
ANNALES MATHÉMATIQUES

BLAISE PASCAL
Goulnara N. Arzhantseva, Victor S. Guba,
Martin Lustig and Jean-Philippe Préaux
Testing Cayley graph densities

Volume 15, no 2 (2008), p. 233-286.

<http://ambp.cedram.org/item?id=AMBP_2008__15_2_233_0>

© Annales mathématiques Blaise Pascal, 2008, tous droits réservés.
L’accès aux articles de la revue « Annales mathématiques Blaise Pas-
cal » (http://ambp.cedram.org/), implique l’accord avec les condi-
tions générales d’utilisation (http://ambp.cedram.org/legal/). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques
de l’université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://ambp.cedram.org/item?id=AMBP_2008__15_2_233_0
http://ambp.cedram.org/
http://ambp.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Annales mathématiques Blaise Pascal 15, 233-286 (2008)

Testing Cayley graph densities

Goulnara N. Arzhantseva
Victor S. Guba
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Abstract

We present a computer-assisted analysis of combinatorial properties of the
Cayley graphs of certain finitely generated groups: given a group with a finite set
of generators, we study the density of the corresponding Cayley graph, that is, the
least upper bound for the average vertex degree (= number of adjacent edges) of
any finite subgraph. It is known that an m-generated group is amenable if and only
if the density of the corresponding Cayley graph equals to 2m. We test amenable
and non-amenable groups, and also groups for which amenability is unknown. In
the latter class we focus on Richard Thompson’s group F .

Tester les densités de graphes de Cayley.
Résumé

Nous présentons une analyse assistée par ordinateur de propriétés combina-
toires des graphes de Cayley de certains groupes de type fini : donnés un groupe
et un ensemble fini de générateurs, nous étudions la densité du graphe de Cay-
ley correspondant, c’est à dire, la borne supérieure de la valence de sommet (=
nombre d’arêtes adjacentes) moyenne de tous ses sous-graphes finis. Il est connu
qu’un groupe ayant m générateurs est moyennable si et seulement si la densité du
graphe de Cayley correspondant est 2m. Nous testons des groupes moyennables
et non-moyennables, ainsi que d’autres dont la moyennabilité est inconnue. Dans
cette dernière classe nous nous intéressons au groupe F de Thompson.

1. Introduction

Let G be a group with a finite set of generators X of cardinality m. There
is an associated Cayley graph C = C(G, X) (see §2), which has vertex

This work was supported by the Swiss National Science Foundation, No. PP002-68627.
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Math. classification: 20-04, 20F05.
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set in bĳection to G, and at every vertex there are precisely 2m adjacent
edges. The combinatorial properties of the Cayley graph reflect the alge-
braic structure of the group G. In this paper we investigate the density
of Cayley graphs, introduced first in [5]. This is a numerical parameter
δ(C), defined below, which takes values between 0 and twice the number
of group generators. It strongly depends on the isoperimetric properties
of the Cayley graph and hence on those of G, which are often expressed in
terms of the graph isoperimetric constant ι∗(C) (see §2 for the definition).
It is known that ι∗(C) + δ(C) = 2m, see [5]. A group is amenable if and
only if ι∗(C) = 0, or, equivalently, δ(C) = 2m.

In order to estimate the density of a Cayley graph, one can compute
densities of certain of its finite subgraphs. We propose a simple algorithm
to construct an optimized subgraph (i.e. with a greater density) from
any given finite subgraph of the Cayley graph. We apply the algorithm
to amenable groups, non-amenable groups, and to groups for which it is
not known whether they are amenable. More specifically, we investigate
the (amenable with polynomial growth) free abelian group Z × Z × Z,
the non-amenable Baumslag-Solitar group BS(2, 2), the restricted wreath
product Z o Z (amenable with exponential growth), and Richard Thomp-
son’s group F whose amenability is unknown (other testing examples can
be found on our websites). We analyze empirical data obtained by a C++

implementation of our algorithm.
We quote here only one of the numerical results obtained from our

algorithm, which we find particularly interesting:

Sample result: There is a subset of cardinality 10169678 in Thompson’s
group F that has density 2.89577 with respect to the classical generating
system of cardinality m = 2.

Acknowledgements. Part of this work was conducted while the authors
were visiting the Centre de Recerca Matemàtica in Barcelona. We would
like to acknowledge the warm hospitality and support. Specifically we
would like to thank José Burillo and Enric Ventura for their interest in
our work, and for useful discussions.

2. Amenability and Følner families

Let G be a group generated by a finite set X. Let C = C(G, X) be the
corresponding (right) Cayley graph. Recall that the set of vertices of C is G,
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and that the set of oriented edges is G×(X
·
∪X−1). For any edge e = (g, x)

the initial vertex is g, and the terminal vertex is gx. The inverse of the
edge e, considered here separately from e, is the edge e−1 = (gx, x−1).
The label of e = (g, x) is defined to be the generator x ∈ X±1. The group
G acts canonically on C from the left (by left multiplication of the vertices
of C). Notice that with the above convention, if x and x−1 both belong
to X, then altogether there are 4 edges (two for each orientation) with
endpoints g and gx. This holds in particular if x ∈ X has order 2.

Throughout the paper we consider finite graphs A which are typically
subgraphs of C. We always require that with any edge e also the inverse
edge e−1 belongs to A.

The density of a non-empty finite graph A is defined by:

δ(A) =
∑

v∈V (A) deg(v)
#V (A)

where deg(v) denotes the number of oriented edges with initial vertex v,
V (A) is the set of vertices of A, and #V (A) is the cardinality of V (A).

We define the density of the Cayley graph C = C(G, X) as supremum:

δ(C) = sup
A

δ(A)

where A runs over all non-empty finite subgraphs of C.
Similarly, for any subgraph A of C one defines the isoperimetric con-

stant:
ι(A) =

#∂A

#V (A)
where ∂A denotes the set of vertices of A that have adjacent edges in both,
A and C −A.

Lemma 2.1. For every finite subgraph A of C one has:

2m− (2m− 1)ι(A) ≤ δ(A) ≤ 2m− ι(A) .

Proof. Note that for any finite subset A ⊂ C the complement of ∂A in A
consists entirely of vertices of degree 2m, hence:

δ(A) =
∑

v∈V (A) deg(v)
#V (A)

=
∑

v∈∂A deg(v)
#V (A)

+
∑

v∈V (A)−∂A 2m

#V (A)
.

But a vertex in ∂A has at least degree 1, so that:
#∂A

#V (A)
+ 2m

#V (A)−#∂A

#V (A)
≤ δ(A) ,
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and at most degree 2m− 1 in A, so that:

δ(A) ≤ (2m− 1)
#∂A

#V (A)
+ 2m

#V (A)−#∂A

#V (A)
,

which shows that 2m− (2m− 1)ι(A) ≤ δ(A) ≤ 2m− ι(A). �

A variation on the invariant ι(A) is given by the invariant ι∗(A) which
is defined in precisely the same way except that the inner boundary ∂A
is replaced by the Cheeger boundary of A, i.e. the number of edges in C
that have one endpoint in A and one endpoint in C − A. The Cheeger
boundary behaves a little better than the inner boundary; for example
we derive directly from the definition the equation δ(A) + ι∗(A) = 2m.
Similarly, one sees directly that:

ι(A) ≤ ι∗(A) ≤ 2m ι(A) .

The infimum of the values of ι∗(A), over all non-empty finite subsets A of
C, is called the isoperimetric constant of the graph C, and is denoted by
ι∗(C).

Isoperimetric properties of graphs play an important role in the study of
amenable groups. There are many equivalent characterizations of amenabil-
ity in the literature, see for example [3] and the references given there. We
use the following one.

Theorem 2.2. A finitely generated group G is amenable if and only if for
some (or, equivalently, for any) finite generating set X the Cayley graph
C = C(G, X) satisfies:

ι∗(C) = 0 .

A family of finite subsets An of C is called a Følner family (or a family
of Følner sets) if:

lim
n→∞

ι∗(An) = 0 .

In light of the above discussion this is equivalent to:

lim
n→∞

δ(An) = 2m .

Hence, the group G is amenable if and only if there exists a family of
Følner sets An ⊂ C.

For certain classes of groups there are well known Følner families. For
example, if G is of polynomial (or subexponential) growth, then one knows
that with respect to any finite generating system X of G the set of balls
B(n), which consists of all points in C of simplicial distance smaller or
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equal to n from the neutral element 1 ∈ G, is a Følner family [4, Propo-
sition, Ch.VII.C.34]. Here we mean by simplicial distance the distance in
the metric space obtained from C if one gives to every edge the length
1. Examples for groups of polynomial growth are free abelian groups and
certain Baumslag-Solitar groups (e.g. BS(1,−1)).

However, Baumslag-Solitar groups (other than BS(1, 1) or BS(1,−1))
are of exponential growth, but some of them (not all !) are still amenable.
The same is true for the wreath product Z o Z, also considered below. In
this case a Følner family exists in C, but the balls B(n) will not constitute
such a family: There is a uniform upper bound strictly smaller than 2m
to the density of every B(n). Of course, this last statement is true also if
G is non-amenable.

3. Group presentations and normal forms

In order to compute in a finitely generated group G, one needs a normal
from for the elements of G: For example, in Z× Z = 〈a, b | aba−1b−1 = 1〉
the element (2, 1) can be written as a2b, aba, baa, but also as aba−1bab−1a
or a−69ba71. It is an essential restriction on the class of groups G consid-
ered here that we require the existence of a uniquely determined normal
form for the elements of G, and that this normal form can be recursively
calculated. Notice that the generating set of G used in the normal form
may well differ from the system X which is used to build the Cayley graph;
in some cases this discrepancy is a rather convenient from a computational
point of view.

3.1. Free abelian groups

The free abelian group of rank m is defined by the presentation:

〈x1, x2, . . . , xm | xixj = xjxi for all 1 ≤ i < j ≤ m〉 .

A word in the canonical generators x1, x2, . . . , xm and their inverses is
in normal form if and only if it is of the form:

xp1
1 xp2

2 · · ·xpm
m

for some p1, p2, . . . , pm ∈ Z.
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3.2. Baumslag-Solitar groups

Let p, q ≥ 1 be integers, and let BS(p, q) denote the Baumslag-Solitar
group defined by the presentation:

〈a, b | abpa−1 = bq〉 .

