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Twists of Hessian Elliptic Curves and Cubic
Fields

Katsuya Miyake

Abstract

In this paper we investigate Hesse’s elliptic curves Hµ : U3 + V 3 + W 3 =
3µUV W, µ ∈ Q − {1}, and construct their twists, Hµ,t over quadratic fields, and
H̃(µ, t), µ, t ∈ Q over the Galois closures of cubic fields. We also show that Hµ is
a twist of H̃(µ, t) over the related cubic field when the quadratic field is contained
in the Galois closure of the cubic field. We utilize a cubic polynomial, R(t; X) :=
X3 + tX + t, t ∈ Q − {0,−27/4}, to parametrize all of quadratic fields and cubic
ones. It should be noted that H̃(µ, t) is a twist of Hµ as algebraic curves because
it may not always have any rational points over Q. We also describe the set of
Q-rational points of H̃(µ, t) by a certain subset of the cubic field. In the case of
µ = 0, we give a criterion for H̃(0, t) to have a rational point over Q.

1. Introduction

In 1840’s L. O. Hesse (1811–74) investigated plane curves in a series of
papers, and found an interesting family of elliptic curves of form

Hµ : U3 + V 3 + W 3 = 3µUV W

on the projective plane P2(U :V :W ) . If µ 6= 1, it is non-singular, and is
an elliptic curve with points of order 3 defined over Q(µ) where Q is the
field of rational numbers.

Our concerns in this paper are to introduce systematically twists of the
curves with µ in Q − {1} over quadratic fields and the Galois closures
of cubic fields, and, in the latter case, to describe the set of the rational
points of the curve over Q by a certain subset of the related cubic field.
Here we mean by twists of the elliptic curves those as algebraic curves.
This is because the twists we construct may not have any rational points
over Q even though the curves themselves are defined over the field.

Keywords: Hessian elliptic curves, twists of elliptic curves, cubic fields.
Math. classification: 11G05, 12F05.
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We utilize a cubic polynomial with a parameter t,

R(t;X) := X3 + tX + t, t ∈ Q− {0,−27/4}.
It parametrizes not only all cubic fields but also all quadratic ones; we
exclude the values 0 and −27/4 of the parameter t to save R(t;X) from
multiple roots; indeed, the discriminant of the polynomial in X is −t2(4t+
27). Let ξ be a root of R(t;X) = 0 in the complex number field C and
put Kt := Q(ξ); if R(t;X) = 0 has a root r in Q, then we pick it up as
ξ = r and have Kt = Q; in this case, obviously, we have t = −r3/(r + 1).
Let K̃t be the splitting field of the cubic polynomial R(t;X) over Q. If t

runs over all such rational values as Kt = Q, then K̃t covers all quadratic
fields as Q(

√
−(4t + 27)) besides Q.

First in Section 2 we list some known facts on the Hessian curves. Then
in Section 3 we define a family of curves H̃(µ, t), µ, t ∈ Q, µ 6= 1, t 6=
0,−27/4. Each of the curves is of genus 1 and a twist of Hµ over the
splitting field K̃t as algebraic curves. In Section 4 we describe the set of
Q-rational points of H̃(µ, t) for such t as R(t : X) is irreducible over Q
by introducing a certain subset of the cubic field Kt.

In general, the curve H̃(µ, t), though defined over Q, may not have any
rational points over Q. If Kt = Q, however, it has at least one rational
point over Q, and hence is an elliptic curve defined over Q; it is a quadratic
twist of Hµ if K̃t is not Q but a quadratic field.

In Section 5, we show that the curve

Hµ,t : 2u3 + 6dtuv2 + w3 = 3µ
(
u2 − dtv

2
)

, dt = −(4t + 27)

on the projective plane P2(u :v :w) is a twist of H̃(µ, t) over Kt, and also
a quadratic twist of Hµ (Theorem 5.1).

In Section 6, we give simple affine forms Aµ,t and Aµ of 3-isogenies of
both Hµ,t and Hµ, respectively, and show that the former is the quadratic
twist of the latter over Q(

√
dt) (Proposition 6.1).

We have infinitely many one parameter subfamilies of H̃(µ, t) which
have rational points over Q. In the final Section 7 we show a few simple
ones; namely,

Proposition 1.1. Suppose that the cubic polynomial R(t;X) is irreducible
over Q for t ∈ Q− {0,−27/4}. Then H̃(µ, t) has a rational point over Q
in each of the following three cases: (1) in case of µ = t/3+1 6= 1, the point
(t : 0 : 1) belongs to ∈ H̃(µ, t)[Q], (2) in case of µ = 1− 3t 6= 1, the point
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(1 : 1 : 0) belongs to ∈ H̃(µ, t)[Q], and (3) in case of µ = 1 − 2t/3 6= 1,
the point (0 : 0 : 1) belongs to ∈ H̃(µ, t)[Q].

