiple roots, we see P(t;&) # 0. This
shows
rank(Fs) = rank((3¢2 +t)"'P(tE)) = 1.

Let V = K} be the 3-dimensional column vector space over K;, and
put Vi = E1V and Vy = EsV. Then V = Vi @ Vo, dimg, (V1) =
2,dimKt(V2) = 1, and E1VQ = EQVl = {0} Since F; = = EEi,i = 1,2,
we have ZV; = V;,i = 1,2. Take a non-zero vector x from V5. Then
Vo = Kix, EFox = x, and Zx = £x.

As for Vi, there is such a vector @ € V; as a and (E+ (£/2)13)a are lin-
early independent over K. Indeed, suppose that we have (Z+(£/2)13)a =
aa with a € K;. Then we have Za = (a — £/2)a; hence, the number
(a — &/2) belongs to K; and is an eigen value of =. This cannot be &
because the latter has an eigen vector @ in Vs. Therefore it is one of the
roots o and 3 of P(t; X). This shows that both o and 3 belong to K;. We
may assume a — &/2 = a without losing generality. Take an eigen vector
b € K} for 3; that is, Eb = #b, and so (£ — 313)b = 0. Then we have
E5b =0 and hence b € V;. Put @’ := a + b. Then a’ is in V7, and

(E+§13>a’= <a+§>a+(ﬂ+g)b.

Since a and b are eigen vectors belonging to different eigen values, they
are linearly independent over K;. This shows that the vector (a+¢&/2)a+
(B4 &/2)b is not equal to any scalar multiple of @’ = a + b. Hence we
obtained the desired vector a’ in place of a which we picked up at the
beginning.
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Now for our choice of x € V5 and a € Vi, put 1 := a,xs := p_l(E +
(£/2)13)a, where p = £/(2(2£ + 3)) as we picked it up at the beginning of
the proof, and x3 := @. Then the 3 x 3 matrix B := (x1, x2, x3) over K;
is regular. Moreover, we easily see

=B = (El‘l,E:L'Q,EiBg)

2
- (-éxl +pxa, pt (E—i- gh) T — 21727 5‘133) :

On the vector space V7, we have

2
E\P(t;Z) = P(t;E)E; = <EQ +EE+ 3 ) E,
2

E+1
_<(z+

Therefore we have p~ (2 + (£/2)13)* @1 = pdy,. Thus we obtained

DN [y

13) - p2dt13> E1 =0.

Hence we see

1
B—lElB:( 1 )
0
5 0 pdt
B_1(5+13)E1B: p 0 ,
2 0

0
B—lEQB:( 0 )
1

Therefore, the linear subspace spanned by the three matrices Ey1, p~!(Z +
(£/2)13)E1, E2 over K; in the full matrix algebra of size 3 coincides with
the one spanned by 13,2, =2 over K;. Expressing now as

M(z,y,z) =zl3 +y= 4+ 2 =2

—uB fvp ! (E+§13) By 4+ w Es,
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we have a linear transformation over K; which relates (z,y, z) to (u,v,w),

and also
U dyv
B7'M(z,y,2)B = (v u ) .
w

Thus we obtained
Tr (M(a:, v, 2)3) =2 <u3 + 3dtuv2) + w?,
Det(M (z,y,2)) = (u2 - dtv2> w.

From this we immediately see the statement (1) of the theorem.

As for (2) of the theorem, it is easily confirmed by a straightforward
way; the calculation is omitted. [l

6. The 3-Isogeny of H,;

By Proposition 2.2 in Section 2, we gave a simple affine model A, of the
3-isogeny of the Hessian elliptic curve H,, for u # 1; namely,

A”:y2+3,umy+y:x3.

We now give an affine model A, ; of a 3-isogeny of the elliptic curve
Hyu: 2u® + 6dyuv® + wd = 3u <u2 — dthQ) w
for p1 # 0,1. This affine curve is a quadratic twist of A4, over Q(\/dy).
Define A, ; by
2X —1
3
It has a Q-rational point (X : Y : Z) = (0:1:0) at infinity.

3
Auy: diY? = ( ) + X% dy = —(4t+27).

Proposition 6.1. Suppose that p,t € Q,u# 0,1, # 0,—-27/4.
(1) The elliptic curve A, is an affine model of a 3-isogeny of the elliptic
curve H,, ; defined by

x = () () ()
voss() () eal)
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(2) If d; is not a square in Q, moreover, A, is the quadratic twist of A,
over the quadratic field Q(+/dy).