A word in a±1, b±1 is in normal form whenever it is written in a reduced
form (in the sense of HNN extensions, see [6]):

bp0aq1bp1 · · · aqnbpn

with n ≥ 0 and p0, p1, . . . , pn ∈ Z, q1, q2, . . . qn ∈ Z \ {0}, and such that
for i = 1, 2, . . . , n − 1 one has pi > 0, and pn ≥ 0. Furthermore, if qi > 0
then one has pi < |p|, and if qi < 0 then pi < |q|.

3.3. The wreath product Z o Z

We define this group by the non-finite presentation:

〈a, . . . , x−1, x0, x1, . . . | xa
i = xi+1, xixj = xjxi for all i, j ∈ Z〉 .

A word in the generators or their inverses is in normal form whenever it
is of the form:

anxp1
i1

xp2
i2
· · ·xpn

in

where n ∈ Z, i1 < i2 < · · · < in, and p1, p2, . . . , pn ∈ Z \ {0}.
In fact, this group can be generated by a and x0. We will refer to this

as the canonical set of generators.

3.4. Thompson’s group F

Thompson’s group F (cf. [2]) is the group of all piecewise-linear orientation
preserving self-homeomorphisms of the unit interval such that (i) singular
points are on dyadic numbers, and (ii) all slopes are integer powers of 2.

The group F admits the following infinite presentation:

〈x0, x1, x2, . . . | xjxi = xixj+1 if i < j〉 .

It turns out that it has a finite presentation on two generators x0, x1.
We will use this canonical set of generators in our computations. The
generators x0 and x1 are given by the following functions, see also Figure 1.
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x0(t) =


t/2 0 ≤ t ≤ 1/2
t− 1/4 1/2 ≤ t ≤ 3/4
2t− 1 3/4 ≤ t ≤ 1

x1(t) =


t 0 ≤ t ≤ 1/2
t/2 + 1/4 1/2 ≤ t ≤ 3/4
t− 1/8 3/4 ≤ t ≤ 7/8
2t− 1 7/8 ≤ t ≤ 1

1/2 3/4

1/2

1/4

1/2

1/2 3/4

3/4

7/8

5/8

Figure 1. The canonical generators x0 and x1 of F .

We will consider two kinds of normal forms for the Thompson group F .
The first one is given by words:

xp0
0 xp1

1 · · ·xpn
n x−qn

n · · ·x−q1
1 x−q0

0

where n, p0, p1, . . . , pn, q0, q1, . . . , qn are non-negative integers such that:
(i) exactly one of pn or qn is non-zero, and
(ii) if pk > 0 and qk > 0 for some 0 ≤ k < n, then pk+1 > 0 or qk+1 > 0.

The left half xp0
0 xp1

1 · · ·xpn
n is called the positive part of the word and the

right half x−qn
n · · ·x−q1

1 x−q0
0 the negative part. A word is said to be positive

(or negative) if its normal form only consists of its positive (or negative)
part.

The second normal form is given by the so called reduced forest dia-
grams, see [1]. Recall that a binary forest is a finite sequence of binary
trees, together with a pointer on one of the trees. The number of leaves
in a binary forest is the sum of the numbers of leaves in its binary trees.
A forest diagram is a pair of binary forests which have the same number
of leaves. We speak of the bottom forest as well as of the top forest, see
Figure 2.
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Figure 2. A forest diagram with 8 leaves

A caret in a tree is a pair of leaves with the same parent vertex. A forest
diagram is reduced if it has no opposite pairs of (bottom and top) carets
(cf. [1]). For example, the diagram of Figure 2 is reduced.

One associates to an arbitrary reduced forest diagram an element of F
with normal form xp0

0 xp1
1 · · ·xpn

n x−qn
n · · ·x−q1

1 x−q0
0 as follows.

– Enumerate top and bottom leaves, as well as top and bottom trees, from
the left to the right, starting at 1.
– The top (or bottom) forest gives the positive part (or negative part
respectively) of the normal form.
– The exponent of xi, for i > 0, equals to the maximal length of simple
paths in the top forest starting at the ith top leaf and following the top-
to-right direction (the exponent is 0 whenever such a leaf does not exist).
– The exponent of x−1

i , for i > 0, equals to the maximal length of simple
paths in the bottom forest starting at the ith bottom leaf and following
the bottom–to-right direction.
– The exponent of x0 is n whenever the top pointer is on the (n + 1)st

tree.
– The exponent of x−1

0 is n whenever the bottom pointer is on the (n+1)st

tree.
For example, the reduced forest diagram of Figure 2 gives the element:

x0x
2
1x

2
4x6x

−1
7 x−1

6 x−3
2 .

Notice that adding a top and a bottom leaf on the right of a forest
diagram does not change the corresponding element of F . Up to this trivial
transformation, it turns out that each element of F can be represented by
a unique reduced forest diagram (cf. [1]). This is the second normal form
we are interested in.
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For example, the generators x0, x1 and their inverses are represented by
the reduced forest diagrams given in Figure 3.

x0
-1 x1

-1

x0 x1

Figure 3. Forest diagrams for the generators x0, x1 and
their inverses

Below we use the following definitions: A binary forest is trivial if each
of its subtrees consists of a single vertex only, and if the pointer is on
the first of them. A forest diagram is negative (or positive) if its top (or
bottom) tree is trivial; in such a case the normal form of the associated
element of F is negative (or positive respectively). The height of a forest
is the maximal height of one of its binary trees; it can take any value
between 0 and the number of leaves minus 1 (or equivalently, the number
of carets). For instance, the top forest and the bottom forest of the forest
diagram in Figure 2 have height 2 and 3 respectively.

4. Special subsets in Thompson’s group F

For the first three groups considered in this paper, Z× Z× Z, Baumslag-
Solitar group BS(2, 2), and the wreath product Z oZ, all of our numerical
experiments are performed on balls B(n) of radius n in the Cayley graph
C, centered around the vertex defined by the neutral element 1 ∈ G. For
the fourth group, Thompson’s group F , we will work with balls, but also
with other kinds of sets, which we specify now.
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4.1. Left positive balls

Let n > 0. The left positive ball of radius n, denoted by LP (n), is defined
to be the maximal subgraph in the Cayley graph C = C(F, {x0, x1}) which
contains only inverses of positive words:

xp0
0 xp1

1 · · ·xpk
n with p0 + p1 + · · ·+ pk ≤ n

as vertices. Notice that for n ≥ 6 the left positive ball LP (n) cannot be
a tree: indeed, our densification algorithm (see §5) deletes subtrees from
some of the LP (n), but it does not delete LP (6) (cf. §9.5). This shows
in particular that LP (6) is not a tree. Furthermore, obviously LP (n) is
always a subgraph of LP (n + 1).

4.2. Negative forests

A negative forest with n leaves, n ∈ N, denoted by NF (n), is defined to be
the maximal subgraph of the Cayley graph which contains only vertices
that are given by group elements which are represented by a negative
reduced forest diagram with at most n leaves. Obviously one has NF (n) ⊂
NF (n+1). The negative forest with 3 leaves, NF (3), is given in Figure 4.

x0
-1

x1
-1x0

-1

x2
-1x1

-1

x2
-1

x1
-2

x2
-1x0

-1

x0
-2

x1
-1

e

Figure 4. The negative forest NF (3)
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In the graphical representation of a negative forest we only draw the
representative bottom forest. For example, in Figure 4 and Figure 5 below
the generators x0 and x1 are given by simple and double arrows respec-
tively.

Notice that even though NF (3) is a tree, NF (n) is not a tree for n ≥ 5
(see, for example, §9.6).

4.3. Belk-Brown sets

The Belk-Brown set with n leaves and of height at most k, for n, k ∈ N and
k < n, denoted by BB(n, k), is the maximal subgraph of the Cayley graph
C which contains as vertices only elements that have a negative reduced
forest diagram with n leaves and height at most k (cf. [1]). For instance,
Figure 5 represents the Belk-Brown set BB(4, 1). Note that BB(4, 1) is
not a tree (it contains the loop x−2

0 x−1
1 x2

0x
−1
1 x−1

0 x1x0x1).

x3
-1x1

-1

x1
-1

x2
-1

e x0
-1 x0

-3x0
-2

x3
-1x0

-1x3
-1x0

-2 x3
-1

x3
-1x1

-1x0
-1x1

-1x0
-2 x1

-1x0
-1

x2
-1x0

-2x2
-1x0

-1

Figure 5. The Belk-Brown set BB(4, 1).

Obviously one has BB(n, k) ⊂ BB(n+1, k) and BB(n, k) ⊂ BB(n, k+
1). In particular BB(n, k) is not a tree whenever n ≥ 4 and k ≥ 1. Since
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the height of a forest is at most the number of its leaves minus 1, we have
BB(n, n − 1) = NF (n). This shows that NF (n) is not a tree whenever
n ≥ 4, as already stated in the previous section.

5. The densification algorithm

In this section we describe the algorithm by which we can improve the
density of a given finite graph, through passing over to a subgraph.

Given a finite subgraph A in the Cayley graph C of a finitely generated
group G, the algorithm applies a finite sequence of reductions (given in
detail below), and returns a new “densified” subgraph A. If the initial
finite graph A is sufficiently dense, then the returned graph A will have
even higher density. Otherwise, for example if A is a cycle or a tree, it is
possible that the algorithm will collapse A to a single vertex. As our appli-
cations concern all Cayley graphs built on 2-element generating systems,
our algorithm is tuned to graphs with vertex degree uniformely bounded
by 4. The necessary modifications for higher vertex degree, if needed, are
fairly easy to device.

We first need to introduce some terminology. Let K be a finite graph.
A chain is a maximal simple path in K where all of its vertices, except for
the endpoints, have degree 2 in K. The length of a chain is the number
of its vertices of degree 2. A cycle is a simple loop in K where all vertices
have degree 2 in K. A tripod is a subgraph of K which consists of 3 chains
which have precisely 1 vertex v in common, and v is an endpoint in each
of the three chains. The length of a tripod is the sum of the lengths of
its three chains. A degenerated tripod is a subgraph of K which consists
of two chains c and c′, such that the two endpoints of c coincide with a
vertex v, and precisely one of the endpoints of c′ also coincides with v. The
length of a degenerated tripod is the sum of the lengths of the two chains
c and c′. We require that, in case of a tripod or a degenerated tripod, the
vertex v has degree 3 in K; i.e. there is no other edge adjacent to v.