Here we denote the set of Q-rational points of H̃(µ, t) by H̃(µ, t)[Q].
In the special case of µ = 0, we give a necessary and sufficient condition

on t for H̃(0, t) to have a rational point over Q;

Proposition 1.2. In case of µ = 0, the curve H̃(0, t) has a rational point
over Q for t ∈ Q − {0,−27/4} if and only if either t = −r3/(r + 1), r ∈
Q − {0,−1}, or H̃(0, t) is isomorphic over Q to H̃(0, t′), t′ = h3/(2h −
1)2, h ∈ Q− {0, 1/2}.

It should be noted that we have infinitely many those rational functions
µ = f(t) of t for each of which the one-parameter family H̃(f(t), t) has a
rational point over Q(t). In deed, for example, take those rational functions
of t, x = x(t), y = y(t), z = z(t), with coefficients in Q which satisfy
Det(M(x, y, z)) 6= 0. (The 3×3 matrix M(x, y, z) will be given in Section 3
to define H̃(µ, t).) Then we are able to determine µ = µ(t) as a rational
function of t in Q(t) so as to have the point (x(t) : y(t) : z(t)) over Q(t)
on H̃(µ, t).

It may be of some help for interested readers to see the recent works
[3], [4] and [5] of the author to understand the background of the present
article.

2. Some facts on the Hessian curves Hµ

In this section we pick up some facts on the Hessian curves Hµ defined in
the introduction from the textbooks of D. Husemöller [2, Chapter 4], and
L. J. Mordell [6, Chapter 3].

Proposition 2.1. (1) If µ 6= 1, Hµ is an elliptic curve defined over Q(µ).
If we take, in this case, the point P∞ = (1 : −1 : 0) as the origin of the
addition on the elliptic curve, then all of its points of order 3 are given by
the list (excluding P∞),

(0 : −1 : 1), (1 : 0 : −1), (1 : −1 : 0) = P∞,
(0 : −ω : 1), (ω : 0 : −ω2), (−1 : ω2 : 0),
(0 : −ω2 : 1), (ω2 : 0 : −ω), (−1 : ω : 0),

where ω is a primitive third root of unity.
(2) If µ = 1, then Hµ is singular and consists of a line and a quadratic
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curve:

U3+V 3+W 3−3UV W =
−1
2

(U+V +W ){(U+V +W )2−3(U2+V 2+W 2)}.

Proposition 2.2. The affine elliptic curve

Aµ : y2 + 3µxy + y = x3

is a 3-isogeny of an affine model

u3 + v3 = 1− 3µuv

of Hµ, (u = −U/W, v = −V/W ). The isogeny is given by x = −uv, y =
−v3.

Theorem 2.3. Suppose that 3µ belongs to the ring of rational integers Z.

(1) Case of 3µ 6= −1, 3, 5 :

(1-1) Hµ has only three Q-rational points, or
(1-2) Hµ has infinitely many Q-rational points.

(2) Case of 3µ = −1 : Hµ has six Q-rational points

(0 : −1 : 1), (1 : 0 : −1), (1 : −1 : 0), (1 : 1 : −1), (1 : −1 : 1), (−1 : 1 : 1).

(3) Case of 3µ = 5 : Hµ has six Q-rational points

(0 : −1 : 1), (1 : 0 : −1), (1 : −1 : 0), (1 : 1 : 2), (1 : 2 : 1), (2 : 1 : 1).

(4) Case of 3µ = 3 :

Hµ is singular, and has infinitely many Q-rational points.

Remark 2.4. Mordell uses the tangential method to show the contents of
this theorem. The supposition that 3µ is an integer is essential for the
proof of the theorem.

3. The Twist H̃(µ, t)

As we introduced them in Section 1, let R(t;X) be the cubic polynomial

R(t;X) := X3 + tX + t, t ∈ Q− {0,−27/4},

and, define the fields Kt and K̃t as follows: let ξ be a root of R(t;X) = 0 in
the complex number field C and put Kt = Q(ξ); if the equation R(t;X) =
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0 has a root r in Q, then we pick it up as ξ = r and have Kt = Q. Let
K̃t be the splitting field of the cubic polynomial R(t;X) over Q. Then the
degree [K̃t : Q] varies over all the divisors of 6, and the degree [Kt : Q] is
either 3 or 1.