Proof. For simplicity, put f := u/(—w) and g := v/(—w). Then we have
X = 3 4+3d,fg%>Y = 3f%9 + di¢g>, and hence, on one hand, X? —
diY? = (f? — dyg?)® by a straightforward way. On the other hand, by
dividing the both sides of the defining equation of H,, ;, we obtain 2X —1 =
—3u(f? —dyg?). Therefore, we have X2 —d;Y? = ((2X —1)/(—3u))3. This
is equivalent to the defining equation of A, ;. The first statement of the
proposition is proved. To see the second one, set

3px+1

Ty Yovh T

Since we have x = (2X —1)/(3p), we easily see that the defining equation
of A, is equivalent to the equation

1\ 3
y2:(2X 1) L X2

3
Hence A,,; is nothing but the standard quadratic twist of A,, over Q(v/d)
combined with the above transformation (z,y) — (X,Y). O

7. Some cases of non-empty H(u,t)[Q]

As we stated in Introduction, we now show the two propositions to demon-
strate some cases of non-empty H (u,1t)[Q)].

Proof of Proposition 1.1. Let us start with the 3 x 3 matrix Z. Since t # 0
in each case, we have Det(Z) = —t # 0. Note that R(t; Z) = 23+t E+t13 =
0. The matrix Z-! = —13 — t71=2 corresponds to the point (=1 : 0 :
—1/t) = (t : 0 : 1) on the projective plane P?(x : y : z). Since =72 =
—E71 - (1/)Z and 273 = —(1/t)13 — 272, we see Tr(Z73) = -3/t — 1.

Hence we have the case (1) of the proposition because Det(Z71) = —1/¢.
In the same manner, we can easily show the cases (2) and (3) for =% =
—t(13 + =) and =2, respectively. O

In the special case of 4 = 0 we give a necessary and sufficient condition
on t for H(0,t) to have a rational point over Q.
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Proposition 7.1. In case of u = 0, the curve H(0,t) has a rational point
over Q fort € Q — {0, —27/4} if and only if either t = —r3/(r + 1),7 €
Q — {0,—1}, or H(0,t) is isomorphic to H(0,t'),t' = h3/(2h —1)%,h €
Q —{0,1/2} over Q.

Proof. We easily see that the 3 x 3 matrices 13, =, and =2 are linearly
independent over Q. Let us denote the subalgebra generated by = in the
full matrix algebra of 3 x 3 matrices over Q by A;; namely,

A =Ql; + Q=+ Q=2
Since R(t; X) is the characteristic polynomial of E, A; is isomorphic to
the quotient algebra Q[X]/(R(t; X)). Hence R(t; X) is irreducible over Q
if and only if A; is isomorphic to a cubic field.

Suppose first that R(¢; X) is reducible over Q. Then it has a root r in Q;
we have t = —r3/(r+1) with r € Q—{0, —1} because r3+tr+t = 0. Then
it follows from Theorem 5.1, (2), that H(0,t) has a rational point over Q.
Conversely, if t = —r3/(r + 1) with 7 € Q — {0, —1}, then 7 is a root of
R(t; X), and hence R(t; X) is reducible over Q. Therefore, Theorem 5.1,
(2), assures that H(0,¢) has a rational point over Q.

Suppose now that R(¢; X) is irreducible over Q, and that © # 0 in A
satisfies

Tr(0©3) = 0.
Then © is invertible in A; because this is isomorphic to a cubic field.
Moreover, © generates A; over Q because it cannot be a scalar matrix
als,a € Q—{0}, and because a cubic field does not contain any non-trivial
subfields. Let p(X) = X3+a X2+b X +c,a,b, c € Q, be the characteristic
polynomial of ©. Since © is invertible, we have ¢ = —Det(0) # 0. Hence
we also have a = —Tr(©) # 0; indeed, if we assume a = 0, then we should
have
Tr(03%) = Tr(—a©®% —bO — cl3) = =3¢ # 0.
Put Q := a7 'O, f := a~2b,g := a~3c. Then we have
B+ +fQ+g13=0

because ¢(0) = 03 +a 0% + b0 + cl3 = 0. By taking squares of the both
side of the equation, Q% + fQ = —Q? — gl3, we easily obtain