We will now define four types of elementary reductions. They corre-
spond to the removal of chains, cycles, and tripods (degenerated or not)
from K, whenever their length is large enough. Any such transformation
will in most cases increases the density, see Lemma 5.1.

244



Testing Cayley graph densities

For a finite graph K with density δ(K) we define the following param-
eters: If δ(K) 6= 2, let

Nc(K) = max(0,
2

δ(K)− 2
), Nt(K) = max(0,

4
δ(K)− 2

− 1)

and Nd(K) = max(0, 2
δ(K)−2 − 1). If δ(K) = 2, we set Nc(K) = Nt(K) =

Nd(K) = 0.
(R1): Remove any subtree of K.
(R2): Remove any cycle of K.
(R3): Remove all chains of length greater than Nc(K) from K.
(R4): Remove from K some tripod of length greater than Nt(K), or some
degenerated tripod of length greater than Nd(K). Repeat this procedure
as often as possible.

Lemma 5.1. If K is a finite graph with density δ(K) > 2, then any of the
above elementary transformations (R1), (R2), (R3) or (R4) transforms K
into a subgraph K ′ of strictly larger density of δ(K).

Proof. It suffices to check that the number of edges removed in any of the
elementary transformations is strictly smaller than δ(K) times the number
of vertices removed. This is trivially true for the transformations (R1) and
(R2), since any tree has one more vertex than unoriented edges, and any
cycle has equal number of vertices as unoriented edges. Since according to
our conventions we have to count an edge and its inverse separately, this
gives directly the desired inequality.

For the reduction (R3) we observe that any chain c of length n >
Nc(K) has precisely 2n + 2 edges (counting again an edge and its inverse
separately) and n + 2 vertices, and while all of the edges are removed
with c, only the n interior vertices of c are removed. Since δ(K) > 2 and
Nc(K) = max(0, 2

δ(K)−2), one has n > 2
δ(K)−2 and hence δ(K) > 2

n + 2 =
2n+2

n , which precisely what we need.
Any tripod of length n consists precisely of 2n + 6 edges and n + 4

vertices, where n + 1 of them (as well as all edges) will be removed. A
degenerated tripod of length n consists precisely of 2n+4 edges and n+2
vertices, of which n + 1 will be removed. The further calculation for (R4)
is very similar to the above one for (R3) and thus left to the reader. �

The algorithm proceeds as follows:
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Given a finite graph K
DO WHILE the graph K is changing

Apply successively reductions (R1), (R2), (R3), (R1), (R2),
(R4)

END
RETURN the densified graph K

Below we will call each successive applications of the reductions (R1),
(R2), (R3), (R1), (R2), (R4) a round.

6. The algorithmic package

As mentioned in the introduction, our numerical results were obtained by
means of computer calculations, executed by a program written in C++.
In this section we give a brief description of the three parts I, II and
III of our programmed algorithmic package, of its software routines and
also of the assumptions and limitations involved. A fourth computational
feature, concerning the linear interpolation of the numerical data obtained
by parts I - III, and in particular calculating an interpolated limit density
is performed using Matlab and is described in §8 below.

Part I of the algorithmic package consists of subprograms, one for each
class of groups G considered here, that transform a given product of gen-
erators or their inverses into a word in normal form as introduced in §3.

Part II calculates, for a given parameter n, the finite graphs B(n), or,
in case where the group in question is Thompson’s F , the finite graphs
LP (n), NF (n), or, for given k and n, the graph BB(n, k), as defined in
§4.

Part III calculates, for any finite graph A (= the graph computed in
part II) a densified subgraph A according to the algorithm presented in
§5.

It is an important characteristic of our algorithmic package that it is
organized in a strictly modular fashion where the different parts work
independently from each other. This gives the possibility to easily improve
specific parts without having to change the rest. For example, new classes
of groups can be investigated by adding new subprograms to part I without
changing parts II or III, new families of sets for the known groups can be
investigated without changing I or III, and the densification algorithm
could be embellished and reapplied to the groups and set families already
programmed without ever changing I or II.
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6.1. What the program can do

The program works in a console mode. A contextual menu allows the user
to choose any of the actions. The actions, besides saving a copy of the
outputs into a text file and offering some further options, consists mainly
in:
– Choose one of the predefined groups that can be any free, finitely gen-
erated free abelian, Baumslag-Solitar, group, Z o Z or Thompson’s group
F ; all further computations will concern this group.
– Perform direct computations, like writing an element or a product of
elements in normal form.
– Construct one (or a sequence) of the predefined finite graphs as explained
in §4, and compute their density (or alternatively their isoperimetric con-
stant).
– Apply to such a finite graph (or sequence of finite graphs) the algorithm
of §5. The program provides some extra information, like the density at
each step, and further details concerning the application of the elementary
reductions (R1)–(R4).

6.2. What the program is made of

The program is written in standard C++ and can be compiled either on
Linux or Win32 platforms. It can be easily adapted to compilation on
other platforms.

The program makes intensive use of the object-oriented abilities of C++.
Groups, graphs, vertices are all objects (or class); all the main algorithms
correspond to general functions which takes data as input (like a group),
and returns data. The functions which construct balls in the Cayley graph,
and implement the algorithm of §5 are general and can be applied to any
implemented group or finite graph.

Elements are given by strings of characters. This allows more choices
when one encodes an abstract group element. Usually, strings look like
words on given canonical generators and inverses. So they are really close
to their mathematical meaning. However, for example in the case of Thomp-
son’s group F , they don’t represent words on the canonical generators, but
encode normal forms.
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6.3. Limitations

The graphs are constructed in the physical memory (RAM) of the com-
puter, and their size is almost proportional to the number of vertices. The
main limitation of our computation is obviously the size of the computed
graphs. This is closely related to the complexity of the group: In groups of
polynomial growth, our computations of B(n) can easily be implemented
for n going up to hundreds or thousands, while in groups of exponential
growth n goes hardly up to 20. On the other hand, the program can han-
dle free groups of rank at most 128, free abelian groups of rank at most
128, and words in wreath products with in at most 127. For the group F
the program can handle normal forms xp0

0 · · ·xpn
n x−qn

n · · ·x−q0
0 with n up

to 127.

7. Summary of experimental results

In this section we give an overview of our experimental results. For each
of the classes of groups considered in §3 and for each type of the special
subsets defined in §4 our presentation contains the following parts:

(a) – known theoretical results for the group;

(b) – best values of densities calculated by our program;

(c) – analysis of the work of the densification algorithm;

(d) – values of the interpolated limit density;

(e) – comments.

In the next section we give a graphical interpretation of our experimen-
tal results, and in Section 9 we present the numerical data obtained.

7.1. Comparative analysis I: Amenable vs non-amenable

7.1.1. Free abelian group Z× Z× Z

(a) The group has a polynomial growth, and hence balls B(n) are known
to be a family of Følner sets. The slow growth allows an easy implemen-
tation of balls B(n) for large n (for hundreds or for thousands). Also,
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theoretical values of the density of balls and of densified balls are very
easy to calculate.

(b) The ball of radius 171 in Z × Z × Z has density 5.94752 before and
5.94812 after the densification algorithm is applied.

(c) The densification algorithm does not change the initial density signif-
icantly: the increase of density is less than 1%.

(d) The interpolated values of the limit density coincide with the the-
oretical value : 6. Moreover, this is the case, both in small scale (for
n = 1, . . . , 15) and in large scale (for n = 1, . . . , 171) calculations, which
numerically confirms that balls constitute a Følner family.

7.1.2. Baumslag-Solitar group BS(2, 2)

(a) This group contains F2 ×Z as a subgroup (of index 2) and hence it is
not amenable.

(b) The ball of radius 18 has density 2.58585. The densified ball of radius
18 has density 2.928.

(c) The densification algorithm induces a 14% increase in density and
remove approximatively 40% of vertices.

(d) The interpolated values of the limit density of balls and of densified
balls are 2.64 and 2.97, respectively.

(e) An interesting point is that the algorithm runs only through one round.

7.1.3. Wreath product Z o Z

(a) This is an amenable group of exponential growth. Balls B(n) are not
a Følner family.

(b) The ball of radius 16 has density 2.32838. The densified ball of radius
16 has density 2.90938.

(c) The densification algorithm produces a 25% increase in density and
removes approximatively 2/3 of vertices. Thus the algorithm is quite effi-
cient in this case.

(d) The interpolated values of the limit densities of balls and of densified
balls are 2.43 and 3 respectively.
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7.2. Comparative analysis II: The Thompson group F

Amenability of F is unknown, but one knows that F grows exponentially
(cf. [2]), so that balls will certainly not give a Følner family.

7.2.1. Balls B(n) in F

(b) The ball of radius 15 has density 2.14905. The densified ball of radius
15 has density 2.7183.
(c) The densification algorithm induces a 25% increase in density. It re-
moves more than 80% of vertices.
(d) The interpolated limit densities of balls and of the densified balls are
2.23 and 2.8 respectively.
(e) The results are quite similar to the above case of the wreath product
Z o Z. An interesting point is that the densification algorithm performs
at most three rounds for n < 15. However it suddenly takes 132 rounds
to perform calculations for n = 15 and the density increases a lot. This
allows to believe that there may well exist a subset of much higher density
than given by our interpolation.

7.2.2. Left positive balls LP (n) in F

(b) The left positive ball LP (19) has density 2.15988. The densified left
positive ball LP (19) is of density 2.74349.
(c) The densification algorithm yields an increase in density of approxi-
matively 27%. This is one of the best values obtained. The densified left
positive balls are particulary small: up to 90% of the vertices are removed
by the densification algorithm.
(d) The interpolated limit densities of left positive balls and of densified
left positive balls are 2.22 and 2.97 respectively.
(e) The densification algorithm appears to be most efficient in case of these
particular graphs.