Now let us introduce an algebraic curve H̃(µ, t) for µ, t ∈ Q, t 6=
0,−27/4 which is a twist of Hµ as algebraic curves over the splitting
field K̃t. We define it by making use of 3× 3 matrices. Put

Ξ =

 0 1 0
0 0 1
−t −t 0

 .

The following proposition is easily verified; the proof is omitted:

Proposition 3.1. The characteristic polynomial of the matrix Ξ is equal
to the cubic polynomial R(t;X).

To define our curve, take independent variables x, y, z and put

M(x, y, z) := x13 + yΞ + zΞ2

where 13 is the unit matrix of size 3. The curve H̃(µ, t) is defined on the
projective plane P2(x :y :z) by

H̃(µ, t) : Tr
(
M(x, y, z)3

)
= 3µDet(M(x, y, z))

where Tr and Det denote the trace and the determinant of matrices, re-
spectively.

It should be noted again that, in general, the curve H̃(µ, t) may not
have any rational points over Q, even though it is defined over Q.

Theorem 3.2. For µ, t ∈ Q, µ 6= 1, t 6= 0,−27/4, the curve H̃(µ, t) is
isomorphic to Hµ over K̃t.

Proof. Let α, β and γ be the distinct three roots of R(t : X) = 0 in C.
Since R(t : X) is the characteristic polynomial of Ξ, these roots are the
eigen values of Ξ; let xα,xβ and xγ be eigen vectors in the 3-dimensional
column vector space over K̃t for the corresponding eigen values, respec-
tively, and put

A = (xα,xβ,xγ).

Then this is a 3× 3 matrix with entries in K̃t. Since the eigen values are
different from each other, A is invertible. By definition, furthermore, we
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have

ΞA = A

α
β

γ

 .

Therefore, we see

A−1 ΞA =

α
β

γ

 , A−1 Ξ2A =

α2

β2

γ2

 .

Since α, β and γ are different from each other, the matrix1 α α2

1 β β2

1 γ γ2


is invertible. Put

( aij ) :=

1 α α2

1 β β2

1 γ γ2

−1

,

and

aj =

a1j

a2j

a3j

 , j = 1, 2, 3;

then we see aij ∈ K̃t, 1 ≤ i, j ≤ 3, and1 α α2

1 β β2

1 γ γ2

a1 =

1
0
0

 ,

1 α α2

1 β β2

1 γ γ2

a2 =

0
1
0

 ,

1 α α2

1 β β2

1 γ γ2

a3 =

0
0
1

 .

Now we take

Ej = a1j 13 + a2j Ξ + a3j Ξ2, j = 1, 2, 3,
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to have

A−1 E1 A =

1
0

0

 , A−1 E2 A =

0
1

0

 ,

A−1 E3 A =

0
0

1

 ,

and, hence,
Ei Ej = Ej Ei = δij Ei, 1 ≤ i, j ≤ 3.

These Ej , j = 1, 2, 3, belong to K̃t-subspace of dimension 3 spanned by
13,Ξ,Ξ2 in the space of 3× 3 full matrix algebra over K̃t. It is clear that
Ej , j = 1, 2, 3, are linearly independent over K̃t. Therefore, we can find
such bij ∈ K̃t, 1 ≤ i, j ≤ 3, as we have

13 = b11 E1 + b21 E2 + b31 E3,

Ξ = b12 E1 + b22 E2 + b32 E3,

Ξ2 = b13 E1 + b23 E2 + b33 E3.

Then we see the equality

M(x, y, z) = x 13 + y Ξ + z Ξ2

= u E1 + v E2 + w E3

determine a linear transformation over K̃t which send (x, y, z) to (u, v, w).
Since we have

A−1 M(x, y, z) A =

u
v

w

 ,

it is clear that we have the equations

Tr
(
M(x, y, z)3

)
= u3 + v3 + z3,

Det(M(x, y, z)) = uvw.

This shows that the curve H̃(µ, t) is isomorphic to Hµ over K̃t. �

Remark 3.3. Actually, ( bij ) is the inverse matrix of ( aij ); hence, we have

( bij ) = ( aij )−1 =

1 α α2

1 β β2

1 γ γ2

 ,
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and 
u = x + α y + α2 z,

v = x + β y + β2 z,

w = x + γ y + γ2 z,


x = a11u + a12v + a13w,

y = a21u + a22v + a23w,

z = a31u + a32v + a33w.

4. The Set of Q-rational Points of H̃(µ, t)

In this section, we assume that the cubic polynomial R(t;X) with t ∈ Q
is irreducible over Q. As in the preceding section, let α, β and γ be the
distinct three roots of R(t : X) = 0 in C. They are conjugates to each
other by our present assumption. Pick up ξ := γ without loss of generality.
Then Kt = Q(ξ) is a cubic field.