()% + (2f — (%) + (f* — 29)(Q%) — g°13 =0,

and hence, Tr (Q?) = —2f + 1. (Note that the cubic polynomial X3 +
(2f —1)X2% + (f2 — 29)X — g2 has to be the characteristic polynomial of
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Q) = 0~ 'O because it generates A; which is isomorphic to a cubic field.)
Therefore, we have

Tr(Q3) = Tr(—0? — fQ—gl3) =2f — 14 f —3g=3f —3g — 1,
and hence, f = g + 1/3 from a=3Tr(603) = 0. Thus we obtain
1 1 2 1
Q+ =13 +g(Q+ =1 Zg——)13=0.
@+ 319+ 92+ 51a) + (59— 5 ) 13 =0 (4

2 1 1
Here we have g = —Det(Q2) # 0 and 3957 = —Det(Q + glg) # 0. Put
now

2 1\! g g
= - (2, L) (Y 1>
(39 27) (a t3ls)

2 1\72
tu:3(__> .
9°\397 97

Then by multiplying the both sides of the equation () by ¢(2¢/3 —
1/27)73, we have Z° + ¢/’ + t'13 = 0. Finally put h := 9¢. Then we
obtain
=%+ E +t'13 = R(t,E) =0,
h? 1
= —— h+#0,=
(2h —1)2’ 703

()

and,

a  h
Since Z’ also generates A; over Q, we have
A=A =Ql; + Q= + Q=%
It is now clear that the equation M (z,y,2) = M'(2,y/, 2") with
M(z,y,z) = xls + yE + 2 2%,
M'(x',y',z') _ .CC/13 +y/ = 4 E/Q
determines a linear transformation (z,y,2) — (2/,y',2') over Q which
induces an isomorphism of H(0,t) to H(0,t") defined over Q.

Conversely, suppose that the above (xx) is satisfied by = and ¢ in place
of Z' and ¢/, respectively, for simplicity. Put © := (2h — 1)h"1=Z — 1. Then
we have

o — (2h - 1)353 3(2h - 1)2E2 N 3(2h — 1)
h h? h

[1]

— 1.
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We also have Tr(Z) = 0. It follows from (23 + ¢ =)? = 213 that
(22)° + 2t(22)? + 2 E2 — t*13 = 0,
and hence, Tr(Z2) = —2t. Therefore, we see

2h —1\3 6t(2h — 1)2
Tr(@3)=< ; )Tr(E3)+(h2)—3

_ <2hh_ 1)3 (—tTx(Z) — 3t) + 6h — 3

2h —1\3
:—3t< h ) +6h—3
h
= —3(2h —1) +6h -3 =0.

Thus we found such © € A; as we have Tr (©3) = 0. The proof of Propo-
sition 7.1 is completed. [l

Remark 7.2. In the proof of the final part of Proposition 7.1, we saw
that the isomorphism of H(0,t) to H(0,#) was obtained from a linear
transformation of K; = Ky defined by the base change {1,¢,£2} and
{1,€,€?} of K, as a Q-space. In the forthcoming paper [1] by Akinari
Hoshi and the author, a necessary and sufficient condition for K; = Ky is
obtained. Namely,

Proposition 7.3. Let the notation and the assumptions be as above; in
particular, suppose that R(t; X) with t € Q is irreducible over Q. Then
K; = Ky fort' € Q if and only if there exists such an element u € Q as

' =t(u? + 9u — 3t)%/(u® — 2tu® — 9tu — 2% — 27t)%

Since the condition K; = Ky is reciprocal in t and ¢/, so should the latter
condition of the proposition be. Indeed, let T" and U be two independent
variables, and put

T :=T(U? +9U — 37)%/(U? — 2TU? — 9TU — 2T* — 27T)?,

U= —(U*43T)(U? +9U — 3T)/(U? — 2TU? — 9TU — 2T?% — 27T).
Then we have a rational endomorphism of the rational function field
k(T,U) of two variables, ® : k(T,U) — k(T,U), by assigning (7",U")
to (T, U). The endomorphism @ is involutive; that is, ® o ® is equal to the

identity map. Hence @ is an automorphism of k(7,U) and an involutive
Cremona transformation of dimension 2.
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