7.2.3. Negative forests NF (n) for F

(b) The negative forest NF (14) has density 2.47619. The densification of
this subgraph gives density 2.79448.
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(c) The densification algorithm is rather inefficient: it gives a 13% increase
in density and removes less than 60% of the vertices.
(d) The interpolation of the limit density gives values 2.67 and 3.03 for
the negative forest and for the densified negative forest respectively.
(e) The interpolated values of the limit density are exceptionally close to
the calculated ones: the norm of the residues is approximatively 10−5.

7.2.4. Belk-Brown sets BB(n) for F

(a) Since BB(n, n − 1) = NF (n) both implementations have the same
behavior, even though distinct routines and functions are used.
(b) The Belk-Brown set BB(17, 3) has density 2.82642. The densified set
BB(17, 2) is of density 2.89577. This is comparable to the case of Z o Z.
(c) The densification algorithm increases density by less than 13% and
removes approximatively 60% of vertices.
(d) The interpolation of limit densities gives 3.18, both before and after
the densification. Thus the densification algorithm seems to be inefficient
in this case.
(e) Our interpolations do not agree with theoretical values: it has been
announced that the limit of density of Belk-Brown sets tends to 3.5, see [1].

Notice that the best value of density of BB(n, k(n)) is obtained when-
ever k(n) increases, see Figure 27 and Figure 28. At the same time, the
best value of densities of BB(n, k(n)) appear for k(n) = 3 (or for slowly
growing k(n)).

For n fixed and k large enough all the BB(n, k) have the same density
and the same number of vertices. It is an interesting question whether
these finite graphs are isomorphic as subgraphs of the Cayley graph.

8. Graphics and interpolation

We give a graphical interpretation of our experimental results. The main
numerical results are given in §9. Each subsection below concerns the
density of a family of finite graphs in a given group, and its behavior
under application of the densification algorithm. We study successively:

(8.2) balls B(n) in Z× Z× Z,

(8.3) balls B(n) in BS(2, 2),
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(8.4) balls B(n) in Z o Z,

(8.5) balls B(n) in Thompson’s group F ,

(8.6) left positive balls LP (n) in F ,

(8.7) negative forests NF (n) in F ,

(8.8) Belk-Brown’s sets BB(n) in F .

Except for Thompson’s group F , amenability (or not) of these groups
is well known (see §2). In order to estimate the limit (or limit superior) of
the density of the families of subgraphs considered, we apply a first order
approximation to the numerical data obtained from our experiments. This
interpolation allows us, in a certain sense, to extrapolate this limit of
densities by a value called “interpolated limit density” of this family of
subgraphs. Of course, the reader has to be aware that for groups with
exponential growth this does only estimate a lower bound to the density
of the Cayley graph, compare the discussion at the end of §2.

8.1. Method of interpolation

We consider the densities δn of a sequence of finite graphs Sn, for p + 1 ≤
n ≤ q. We approximate the δn by a real-valued function f(n), specified
below, defined on the domain {p+1, p+2, . . . , q}. We estimate the quality
of the approximation first by constructing the vector in Rq−p whose nth-
component is the residue δn − f(n), and later by considering its euclidian
norm. We call this norm, the norm of residues. It is a non-negative number.
Clearly, the smaller it is, the better the approximation will be, with the
zero value for the norm of residues in the case of a perfect correspondence
of f with the given values of δn.

The approximating function f is set to be of type:

f(n) =
an + b

n + x
.

There are two main reasons: on one hand, these functions give the best
experimental results. On the other hand, assume that the values δn are well
approximated by some rational function f(n) = P (n)

Q(n) . Then one easily sees
(observing that limn→∞ δn is neither zero nor infinite) that P and Q have
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to be of the same degree, and thus f(n) may be just as well approximated
by a function of the above type an+b

n+x .
The key points for the interpolation procedure now are the following:

First, the interpolation reduces to the consideration of a parameter x and
a linear interpolation δn(n + x) in order to obtain a and b. Here the value
of x is chosen such that δn(n+x) is best distributed close to a line. That is,
the corresponding norm of residues in a linear interpolation is the smallest
one among all possibilities for the value of x. (In the search for the best x,
using Matlab, we consider only large enough n, and the values for x are
only considered up to 10−1.)

Observe that the limit of f(n) for n → ∞ is a, and hence this is the
value, called interpolated limit density, which we use as parameter to
estimate the limit of δn. The latter is, after all, the information we are
mainly interested in.
Aside: An interesting experimental result in the above described interpo-
lation procedure is that the parameter a remains essentially unchanged
whenever x is slightly modified. This stability with respect to perturba-
tions seems interesting in light of the fact that a is related to the approx-
imation of zero order: the line y = ax gives the asymptotic direction.

8.2. Free abelian group of rank 3

We proceed as above by comparing large scale and small scale interpola-
tions with the true values. Numerical results are given in §9.1.

The “large scale” results for Z×Z×Z appear in Figure 6. Let us restrict
to n = 11, 21, . . . , 171. The densities of balls B(n), rescaled via x + 0.6,
are distributed along the line y = 6.x − 5.4, see Figure 7. The norm of
residues is approximately equal to 0.011. The interpolation gives:

δ(B(n)) ≈ 6n− 5.4
n + 0.6

,

the interpolated limit density is equal to 6.
The norm of residues of the interpolation of the density of densified balls

B(n) is approximatively 0.032, see Figure 8. One obtains the interpolation:

δ(B(n)) ≈ 6n + 4.3
n + 2.2

.

The interpolated limit density is equal to 6.
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Figure 6. Large scale density of balls B(n) in Z× Z× Z

Figure 7. Interpolation of the large scale densities of balls
B(n) in Z× Z× Z

The “small scale” results for Z×Z×Z, for n = 1, 2, . . . , 15, are presented
in Figure 9. We restrict ourselves to n = 3, 4, . . . , 15. Multiplying initial
densities by x + 1 gives the distribution along the line y = 6.x − 3.6,
Figure 10. The norm of residues of the density of balls B(n) is less than
0.05, Figure 10. The interpolation gives:

δ(B(n)) ≈ 6n− 3.6
n + 1

.

The interpolated limit density is equal to 6.
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Figure 8. Interpolation of large scale density of densified
balls B(n) in Z× Z× Z

Figure 9. Small scale density of balls B(n) in Z× Z× Z

For n = 4, 5, . . . , 15, multiplying the density of densified balls B(n) by
x+1.1 gives distribution along the line y = 6x−1.1, Figure 11. The norm
of residues is close to 0.061. The interpolation gives:

δ(B(n)) ≈ 6n− 1.1
n + 1.1

,

and the interpolated limit density is equal to 6.
A ball B(n) has 4n3 + 2n edges and (4n3 + 6n2 + 8n + 3)/3 vertices,

δ(B(n)) =
24n3 + 12n

4n3 + 6n2 + 8n + 3
∼

+∞

6n

n + 3/2
.
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Figure 10. Interpolation of the small scale density of balls
B(n) in Z× Z× Z

Figure 11. Interpolation of the small scale density of den-
sified balls B(n) in Z× Z× Z

The density of densified balls B(n) can be computed for n ≥ 4. The
algorithm removes 12 vertices of valency 1 and 12(n − 1) edges. Thus it
removes 12n vertices and 24n− 12 edges. We deduce that:

δ(B(n)) =
24n3 − 132n + 72

4n3 + 6n2 − 28n + 3
∼

+∞

6n

n + 3/2
.

Our (small and large scale) interpolations are not exactly the same, but
they are not so far off either. The key point is that in all cases one recovers
the theoritical limit density 6: The given subsets are a Følner family.
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8.3. Baumslag-Solitar group BS(2, 2)

Graphics are given in Figure 12. Numerical results are found in §9.2. For

Figure 12. Density of balls B(n) of BS(2, 2)

n = 3, 4, . . . , 18, the density δ(B(n)), multiplied by (x−0.9), is distributed
close to the line y = 2.64x − 3.3, Figure 13. The norm of residues is
approximatively 0.066. The interpolation gives:

Figure 13. Interpolation of densities of balls B(n) in BS(2, 2)

δ(B(n)) ≈ 2.64n− 3.3
n− 0.9

and the interpolated limit density is equal to 2.64.
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For n = 4, 5, . . . , 18, we multiply the density of the densified balls B(n)
by x − 1.9. This gives values that can be interpolated by the line y =
2.97x−6.29, see Figure 14. The norm of residues is approximatively 0.084.
Our approximation gives:

Figure 14. Interpolation of densities of densified balls
B(n) in BS(2, 2)

δ(B(n)) ≈ 2.97n− 6.29
n− 1.9

.

The interpolated limit density is equal to 2.97.

8.4. Wreath product Z o Z

Graphics are given in Figure 15. Numerical results are given in §9.3. The
initial density, multiplied by x + 0.9, is distributed close to the line y =
2.43x+0.55, see Figure 16. The norm of residues is approximatively equal
to 0.25.

The interpolation of densities is given by:

δ(B(n)) ≈ 2.43n + 0.55
n + 0.9

.

The interpolated limit density is equal to 2.43.
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Figure 15. Density of balls B(n) in Z o Z

Figure 16. Interpolation of the densities of balls B(n) in
Z o Z

We interpolate the densities δ(B(n)) by using our numerical results for
n = 4, 5, . . . , 16. The norm of residues of our interpolation is approxima-
tively 0.23, see Figure 17. The density of densified balls B(n) is interpo-
lated by:

δ(B(n)) ≈ 3n− 7
n− 1.9

.

The interpolated limit density is equal to 3.
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Figure 17. Interpolation of densities of densified balls
B(n) in Z o Z

8.5. Balls B(n) in Thompson’s group F

We now consider Thompson’s group F , for which amenability is unknown.
We first investigate the density of balls B(n) in F . Our results are given
in Figure 18. Numerical results are given in §9.4.

Figure 18. Density of balls B(n) in Thompson’s group F

In order to interpolate the densities δ(B(n)) we only consider n =
3, 4, . . . , 15. Multiplication of the density of B(n) by n + 2.3 gives values
close to the line y = 2.23x + 3.65, see Figure 19. The norm of residues is
approximatively 0.123.
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Figure 19. Interpolation of densities of balls B(n) in F

The interpolation gives:

δ(B(n)) ≈ 2.23n + 3.65
n + 2.3

.