Proposition 4.1. The splitting field K̃t of the cubic polynomial R(t;X)
over Q contains

√
dt, dt = −(4t + 27), and K̃t = Kt(

√
dt).

(1) We have [K̃t : Q] = 3 if and only if dt is a square in Q; in the case,
we have K̃t = Kt.
(2) We have [K̃t : Q] = 6 if and only if dt is not a square in Q; in the
case, K̃t contains the quadratic field Q(

√
dt), and K̃t = Kt(

√
dt).

Proof. The proposition immediately follows from the following lemma. �

Lemma 4.2. The notation and the assumptions being as above, we have
K̃t = Q(ξ, α, β), and

R(t;X) = (X − ξ) (X2 + ξ X + ξ2 + t), t =
−ξ3

ξ + 1
.

The discriminant D of the quadratic factor is given by

D = −(3ξ2 + 4t) = dt

(
ξ

2ξ + 3

)2

, dt = −(4t + 27).

The proof of the lemma is easily obtained and hence omitted.

Let H̃(µ, t)[Q] be the set of all Q-rational points on the curve H̃(µ, t).
To describe this set we define a subset Sµ,t of the cubic field Kt by

Sµ,t = {η ∈ K×
t

∣∣ TrKt/Q(η3) = 3µNKt/Q(η)}.
Here TrKt/Q and NKt/Q are the trace map and the norm map of Kt over
Q, respectively. It is clear that the multiplicative group Q× naturally acts
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on the set Sµ,t. We denote the set of orbits by Sµ,t/∼Q× .

Theorem 4.3. Let the notation and the assumptions be as above. Then
there exists a canonical one-to-one and onto correspondence between the
two sets, Sµ,t/∼Q× and H̃(µ, t)[Q].

Proof. An element η of Kt is uniquely expressed as

η = a + b ξ + c ξ2, a, b, c ∈ Q.

Then the conjugates of η over Q are given by

η′ = a + b α + c α2,

η′′ = a + b β + c β2.

Therefore, if we use the notation in the proof of Theorem 3.2 in the pre-
ceding Section 3, we have

A−1 M(a, b, c) A =

η′

η′′

η

 .

It is, hence, clear that η = a + b ξ + c ξ2 ∈ Kt belongs to Sµ,t if and only
if the point (a : b : c) on the projective plane P2(x : y : z) belongs to
H̃(µ, t)[Q]. The theorem is now clear. �

We transfer the well-known tangential method on elliptic curves into
our Sµ,t.

Proposition 4.4. If η ∈ Kt belongs to Sµ,t, then
√

dt η
(
η′3 − η′′3

)
also

belongs to Sµ,t.

Proof. The proposition easily follows from the following Lemma 4.5 and
Corollary 4.7. �

Lemma 4.5. If η belongs to Kt, then
√

dt η
(
η′3 − η′′3

)
in K̃t also be-

longs to Kt. The conjugates of ρ :=
√

dt η
(
η′3 − η′′3

)
over Q are ρ′ =

√
dt η′

(
η′′3 − η3

)
and ρ′′ =

√
dt η′′

(
η3 − η′3

)
.

Proof. If K̃t = Kt, then the lemma is obvious. Suppose K̃t % Kt. Let σ and
τ be the generators of the Galois groups Gal(K̃t/Kt) and Gal(K̃t/Q(

√
dt),

respectively. Then we have σ2 = τ3 = id. Since K̃t = Kt(
√

dt), we have
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√
dt

σ = −
√

dt. Since Kt = Q(ξ), and ξ′ = α and ξ′′ = β by our nota-
tion, we have K̃t = Kt(ξ′) = Kt(ξ′′), and hence ξ′σ = ξ′′ and ξ′′σ = ξ′.
Therefore, η′σ = η′′ and η′′σ = η′. We also have ησ = η. We now see

{
√

dt η (η′3 − η′′
3)}σ = −

√
dt η (η′′3 − η′

3) =
√

dt η (η′3 − η′′
3),

and
√

dt η (η′3 − η′′3) ∈ Kt. Since we have√
dt

τ =
√

dt, ητ = η′, ητ2
= η′′,

the lemma is now clear. �

Lemma 4.6. We have:

x(y − z)3 + y(z − x)3 + z(x− y)3 = (x + y + z) (y − z) (z − x) (x− y).

Proof. The proof is omitted because it is obtained by strait-forward cal-
culation. �

Corollary 4.7.

{x(y3 − z3)}3 + {y(z3 − x3)}3 + {z(x3 − y3)}3

= (x3 + y3 + z3) (y3 − z3) (z3 − x3) (x3 − y3).