The interpolated limit density is equal to 2.2.
Now we consider the behavior of densities of balls after the densifica-

tion algorithm is applied. For n = 3, 4, . . . , 14, the density of the B(n),
multiplied by n−1.7, is distributed close to line y = 2.8x−6.4, see Figure
20. The norm of residues is 0.11395.

Figure 20. Interpolation of the densities of densified balls
B(n) in F

261



G. N. Arzhantseva et al.

The estimation is given by:
2.8n− 6.4
n− 1.7

.

The interpolated limit density is equal to 2.8.
These results are clearly comparable with those of the amenable group

Z o Z.

8.6. Left-positive balls LP (n) in F

Numerical results are given in §9.5, graphical data are given in Figure 21.

Figure 21. Density of left-positive balls LP (n) in F

The density of the LP (n), multiplied by n+0.343, is distributed close to
the line y = 2.22x− 0.427, see Figure 22. The calculated norm of residues
is equal to 0.038316.

This gives the approximation:

δ(LP (n)) ≈ 2.22n− 0.427
n + 0.343

.

The density of the densified sets LP (n), multiplied by n − 0.7, is dis-
tributed close to the line y = 2.97x − 6.25, see Figure 23. The norm of
residues equals to 0.65841. This provides the approximation:

δ(LP (n)) ≈ 2.97n− 6.25
x− 0.7

.

262



Testing Cayley graph densities

Figure 22. Interpolation of the densities of the sets
LP (n) in F

The interpolated limit density is equal to 3.

Figure 23. Interpolation of the densities of the densified
sets LP (n) in F

8.7. Negative forests NF (n) in F

Numerical results are given in §9.6. A graphical interpretation is given in
Figure 24.

The best approximation of the density of NF (n) is obtained by multi-
pling it by n, see Figure 25. The norm of residues is exceptionally low. It
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Figure 24. Density of negative forests NF (n) in F

is equal to 6.4769.10−5. Notice that both our data and the results of the
interpolation have a margin of error of 10−5. The density is distributed
close to the line 2.6667x−2.6667. The densities of NF (n) are particularily
well approximated for n = 2, 3, . . . , 14 by:

δ(NF (n)) ≈ (2 +
2
3
)
n− 1

n
.

For n = 5, 6, . . . , 14, the density of the densified negative forests NF (n),

Figure 25. Interpolation of densities of NF (n) in F

multiplied by n−1.1, is distributed along line y = 3.03x−6.28, Figure 26.
The approximation is given by:
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Figure 26. Interpolation of densities of NF (n) in F

δ(NF (n)) =
3.03n− 6.28

n− 1.1
and the interpolated limit density is equal to 3.03.

8.8. Belk-Brown sets BB(n, k) in F

Numerical results are given in §9.7. The densities of the BB(n, k) are given
in Figure 27. The densities of the densified Belk-Brown sets BB(n, k) are
given in Figure 28.

BB(4,x)

BB(5,x)

BB(6,x)

BB(7,x)
BB(8,x)

BB(10,x)
BB(11,x)BB(12,x)

BB(13,x)
BB(14,x)

BB(15,x)

BB(9,x)

BB(16,x)

BB(17,x)
BB(18,x)

BB(19,x)

Figure 27. Densities of Belk-Brown sets BB(n, k) in F
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Figure 28. Final densities of Belk-Brown sets BB(n, k) in F

For k large enough all the densified BB(n, k) have the same density
and the same number of vertices. Since BB(n, k) ⊂ BB(n, k + 1), one
should expect that the sets obtained from our densification algorithm are
the same. The best density we obtain is the density of BB(17, 3), which
is equal to 2.89577.

We construct new sequences as follows. For each n we consider the
maximum of densities of BB(n, k) as well as the maximum of densities of
densified Belk-Brown sets BB(n, k). The sequences are given in Figure 29.

Figure 29. Best densities of Belk-Brown sets

For n = 3, 4, . . . , 17 the best initial densities, multiplied with n+1.7, is
distributed close to y = 3.18x− 1.19, see Figure 30. The norm of residues
is approximatively 0.25. This gives as approximation:
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Figure 30. Interpolation of the best densities of the BB(n, k)

δ(n) =
3.18x− 1.19

x + 1.7
.

The interpolated limit density is equal to 3.18.
For n = 5, . . . , 17, the best densities of the densified Belk-Brown sets

BB(n, k), multiplied by n + 0.69, are close to the line y = 3.18x − 2.92,
see Figure 31. The norm of residues is less than 0.096. This gives as ap-

Figure 31. Interpolation of best densities of the densified
Belk-Brown sets BB(n, k)

proximation:

δ(n) =
3.18x− 2.92

x + 0.69
.
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Thus, the interpolated limit density for the Belk-Brown sets BB(n, k) be-
fore densification and the one for the densified Belk-Brown sets BB(n, k)
agree: they are both approximately equal to 3.18. Observe that the best
theoretical limit density of Belk-Brown sets is known to be 3.5 (cf. [1]),
more than the computed value. Best densities we have obtained are in
case k = 3. However, a careful analysis of Figure 27 suggests that for large
values of k and n best densities might be obtained for greater values of k.
The same behavior appears once the densification algorithm is applied.

9. Numerical data

In this section we will give some of the numerical data, obtained from our
algorithmic package, in the form of tables. Each table corresponds to a
fixed group and to a fixed family of subgraphs of the Cayley graph, as
presented and discussed in the previous sections. For example the table
given in §9.2 corresponds to the Baumslag-Solitar group BS(2, 2) and to
the family of balls B(n) in its Cayley graph. Each table is organised as
follows.

A line in the table corresponds to a fixed choice of parameters for the
family of subgraphs, thus specifying a particular subgraph. For example,
the 5-th line of the table of §9.2 corresponds to the ball B(4), for the
group BS(2, 2). The first column, labelled “Density”, states the name of
the subgraph considered. The second column, labelled “Before”, states
the density of this graph before applying the densification algorithm. The
third column, labelled “#", states the number of rounds performed, i.e.
the number of times the algorithm runs once through the sequence of
steps specified at the end of §5 with at least one edge or vertex deleted (in
which case it tries to repeat the maneuver, rising the value of # by one).
The fourth column, labelled “After”, states the density of the subgraph
obtained as final result of our densification program. The fifth column,
called “Increase", explicits the amount of density gained by the densi-
fication procedure, as well (in paranthesis) the percentage this increase
means with respect to the density before applying the program. Finally,
the last column, labelled “Deleted vertices”, states the number of vertices
deleted in the densification procedure from the originally given subgraph.
In paranthesis it states the percentage this amounts to, with respect to
the number of all vertices in the originally given graph.
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Remark: If the densification algorithm is applied to a non-empty tree,
then the number # of rounds the algorithm repeats the densification pro-
cedure will be equal to 1, and the final density must be equal to 0. This,
however, is not specific for the case of non-empty trees: it will also happen,
for example, if the given subgraph is a cycle, or any other graph obtained
from gluing trees to a cycle.

9.1. The group Z× Z× Z

Large scale balls B(n) in Z× Z× Z
Density Before # After Increase Deleted vertices

B(1) 1.71429 1 0 -1.71429(-100.00%) 7/7(-100.00%)

B(11) 5.22325 1 5.3201 +0.0968509(+1.85%) 132/2047(-6.45%)

B(21) 5.5823 1 5.61473 +0.0324311(+0.58%) 252/13287(-1.90%)

B(31) 5.71457 1 5.73058 +0.0160031(+0.28%) 372/41727(-0.89%)

B(41) 5.78326 1 5.79276 +0.0095005(+0.16%) 492/95367(-0.52%)

B(51) 5.82531 1 5.83159 +0.00628328(+0.11%) 612/182207(-0.34%)

B(61) 5.8537 1 5.85816 +0.00446129(+0.08%) 732/310247(-0.24%)

B(71) 5.87415 1 5.87748 +0.00333071(+0.06%) 852/487487(-0.17%)

B(81) 5.88959 1 5.89217 +0.00258064(+0.04%) 972/721927(-0.13%)

B(91) 5.90165 1 5.90371 +0.00205851(+0.03%) 1092/1021567(-0.11%)

B(101) 5.91134 1 5.91302 +0.0016799(+0.03%) 1212/1394407(-0.09%)

B(111) 5.91929 1 5.92069 +0.00139713(+0.02%) 1332/1848447(-0.07%)

B(121) 5.92593 1 5.92711 +0.00118017(+0.02%) 1452/2391687(-0.06%)

B(131) 5.93156 1 5.93257 +0.00100994(+0.02%) 1572/3032127(-0.05%)

B(141) 5.9364 1 5.93727 +0.000874043(+0.01%) 1692/3777767(-0.04%)

B(151) 5.9406 1 5.94136 +0.000763893(+0.01%) 1812/4636607(-0.04%)

B(161) 5.94427 1 5.94495 +0.000673294(+0.01%) 1932/5616647(-0.03%)

B(171) 5.94752 1 5.94812 +0.000597954(+0.01%) 2052/6725887(-0.03%)
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Small scale balls B(n) in Z× Z× Z
Density Before # After Increase Deleted vertices

B(1) 1.71429 1 0 -1.71429(-100.00%) 7/7(-100.00%)

B(2) 2.88 1 3.15789 +0.277895(+9.65%) 6/25(-24.00%)

B(3) 3.61905 1 3.78947 +0.170426(+4.71%) 6/63(-9.52%)

B(4) 4.09302 1 4.44444 +0.351421(+8.59%) 48/129(-37.21%)

B(5) 4.41558 1 4.70175 +0.28617(+6.48%) 60/231(-25.97%)

B(6) 4.64721 1 4.87869 +0.231473(+4.98%) 72/377(-19.10%)

B(7) 4.82087 1 5.01018 +0.189314(+3.93%) 84/575(-14.61%)

B(8) 4.95558 1 5.11262 +0.157037(+3.17%) 96/833(-11.52%)

B(9) 5.06299 1 5.19505 +0.132067(+2.61%) 108/1159(-9.32%)

B(10) 5.15054 1 5.26301 +0.112467(+2.18%) 120/1561(-7.69%)

B(11) 5.22325 1 5.3201 +0.0968509(+1.85%) 132/2047(-6.45%)

B(12) 5.28457 1 5.3688 +0.0842314(+1.59%) 144/2625(-5.49%)

B(13) 5.33697 1 5.41087 +0.0739012(+1.38%) 156/3303(-4.72%)

B(14) 5.38225 1 5.44759 +0.0653448(+1.21%) 168/4089(-4.11%)

B(15) 5.42176 1 5.47994 +0.0581827(+1.07%) 180/4991(-3.61%)

9.2. The Baumslag-Solitar group BS(2, 2)

Balls B(n) in BS(2, 2)
Density Before # After Increase Deleted vertices

B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)

B(2) 1.88235 1 0 -1.88235(-100.00%) 17/17(-100.00%)

B(3) 2.21277 1 2.47619 +0.263425(+11.90%) 26/47(-55.32%)

B(4) 2.32479 1 2.64407 +0.319281(+13.73%) 58/117(-49.57%)

B(5) 2.41455 1 2.76423 +0.349682(+14.48%) 152/275(-55.27%)

B(6) 2.4576 1 2.81388 +0.35628(+14.50%) 308/625(-49.28%)

B(7) 2.49029 1 2.84224 +0.351948(+14.13%) 624/1391(-44.86%)

B(8) 2.51032 1 2.85974 +0.349421(+13.92%) 1292/3053(-42.32%)

B(9) 2.526 1 2.87281 +0.346812(+13.73%) 2696/6635(-40.63%)

B(10) 2.53755 1 2.88305 +0.3455(+13.62%) 5668/14313(-39.60%)

B(11) 2.54712 1 2.89163 +0.344501(+13.53%) 11936/30695(-38.89%)

B(12) 2.55501 1 2.89894 +0.343929(+13.46%) 25148/65509(-38.39%)
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B(13) 2.56183 1 2.90531 +0.343485(+13.41%) 52920/139235(-38.01%)

B(14) 2.56776 1 2.91092 +0.343161(+13.36%) 111188/294881(-37.71%)

B(15) 2.57303 1 2.91591 +0.342875(+13.33%) 233168/622559(-37.45%)

B(16) 2.57774 1 2.92037 +0.342623(+13.29%) 488044/1310685(-37.24%)

B(17) 2.58199 1 2.92438 +0.342383(+13.26%) 1019624/2752475(-37.04%)

B(18) 2.58585 1 2.928 +0.342154(+13.23%) 2126468/5767129(-36.87%)

9.3. The wreath product Z o Z

Balls B(n) in Z o Z
Density Before # After Increase Deleted vertices

B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)

B(2) 1.88235 1 0 -1.88235(-100.00%) 17/17(-100.00%)

B(3) 1.96226 1 0 -1.96226(-100.00%) 53/53(-100.00%)

B(4) 2.0915 1 2.4242 +0.332739(+15.91%) 120/153(-78.43%)

B(5) 2.14727 1 2.56881 +0.421539(+19.63%) 312/421(-74.11%)

B(6) 2.19022 1 2.64264 +0.45242(+20.66%) 792/1125(-70.40%)

B(7) 2.2254 2 2.74425 +0.518849(+23.31%) 2198/2937(-74.84%)

B(8) 2.25023 2 2.7895 +0.539267(+23.96%) 5442/7537(-72.20%)

B(9) 2.26973 2 2.82382 +0.554091(+24.41%) 13502/19093(-70.72%)

B(10) 2.285 2 2.84949 +0.564495(+24.70%) 33390/47881(-69.74%)

B(11) 2.29693 2 2.86788 +0.570949(+24.86%) 82190/119133(-68.99%)

B(12) 2.30638 2 2.88159 +0.575211(+24.94%) 201546/294585(-68.42%)

B(13) 2.31387 2 2.89178 +0.577903(+24.98%) 492598/724869(-67.96%)

B(14) 2.31984 2 2.89937 +0.579533(+24.98%) 1200726/1776717(-67.58%)

B(15) 2.32459 2 2.90508 +0.580484(+24.97%) 2920614/4341425(-67.27%)

B(16) 2.32838 2 2.90938 +0.580996(+24.95%) 7092194/10582177(-67.02%)
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9.4. Balls in Thompson’s group F

Balls B(n) in F

Density Before # After Increase Deleted vertices

B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)

B(2) 1.88235 1 0 -1.88235(-100.00%) 17/17(-100.00%)

B(3) 1.96226 1 0 -1.96226(-100.00%) 53/53(-100.00%)

B(4) 1.98758 1 0 -1.98758(-100.00%) 161/161(-100.00%)

B(5) 2.03789 1 2.31579 +0.277895(+13.64%) 418/475(-88.00%)

B(6) 2.05069 1 2.39106 +0.340374(+16.60%) 1202/1381(-87.04%)

B(7) 2.07632 2 2.48073 +0.404413(+19.48%) 3412/3957(-86.23%)

B(8) 2.08597 2 2.53365 +0.44768(+21.46%) 9959/11237(-88.63%)

B(9) 2.10377 2 2.57062 +0.46685(+22.19%) 26994/31589(-85.45%)

B(10) 2.11048 2 2.59635 +0.485875(+23.02%) 75036/88253(-85.02%)

B(11) 2.12304 3 2.61761 +0.494578(+23.30%) 203765/244823(-83.23%)

B(12) 2.12823 3 2.63324 +0.505008(+23.73%) 558984/676061(-82.68%)

B(13) 2.13765 3 2.64741 +0.50976(+23.85%) 1512760/1857029(-81.46%)

B(14) 2.14177 3 2.65825 +0.51648(+24.11%) 4120532/5082969(-81.07%)

B(15) 2.14905 132 2.7183 +0.569249(+26.49%) 12420620/13856005(-89.64%)

9.5. Left-positive balls in Thompson’s group F

Left-positive balls LP (n) in F

Density Before # After Increase Deleted vertices

LP(1) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)

LP(2) 1.71429 1 0 -1.71429(-100.00%) 7/7(-100.00%)

LP(3) 1.875 1 0 -1.875(-100.00%) 16/16(-100.00%)

LP(4) 1.94444 1 0 -1.94444(-100.00%) 36/36(-100.00%)

LP(5) 2 1 0 -2(-100.00%) 81/81(-100.00%)

LP(6) 2.03297 1 2.19355 +0.160581(+7.90%) 151/182(-82.97%)

LP(7) 2.05868 1 2.30189 +0.243207(+11.81%) 356/409(-87.04%)

LP(8) 2.07835 1 2.38571 +0.307368(+14.79%) 779/919(-84.77%)

LP(9) 2.09395 3 2.45662 +0.362674(+17.32%) 1846/2065(-89.39%)

LP(10) 2.10647 12 2.52926 +0.422796(+20.07%) 4247/4640(-91.53%)
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LP(11) 2.11682 21 2.57116 +0.454332(+21.46%) 9379/10426(-89.96%)

LP(12) 2.1255 38 2.60121 +0.475717(+22.38%) 20789/23427(-88.74%)

LP(13) 2.13283 71 2.62354 +0.490717(+23.01%) 46116/52640(-87.61%)

LP(14) 2.13908 136 2.6407 +0.501627(+23.45%) 102464/118281(-86.63%)

LP(15) 2.14445 265 2.65425 +0.509793(+23.77%) 227988/265775(-85.78%)

LP(16) 2.14911 522 2.66511 +0.515999(+24.01%) 507883/597191(-85.05%)

LP(17) 2.15318 914 2.72507 +0.571886(+26.56%) 1237673/1341876(-92.23%)

LP(18) 2.15674 793 2.73535 +0.578606(+26.83%) 2761427/3015168(-91.58%)

LP(19) 2.15988 1029 2.74349 +0.583608(+27.02%) 6164348/6775021(-90.99%)

9.6. Negative forests in Thompson’s group F

Note that the following results, for negative forest NF (n), correspond
precisely to the results for Belk-Brown sets B(n, n− 1), see below:

Negative forests NF (n) in F

Density Before # After Increase Deleted vertices

NF(2) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)

NF(3) 1.77778 1 0 -1.77778(-100.00%) 9/9(-100.00%)

NF(4) 2 1 0 -2(-100.00%) 28/28(-100.00%)

NF(5) 2.13333 1 2.27907 +0.145736(+6.83%) 47/90(-52.22%)

NF(6) 2.22222 2 2.42105 +0.19883(+8.95%) 183/297(-61.62%)

NF(7) 2.28571 3 2.52717 +0.24146(+10.56%) 633/1001(-63.24%)

NF(8) 2.33333 2 2.59580 +0.262469(+11.25%) 1955/3432(-56.96%)

NF(9) 2.37037 2 2.64099 +0.270623(+11.42%) 6299/11934(-52.78%)

NF(10) 2.4 6 2.70468 +0.304678(+12.69%) 28117/41990(-66.96%)

NF(11) 2.42424 5 2.73583 +0.311589(+12.85%) 94931/149226(-63.62%)

NF(12) 2.44444 5 2.75949 +0.315048(+12.89%) 326375/534888(-61.02%)

NF(13) 2.46154 5 2.77912 +0.317579(+12.90%) 1142627/1931540(-59.16%)

NF(14) 2.47619 5 2.79448 +0.31829(+12.85%) 4031727/7020405(-57.43%)
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9.7. Belk-Brown sets in Thompson’s group F

Belk-Brown sets BB(n, k) in F

Density Before # After Increase Deleted vertices

BB(2,1) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)

BB(3,1) 1.71429 1 0 -1.71429(-100.00%) 7/7(-100.00%)

BB(3,2) 1.77778 1 0 -1.77778(-100.00%) 9/9(-100.00%)

BB(4,1) 2 1 0 -2(-100.00%) 15/15(-100.00%)

BB(4,2) 2 1 0 -2(-100.00%) 24/24(-100.00%)

BB(4,3) 2 1 0 -2(-100.00%) 28/28(-100.00%)

BB(5,1) 2.13333 1 2.17391 +0.0405796(+1.90%) 7/30(-23.33%)

BB(5,2) 2.2 1 2.27907 +0.0790696(+3.59%) 17/60(-28.33%)