Proof. Just replace the x, y, z in the identity of the lemma by x3, y3, z3,
respectively. �

5. The Twist Hµ,t of H̃(µ, t) over Kt

In this section we give a twist Hµ,t of H̃(µ, t) over Kt, and also show that
Hµ,t is a quadratic twist of the Hessian curve Hµ.

Let Hµ,t be the curve on the projective plane P2(u :v :w) defined by

Hµ,t : 2u3 + 6dtuv2 + w3 = 3µ
(
u2 − dtv

2
)

w

where dt = −(4t + 27) as above.

Theorem 5.1. Suppose that µ, t ∈ Q, µ 6= 1, t 6= 0,−27/4.
(1) The curve H̃(µ, t) is isomorphic to Hµ,t over Kt.
(2) The curve Hµ,t is a twist of the Hessian curve Hµ over Q(

√
dt) =
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Q(
√
−(4t + 27)), and an elliptic curve defined over Q with a Q-rational

point (u : v : w) = (0 : 1 : 0). The isomorphism is given by
U = u +

√
dt v,

V = u−
√

dt v,

W = w,


u = (U + V )/2,

v = (U − V )/(2
√

dt),
w = W.

Proof. This time we only use the root ξ of R(t;X) = 0. By Lemma 4.2 we
have

R(t;X) = (X − ξ) (X2 + ξ X + ξ2 + t), t =
−ξ3

ξ + 1
, ξ2 + t =

ξ2

ξ + 1
.

The discriminant D of the quadratic factor was also given by

D = −(3ξ2 + 4t) = dt

(
ξ

2ξ + 3

)2

, dt = −(4t + 27).

Put ρ :=
ξ

2(2ξ + 3)
and

P (t;X) := X2 + ξ X + ξ2 + t.

Then we easily see

P (t;X) = (X + ξ/2)2 − ρ2dt = (X − ξ) (X + 2ξ) + 3ξ2 + t.

Since R(t;X) does not have any multiple roots, we have 3ξ2 + t 6= 0.
Therefore,

1 = (3ξ2+t)−1P (t;X)−(3ξ2+t)−1Q(t;X), Q(t;X) = (X−ξ) (X+2ξ).

Define 3× 3 matrices E1 and E2 this time by ‘inserting’ X := Ξ as

E1 := −
(
3ξ2 + t

)−1
Q(t; Ξ),

E2 :=
(
3ξ2 + t

)−1
P (t; Ξ).

(The constant terms of Q and P should be replaced by scalar matrices.)
These belong to the linear span by 13,Ξ,Ξ2 over Kt in the space of full
matrix algebra of size 3 over Kt. By definition and from R(t; Ξ) = 0, we
easily see

E1 + E2 = 13, EiEj = EjEi = δijEi, EiΞ = ΞEi, 1 ≤ i, j ≤ 2.

Since E2
i = Ei, the eigen values of Ei, i = 1, 2, should be either 0 or

1. Let us show rank(E2) = 1; then we also have rank(E1) = 2 because
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E1 + E2 = 13 and E1E2 = E2E1. As in the proof of Theorem 3.2, we
diagonalize Ξ over K̃t; namely,

A−1 ΞA =

α
β

ξ

 .

Then we see

A−1 P (t; Ξ) A = A−1(Ξ− α13) (Ξ− β13) A

=

0
β − α

ξ − α

α− β
0

ξ − β

 =

0
0

P (t; ξ)

 .

Since R(t;X) does not have any multiple roots, we see P (t; ξ) 6= 0. This
shows

rank(E2) = rank((3ξ2 + t)−1P (t; Ξ)) = 1.

Let V = K3
t be the 3-dimensional column vector space over Kt, and

put V1 := E1V and V2 := E2V . Then V = V1 ⊕ V2, dimKt(V1) =
2,dimKt(V2) = 1, and E1V2 = E2V1 = {0}. Since Ei Ξ = ΞEi, i = 1, 2,
we have ΞVi = Vi, i = 1, 2. Take a non-zero vector x from V2. Then
V2 = Ktx, E2x = x, and Ξx = ξx.

As for V1, there is such a vector a ∈ V1 as a and (Ξ+(ξ/2)13)a are lin-
early independent over Kt. Indeed, suppose that we have (Ξ+(ξ/2)13)a =
aa with a ∈ Kt. Then we have Ξa = (a − ξ/2)a; hence, the number
(a − ξ/2) belongs to Kt and is an eigen value of Ξ. This cannot be ξ
because the latter has an eigen vector x in V2. Therefore it is one of the
roots α and β of P (t;X). This shows that both α and β belong to Kt. We
may assume a − ξ/2 = α without losing generality. Take an eigen vector
b ∈ K3

t for β; that is, Ξ b = β b, and so (Ξ − β13)b = 0. Then we have
E2b = 0 and hence b ∈ V1. Put a′ := a + b. Then a′ is in V1, and(

Ξ +
ξ

2
13

)
a′ =

(
α +

ξ

2

)
a +

(
β +

ξ

2

)
b.