BB(5,3) 2.14634 1 2.27907 +0.132728(+6.18%) 39/82(-47.56%)

BB(5,4) 2.13333 1 2.27907 +0.145736(+6.83%) 47/90(-52.22%)

BB(6,1) 2.24138 1 2.29787 +0.056493(+2.52%) 11/58(-18.97%)

BB(6,2) 2.34014 1 2.41509 +0.0749583(+3.20%) 41/147(-27.89%)

BB(6,3) 2.28326 2 2.42105 +0.137791(+6.03%) 119/233(-51.07%)

BB(6,4) 2.23488 2 2.42105 +0.186177(+8.33%) 167/281(-59.43%)

BB(6,5) 2.22222 2 2.42105 +0.19883(+8.95%) 183/297(-61.62%)

BB(7,1) 2.31193 1 2.37363 +0.0616999(+2.67%) 18/109(-16.51%)

BB(7,2) 2.42735 1 2.50714 +0.0797923(+3.29%) 71/351(-20.23%)

BB(7,3) 2.39258 2 2.52717 +0.134593(+5.63%) 279/647(-43.12%)

BB(7,4) 2.33064 3 2.52717 +0.196538(+8.43%) 497/865(-57.46%)

BB(7,5) 2.29515 3 2.52717 +0.232024(+10.11%) 601/969(-62.02%)

BB(7,6) 2.28571 3 2.52717 +0.24146(+10.56%) 633/1001(-63.24%)

BB(8,1) 2.36816 1 2.43023 +0.0620732(+2.62%) 29/201(-14.43%)

BB(8,2) 2.49695 1 2.57676 +0.0798025(+3.20%) 124/821(-15.10%)

BB(8,3) 2.48144 2 2.59581 +0.114371(+4.61%) 489/1778(-27.50%)

BB(8,4) 2.40847 2 2.5958 +0.18733(+7.78%) 1167/2644(-44.14%)

BB(8,5) 2.36387 2 2.5958 +0.231935(+9.81%) 1667/3144(-53.02%)

BB(8,6) 2.33967 2 2.5958 +0.256135(+10.95%) 1891/3368(-56.15%)

BB(8,7) 2.33333 2 2.5958 +0.262469(+11.25%) 1955/3432(-56.96%)

BB(9,1) 2.41096 1 2.4717 +0.060739(+2.52%) 47/365(-12.88%)

BB(9,2) 2.55485 1 2.63139 +0.0765369(+3.00%) 233/1896(-12.29%)
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BB(9,3) 2.5493 2 2.65126 +0.101964(+4.00%) 977/4828(-20.24%)

BB(9,4) 2.47602 2 2.64423 +0.168205(+6.79%) 2749/8008(-34.33%)

BB(9,5) 2.4212 2 2.64099 +0.219797(+9.08%) 4555/10190(-44.70%)

BB(9,6) 2.39025 2 2.64099 +0.250741(+10.49%) 5691/11326(-50.25%)

BB(9,7) 2.37439 2 2.64099 +0.266608(+11.23%) 6171/11806(-52.27%)

BB(9,8) 2.37037 2 2.64099 +0.270623(+11.42%) 6299/11934(-52.78%)

BB(10,1) 2.4458 1 2.50432 +0.0585163(+2.39%) 76/655(-11.60%)

BB(10,2) 2.60032 3 2.67492 +0.0745924(+2.87%) 775/4331(-17.89%)

BB(10,3) 2.60551 4 2.70623 +0.100716(+3.87%) 3422/12994(-26.34%)

BB(10,4) 2.5348 5 2.70607 +0.171267(+6.76%) 10956/24136(-45.39%)

BB(10,5) 2.47021 6 2.70483 +0.234619(+9.50%) 19145/32998(-58.02%)

BB(10,6) 2.43355 6 2.70468 +0.271126(+11.14%) 24277/38150(-63.64%)

BB(10,7) 2.41258 6 2.70468 +0.292101(+12.11%) 26837/40710(-65.92%)

BB(10,8) 2.40245 6 2.70468 +0.302224(+12.58%) 27861/41734(-66.76%)

BB(10,9) 2.4 6 2.70468 +0.304678(+12.69%) 28117/41990(-66.96%)

BB(11,1) 2.47423 1 2.53026 +0.0560327(+2.26%) 123/1164(-10.57%)

BB(11,2) 2.63755 3 2.71078 +0.0732303(+2.78%) 1443/9800(-14.72%)

BB(11,3) 2.65202 4 2.74514 +0.0931263(+3.51%) 6978/34680(-20.12%)

BB(11,4) 2.58441 4 2.74205 +0.157632(+6.10%) 26855/72394(-37.10%)

BB(11,5) 2.51403 5 2.73747 +0.223436(+8.89%) 53749/106600(-50.42%)

BB(11,6) 2.47079 5 2.7358 +0.26501(+10.73%) 74443/128762(-57.81%)

BB(11,7) 2.44596 5 2.73583 +0.289869(+11.85%) 86515/140810(-61.44%)

BB(11,8) 2.43202 5 2.73583 +0.303807(+12.49%) 92243/146538(-62.95%)

BB(11,9) 2.4257 5 2.73583 +0.310129(+12.79%) 94419/148714(-63.49%)

BB(11,10) 2.42424 5 2.73583 +0.311589(+12.85%) 94931/149226(-63.62%)

BB(12,1) 2.49805 1 2.55154 +0.0534873(+2.14%) 199/2052(-9.70%)

BB(12,2) 2.66921 3 2.7401 +0.0708911(+2.66%) 2862/22008(-13.00%)

BB(12,3) 2.69209 4 2.779 +0.0869138(+3.23%) 14982/91965(-16.29%)

BB(12,4) 2.62814 4 2.77148 +0.143337(+5.45%) 66315/216154(-30.68%)

BB(12,5) 2.5533 5 2.7649 +0.211606(+8.29%) 153498/343946(-44.63%)

BB(12,6) 2.50352 5 2.76087 +0.257348(+10.28%) 229951/435268(-52.83%)

BB(12,7) 2.47504 5 2.76001 +0.284971(+11.51%) 280855/488584(-57.48%)

BB(12,8) 2.45827 5 2.76036 +0.302098(+12.29%) 309351/516520(-59.89%)
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BB(12,9) 2.44917 5 2.75949 +0.310318(+12.67%) 320743/529256(-60.60%)

BB(12,10) 2.4453 5 2.75949 +0.314195(+12.85%) 325351/533864(-60.94%)

BB(12,11) 2.44444 5 2.75949 +0.315048(+12.89%) 326375/534888(-61.02%)

BB(13,1) 2.51823 1 2.56924 +0.0510149(+2.03%) 322/3593(-8.96%)

BB(13,2) 2.69615 2 2.76459 +0.0684388(+2.54%) 5845/49110(-11.90%)

BB(13,3) 2.7264 4 2.80896 +0.0825596(+3.03%) 35904/242478(-14.81%)

BB(13,4) 2.66664 4 2.79765 +0.131004(+4.91%) 166062/643068(-25.82%)

BB(13,5) 2.58797 5 2.78796 +0.199994(+7.73%) 442137/1108550(-39.88%)

BB(13,6) 2.53309 5 2.78229 +0.249196(+9.84%) 717635/1472390(-48.74%)

BB(13,7) 2.50062 5 2.77942 +0.2788(+11.15%) 914731/1700220(-53.80%)

BB(13,8) 2.48142 5 2.7789 +0.297486(+11.99%) 1037283/1827316(-56.77%)

BB(13,9) 2.4702 5 2.77912 +0.308918(+12.51%) 1102691/1891604(-58.29%)

BB(13,10) 2.46437 5 2.77912 +0.314748(+12.77%) 1130851/1919764(-58.91%)

BB(13,11) 2.46203 5 2.77912 +0.317089(+12.88%) 1140579/1929492(-59.11%)

BB(13,12) 2.46154 5 2.77912 +0.317579(+12.90%) 1142627/1931540(-59.16%)

BB(14,1) 2.53557 1 2.58423 +0.0486629(+1.92%) 521/6255(-8.33%)

BB(14,2) 2.71929 2 2.78529 +0.0659952(+2.43%) 12052/108982(-11.06%)

BB(14,3) 2.75635 4 2.83483 +0.0784769(+2.85%) 80539/636264(-12.66%)

BB(14,4) 2.70065 6 2.82311 +0.122467(+4.53%) 467063/1906645(-24.50%)

BB(14,5) 2.61918 8 2.80987 +0.190696(+7.28%) 1368089/3569029(-38.33%)

BB(14,6) 2.55993 10 2.80225 +0.242317(+9.47%) 2361586/4984631(-47.38%)

BB(14,7) 2.52346 5 2.79651 +0.273047(+10.82%) 3012087/5931157(-50.78%)

BB(14,8) 2.50193 5 2.79464 +0.292711(+11.70%) 3504047/6486437(-54.02%)

BB(14,9) 2.48895 5 2.79436 +0.305406(+12.27%) 3796015/6786933(-55.93%)

BB(14,10) 2.48154 5 2.79448 +0.312939(+12.61%) 3945199/6933877(-56.90%)

BB(14,11) 2.47786 5 2.79448 +0.316618(+12.78%) 4007151/6995829(-57.28%)

BB(14,12) 2.47647 5 2.79448 +0.318012(+12.84%) 4027631/7016309(-57.40%)

BB(14,13) 2.47619 5 2.79448 +0.31829(+12.85%) 4031727/7020405(-57.43%)

BB(15,1) 2.55062 1 2.59708 +0.0464547(+1.82%) 843/10835(-7.78%)

BB(15,2) 2.73947 1 2.80304 +0.0635667(+2.32%) 24893/240693(-10.34%)

BB(15,3) 2.78255 4 2.85759 +0.0750453(+2.70%) 186351/1662399(-11.21%)

BB(15,4) 2.73117 6 2.84478 +0.113609(+4.16%) 1193477/5636091(-21.18%)

BB(15,5) 2.64757 7 2.82836 +0.180787(+6.83%) 3994150/11478205(-34.80%)
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BB(15,6) 2.58416 8 2.81871 +0.234552(+9.08%) 7483649/16887924(-44.31%)