Since a and b are eigen vectors belonging to different eigen values, they
are linearly independent over Kt. This shows that the vector (α+ ξ/2)a+
(β + ξ/2)b is not equal to any scalar multiple of a′ = a + b. Hence we
obtained the desired vector a′ in place of a which we picked up at the
beginning.

38



Twists of Hessian Elliptic Curves and Cubic Fields

Now for our choice of x ∈ V2 and a ∈ V1, put x1 := a,x2 := ρ−1(Ξ +
(ξ/2)13)a, where ρ = ξ/(2(2ξ + 3)) as we picked it up at the beginning of
the proof, and x3 := x. Then the 3× 3 matrix B := (x1,x2,x3) over Kt

is regular. Moreover, we easily see

ΞB = (Ξ x1,Ξx2,Ξx3)

=

(
−ξ

2
x1 + ρ x2, ρ−1

(
Ξ +

ξ

2
13

)2

x1 −
ξ

2
x2, ξ x3

)
.

On the vector space V1, we have

E1P (t; Ξ) = P (t; Ξ)E1 =

(
Ξ2 + ξ Ξ +

ξ2

ξ + 1

)
E1

=

((
Ξ +

ξ

2
13

)2

− ρ2dt13

)
E1 = 0.

Therefore we have ρ−1(Ξ + (ξ/2)13)
2 x1 = ρdtx1. Thus we obtained

ΞB = B

−
ξ
2 ρdt

ρ − ξ
2

ξ

 .

Hence we see

B−1E1 B =

1
1

0

 ,

B−1
(

Ξ +
ξ

2
13

)
E1 B =

0 ρdt

ρ 0
0

 ,

B−1E2 B =

0
0

1

 .

Therefore, the linear subspace spanned by the three matrices E1, ρ
−1(Ξ+

(ξ/2)13)E1, E2 over Kt in the full matrix algebra of size 3 coincides with
the one spanned by 13,Ξ,Ξ2 over Kt. Expressing now as

M(x, y, z) = x13 + y Ξ + z Ξ2

= u E1 + v ρ−1
(

Ξ +
ξ

2
13

)
E1 + w E2,
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we have a linear transformation over Kt which relates (x, y, z) to (u, v, w),
and also

B−1M(x, y, z)B =

u dtv
v u

w

 .

Thus we obtained

Tr
(
M(x, y, z)3

)
= 2

(
u3 + 3dtuv2

)
+ w3,

Det(M(x, y, z)) =
(
u2 − dtv

2
)

w.

From this we immediately see the statement (1) of the theorem.
As for (2) of the theorem, it is easily confirmed by a straightforward

way; the calculation is omitted. �

6. The 3-Isogeny of Hµ,t

By Proposition 2.2 in Section 2, we gave a simple affine model Aµ of the
3-isogeny of the Hessian elliptic curve Hµ for µ 6= 1; namely,

Aµ : y2 + 3µxy + y = x3.

We now give an affine model Aµ,t of a 3-isogeny of the elliptic curve

Hµ,t : 2u3 + 6dtuv2 + w3 = 3µ
(
u2 − dtv

2
)

w

for µ 6= 0, 1. This affine curve is a quadratic twist of Aµ over Q(
√

dt).
Define Aµ,t by

Aµ,t : dtY
2 =

(
2X − 1

3µ

)3

+ X2, dt = −(4t + 27).

It has a Q-rational point (X : Y : Z) = (0 : 1 : 0) at infinity.

Proposition 6.1. Suppose that µ, t ∈ Q, µ 6= 0, 1, t 6= 0,−27/4.
(1) The elliptic curve Aµ,t is an affine model of a 3-isogeny of the elliptic
curve Hµ,t defined by

X =
(

u

−w

)3

+ 3dt

(
u

−w

)(
v

−w

)2

,

Y = 3
(

u

−w

)2 ( v

−w

)
+ dt

(
v

−w

)3

.
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(2) If dt is not a square in Q, moreover, Aµ,t is the quadratic twist of Aµ

over the quadratic field Q(
√

dt).

Proof. For simplicity, put f := u/(−w) and g := v/(−w). Then we have
X = f3 + 3dtf g2, Y = 3 f2g + dtg

3, and hence, on one hand, X2 −
dtY

2 = (f2 − dtg
2)3 by a straightforward way. On the other hand, by

dividing the both sides of the defining equation of Hµ,t, we obtain 2X−1 =
−3µ(f2−dtg

2). Therefore, we have X2−dtY
2 = ((2X−1)/(−3µ))3. This

is equivalent to the defining equation of Aµ,t. The first statement of the
proposition is proved. To see the second one, set

X =
3µx + 1

2
, Y = y +

3µx + 1
2

.

Since we have x = (2X− 1)/(3µ), we easily see that the defining equation
of Aµ is equivalent to the equation

Y 2 =
(

2X − 1
3µ

)3

+ X2.

Hence Aµ,t is nothing but the standard quadratic twist of Aµ over Q(
√

dt)
combined with the above transformation (x, y) 7→ (X, Y ). �

7. Some cases of non-empty H̃(µ, t)[Q]

As we stated in Introduction, we now show the two propositions to demon-
strate some cases of non-empty H̃(µ, t)[Q].

Proof of Proposition 1.1. Let us start with the 3×3 matrix Ξ. Since t 6= 0
in each case, we have Det(Ξ) = −t 6= 0. Note that R(t; Ξ) = Ξ3+t Ξ+t13 =
0. The matrix Ξ−1 = −13 − t−1Ξ2 corresponds to the point (−1 : 0 :
−1/t) = (t : 0 : 1) on the projective plane P2(x : y : z). Since Ξ−2 =
−Ξ−1 − (1/t)Ξ and Ξ−3 = −(1/t)13 − Ξ−2, we see Tr(Ξ−3) = −3/t − 1.
Hence we have the case (1) of the proposition because Det(Ξ−1) = −1/t.
In the same manner, we can easily show the cases (2) and (3) for Ξ3 =
−t(13 + Ξ) and Ξ2, respectively. �

In the special case of µ = 0 we give a necessary and sufficient condition
on t for H̃(0, t) to have a rational point over Q.
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Proposition 7.1. In case of µ = 0, the curve H̃(0, t) has a rational point
over Q for t ∈ Q − {0,−27/4} if and only if either t = −r3/(r + 1), r ∈
Q − {0,−1}, or H̃(0, t) is isomorphic to H̃(0, t′), t′ = h3/(2h − 1)2, h ∈
Q− {0, 1/2} over Q.

Proof. We easily see that the 3 × 3 matrices 13,Ξ, and Ξ2 are linearly
independent over Q. Let us denote the subalgebra generated by Ξ in the
full matrix algebra of 3× 3 matrices over Q by At; namely,

At = Q13 + QΞ + QΞ2.

Since R(t;X) is the characteristic polynomial of Ξ, At is isomorphic to
the quotient algebra Q[X]/(R(t;X)). Hence R(t;X) is irreducible over Q
if and only if At is isomorphic to a cubic field.

Suppose first that R(t;X) is reducible over Q. Then it has a root r in Q;
we have t = −r3/(r+1) with r ∈ Q−{0,−1} because r3+tr+t = 0. Then
it follows from Theorem 5.1, (2), that H̃(0, t) has a rational point over Q.
Conversely, if t = −r3/(r + 1) with r ∈ Q − {0,−1}, then r is a root of
R(t;X), and hence R(t;X) is reducible over Q. Therefore, Theorem 5.1,
(2), assures that H̃(0, t) has a rational point over Q.

Suppose now that R(t;X) is irreducible over Q, and that Θ 6= 0 in At

satisfies
Tr(Θ3) = 0.

Then Θ is invertible in At because this is isomorphic to a cubic field.
Moreover, Θ generates At over Q because it cannot be a scalar matrix
a13, a ∈ Q−{0}, and because a cubic field does not contain any non-trivial
subfields. Let ϕ(X) = X3+aX2+b X+c, a, b, c ∈ Q, be the characteristic
polynomial of Θ. Since Θ is invertible, we have c = −Det(Θ) 6= 0. Hence
we also have a = −Tr(Θ) 6= 0; indeed, if we assume a = 0, then we should
have

Tr(Θ3) = Tr(−aΘ2 − b Θ− c13) = −3c 6= 0.

Put Ω := a−1Θ, f := a−2b, g := a−3c. Then we have

Ω3 + Ω2 + f Ω + g13 = 0

because ϕ(Θ) = Θ3 + aΘ2 + b Θ + c13 = 0. By taking squares of the both
side of the equation, Ω3 + f Ω = −Ω2 − g13, we easily obtain

(Ω2)3 + (2f − 1)(Ω2)2 + (f2 − 2g)(Ω2)− g213 = 0,

and hence, Tr
(
Ω2
)

= −2f + 1. (Note that the cubic polynomial X3 +
(2f − 1)X2 + (f2 − 2g)X − g2 has to be the characteristic polynomial of
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Ω = a−1Θ because it generates At which is isomorphic to a cubic field.)
Therefore, we have

Tr(Ω3) = Tr(−Ω2 − f Ω− g13) = 2f − 1 + f − 3g = 3f − 3g − 1,

and hence, f = g + 1/3 from a−3Tr(Θ3) = 0. Thus we obtain

(Ω +
1
3
13)3 + g(Ω +

1
3
13) +

(
2
3
g − 1

27

)
13 = 0. (∗)

Here we have g = −Det(Ω) 6= 0 and
2
3
g − 1

27
= −Det(Ω +

1
3
13) 6= 0. Put

now

Ξ′ :=
(

2
3
g − 1

27

)−1 (g

a
Θ +

g

3
13

)
,

t′ := g3
(

2
3
g − 1

27

)−2

.

Then by multiplying the both sides of the equation (∗) by g3(2g/3 −
1/27)−3, we have Ξ′3 + t′ Ξ′ + t′13 = 0. Finally put h := 9g. Then we
obtain 

Ξ′3 + t′ Ξ′ + t′13 = R(t′; Ξ′) = 0,

t′ =
h3

(2h− 1)2
, h 6= 0,

1
2

(∗∗)

and,
3
a
Θ =

2h− 1
h

Ξ′ − 13.

Since Ξ′ also generates At over Q, we have

At = At′ = Q13 + QΞ′ + QΞ′2.

It is now clear that the equation M(x, y, z) = M ′(x′, y′, z′) with

M(x, y, z) = x13 + y Ξ + z Ξ2,

M ′(x′, y′, z′) = x′13 + y′ Ξ′ + z′ Ξ′2

determines a linear transformation (x, y, z) 7→ (x′, y′, z′) over Q which
induces an isomorphism of H̃(0, t) to H̃(0, t′) defined over Q.

Conversely, suppose that the above (∗∗) is satisfied by Ξ and t in place
of Ξ′ and t′, respectively, for simplicity. Put Θ := (2h− 1)h−1Ξ− 1. Then
we have

Θ3 =
(

2h− 1
h

)3

Ξ3 − 3(2h− 1)2

h2
Ξ2 +

3(2h− 1)
h

Ξ− 13.
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We also have Tr(Ξ) = 0. It follows from (Ξ3 + t Ξ)2 = t213 that

(Ξ2)3 + 2t(Ξ2)2 + t2 Ξ2 − t213 = 0,

and hence, Tr(Ξ2) = −2t. Therefore, we see

Tr(Θ3) =
(

2h− 1
h

)3

Tr(Ξ3) +
6t(2h− 1)2

h2
− 3

=
(

2h− 1
h

)3

(−tTr(Ξ)− 3t) + 6h− 3

= −3t

(
2h− 1

h

)3

+ 6h− 3

= −3(2h− 1) + 6h− 3 = 0.

Thus we found such Θ ∈ At as we have Tr
(
Θ3
)

= 0. The proof of Propo-
sition 7.1 is completed. �

Remark 7.2. In the proof of the final part of Proposition 7.1, we saw
that the isomorphism of H̃(0, t) to H̃(0, t′) was obtained from a linear
transformation of Kt = Kt′ defined by the base change {1, ξ, ξ2} and
{1, ξ′, ξ′2} of Kt as a Q-space. In the forthcoming paper [1] by Akinari
Hoshi and the author, a necessary and sufficient condition for Kt = Kt′ is
obtained. Namely,

Proposition 7.3. Let the notation and the assumptions be as above; in
particular, suppose that R(t;X) with t ∈ Q is irreducible over Q. Then
Kt = Kt′ for t′ ∈ Q if and only if there exists such an element u ∈ Q as

t′ = t(u2 + 9u− 3t)3/(u3 − 2tu2 − 9tu− 2t2 − 27t)2.

Since the condition Kt = Kt′ is reciprocal in t and t′, so should the latter
condition of the proposition be. Indeed, let T and U be two independent
variables, and put

T ′ := T (U2 + 9U − 3T )3/(U3 − 2TU2 − 9TU − 2T 2 − 27T )2,

U ′ := −(U2 + 3T )(U2 + 9U − 3T )/(U3 − 2TU2 − 9TU − 2T 2 − 27T ).

Then we have a rational endomorphism of the rational function field
k(T,U) of two variables, Φ : k(T,U) → k(T,U), by assigning (T ′, U ′)
to (T,U). The endomorphism Φ is involutive; that is, Φ◦Φ is equal to the
identity map. Hence Φ is an automorphism of k(T,U) and an involutive
Cremona transformation of dimension 2.
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