BB(15,7) 2.5442 20730535

BB(16,1) 2.56381 1 2.60821 +0.0443943(+1.73%) 1364/18687(-7.30%)

BB(16,2) 2.75722 1 2.81842 +0.0612032(+2.22%) 51425/529373(-9.71%)

BB(16,3) 2.80576 4 2.87778 +0.072022(+2.57%) 440405/4327228(-10.18%)

BB(17,1) 2.57547 1 2.61795 +0.0424783(+1.65%) 2207/32106(-6.87%)

BB(17,2) 2.77292 1 2.83186 +0.0589356(+2.13%) 106246/1160005(-9.16%)

BB(17,3) 2.82642 4 2.89577 +0.069357 (+2.45%) 1056462/11226140(-9.41%)

BB(18,1) 2.58584 1 2.62654 +0.0406988(+1.57%) 3571/54974(-6.50%)

BB(18,2) 2.78693 1 2.8437 +0.0567749(+2.04%) 219506/2533584(-8.66%)

BB(19,1) 2.59513 1 2.63418 +0.039046 (+1.50%) 5778/93845(-6.16%)

BB(19,2) 2.7995 1 2.85423 +0.054727 (+1.95%) 453495/5517456(-8.22%)

BB(20,1) 2.6035 1 2.64101 +0.037510 (+1.44%) 9349/159765(-5.85%)

BB(20,2) 2.81085 1 2.86364 +0.052791 (+1.88%) 936918/11983889(-7.82%)

BB(21,1) 2.61108 1 2.64716 +0.036081 (+1.38%) 15127/271321 (-5.58%)

BB(22,1) 2.61797 1 2.65272 +0.034750 (+1.33%) 24476/459743(-5.32%)

BB(23,1) 2.62427 1 2.65778 +0.033508(+1.28%) 39603/777432(-5.09%)

BB(24,1) 2.63005 1 2.6624 +0.032347(+1.23%) 64079/1312200(-4.88%)

BB(25,1) 2.63537 1 2.66663 +0.0312603(+1.19%) 103682/2211025(-4.69%)

BB(26,1) 2.64028 2 2.67104 +0.0307548(+1.16%) 585073/3719643(-15.73%)

BB(27,1) 2.64483 2 2.67506 +0.0302331(+1.14%) 946668/6248479(-15.15%)

BB(28,1) 2.64906 2 2.67876 +0.0296998(+1.12%) 1531741/10482351(-14.61%)
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We now consider Belk-Brown sets B(n, k) with best density, for fixed n
and any k, before (or after, in the subsequent table) applying the densifi-
cation algorithm.

Best density Belk-Brown sets (before densification)
Density Before # After Increase Deleted vertices

BB(2,1) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)

BB(3,2) 1.77778 1 0 -1.77778(-100.00%) 9/9(-100.00%)

BB(4,2) 2 1 0 -2(-100.00%) 24/24(-100.00%)

BB(5,2) 2.2 1 2.27907 +0.0790696(+3.59%) 17/60(-28.33%)

BB(6,2) 2.34014 1 2.41509 +0.0749583(+3.20%) 41/147(-27.89%)

BB(7,2) 2.42735 1 2.50714 +0.0797923(+3.29%) 71/351(-20.23%)

BB(8,2) 2.49695 1 2.57676 +0.0798025(+3.20%) 124/821(-15.10%)

BB(9,2) 2.55485 1 2.63139 +0.0765369(+3.00%) 233/1896(-12.29%)

BB(10,3) 2.60551 4 2.70623 +0.100716(+3.87%) 3422/12994(-26.34%)

BB(11,3) 2.65202 4 2.74514 +0.0931263(+3.51%) 6978/34680(-20.12%)

BB(12,3) 2.69209 4 2.779 +0.0869138(+3.23%) 14982/91965(-16.29%)

BB(13,3) 2.7264 4 2.80896 +0.0825596(+3.03%) 35904/242478(-14.81%)

BB(14,3) 2.75635 4 2.83483 +0.0784769(+2.85%) 80539/636264(-12.66%)

BB(15,3) 2.78255 4 2.85759 +0.0750453(+2.70%) 186351/1662399(-11.21%)

BB(16,3) 2.80576 4 2.87778 +0.072022(+2.57%) 440405/4327228(-10.18%)

BB(17,3) 2.82642 4 2.89577 +0.069357 (+2.45%) 1056462/11226140(-9.41%)

Best density Belk-Brown sets (after densification)
Density Before # After Increase Deleted vertices

BB(2,1) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)

BB(3,2) 1.77778 1 0 -1.77778(-100.00%) 9/9(-100.00%)

BB(4,2) 2 1 0 -2(-100.00%) 24/24(-100.00%)

BB(5,2) 2.2 1 2.27907 +0.0790696(+3.59%) 17/60(-28.33%)

BB(6,3) 2.28326 2 2.42105 +0.137791(+6.03%) 119/233(-51.07%)

BB(7,3) 2.39258 2 2.52717 +0.134593(+5.63%) 279/647(-43.12%)

BB(8,3) 2.48144 2 2.59581 +0.114371(+4.61%) 489/1778(-27.50%)

BB(9,3) 2.5493 2 2.65126 +0.101964(+4.00%) 977/4828(-20.24%)

BB(10,3) 2.60551 4 2.70623 +0.100716(+3.87%) 3422/12994(-26.34%)
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BB(11,3) 2.65202 4 2.74514 +0.0931263(+3.51%) 6978/34680(-20.12%)

BB(12,3) 2.69209 4 2.779 +0.0869138(+3.23%) 14982/91965(-16.29%)

BB(13,3) 2.7264 4 2.80896 +0.0825596(+3.03%) 35904/242478(-14.81%)

BB(14,3) 2.75635 4 2.83483 +0.0784769(+2.85%) 80539/636264(-12.66%)

BB(15,3) 2.78255 4 2.85759 +0.0750453(+2.70%) 186351/1662399(-11.21%)

BB(16,3) 2.80576 4 2.87778 +0.072022(+2.57%) 440405/4327228(-10.18%)

BB(17,3) 2.82642 4 2.89577 +0.069357 (+2.45%) 1056462/11226140(-9.41%)

10. Outlook

Throughout this section we use essentially the same notation as intro-
duced in the beginning of the paper, and as used in the description of
our densification algorithm (§5): A always denotes a (not necessarily con-
nected) finite graph, which we think of as “virtually" embedded as sub-
graph into an infinite ambient graph C. The latter is usually the Cayley
graph C = C(G, X) of a finitely generated group G with respect to a gen-
erating system of finite cardinality m ∈ N, on which G acts on the left.
In any case we always assume that C has a uniform bound 2m for the
degree of any of its vertices. Note that the ambient graph is “virtual" in
that, contrary to the subgraph A, it exists only as theoretical construct,
and hence any finite piece A∗ of it (typically with A ⊂ A∗) has to be
algorithmically constructed before it can be used in the algorithm.

For the purposes of this section it is easier to work with non-oriented
edges. Thus every edge in this section corresponds to a pair of inversely
oriented edges with same endpoints, in the notation of the earlier sections.
Below we denote by V (A) the set of vertices of A and by E(A) the set
of edges. By v(A) and e(A) we denote the cardinality of V (A) and E(A)
respectively. We call e(A) the volume of A. The Euler characteristic of A is
given by χ(A) = v(A)−e(A). For any vertex x ∈ V (A) the degree degA(x)
is the number of edge segments adjacent to x, which is consistent with the
use of deg(A) in the earlier sections in view of the above transition from
oriented to non-oriented edges. A vertex x ∈ V (A) is called branch point
if it has degree deg(x) ≥ 3.

For any subset X ⊂ A we denote by cl(X) the smallest subgraph of A
that contains X. For any subgraph K of A we define the A-boundary ∂AK
of K to be the 0-dimensional subgraph of K which consists of all vertices
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that bound simultaneously an edge from A and an edge from cl(A−K):

∂AK = A ∩ cl(A−K) .

Also, intAK = K − ∂AK denotes the A-interior of K, which is in general
not a subgraph. A subgraph K of A is called full, if it contains all edges
of A that have both endpoints in K. The density of A is given by:

δ(A) =
∑

x∈V (A)

degA(x)
v(A)

= 2
e(A)
v(A)

.

We extend this notion in the obvious way to “graphs with some vertices
missing" like the above set intA(K), for which one has δ(intA(K)) =
2 e(K)

v(K)−v(∂AK) .
The comments and improvements proposed below concern the following

three aspects: (A) the algorithmic determination of subgraphs of A with
higher density, (B) the deterministic construction of larger graphs A∗ ⊂ C
which contain A and have higher density, and (C) the non-deterministic
construction of such A∗.

A. Subgraphs with higher density

We observe that the improvements on the density by passing over to a
subgraph A of A, as performed by the subroutines (R1) - (R4) of our
algorithm presented in §5, are all based on the following principle: the
computer checks for the existence of subgraphs K of A of a certain (fairly
simple) type, and, if it finds any of them, it replaces A by A = A− intAK.
The type of subgraphs K in question assures that the density increases
strictly in this process. This is ensured by the topology of K, which needs
to be of low density itself, and with small A-boundary. More precisely, one
has:

Remark 10.1. For any subgraph K ⊂ A the complementary subgraph A =
A− intAK satisfies δ(A) > δ(A) if and only if one has δ(A) > δ(intAK).
Such a subgraph K is called density increasing.

Below we propose four further methods how to effectively find a density
increasing subgraph K, in any given finite graph A.

(1) A first improvement of the algorithm used in our work can simply
be obtained by embellishing the list of density increasing subgraphs K,
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which are integrated as fixed part of the algorithm without ever chang-
ing in the process. This is done by adding to the present list (i.e. trees,
cycles, long chains, long tripods and long degenerated tripods, see §5) fur-
ther subgraphs with low densities and small boundary. For example, any
connected subgraph of A which is of class K(k, l, n), defined as set of all
graphs K with v(K) = k, |∂AK| ≤ l and χ(K) ≥ n, is density increasing
if k−n

k−l < δ(A), by Remark 10.1.

(2) We devise a new subroutine, where the computer searches for the
set K0 of all vertices x ∈ V (A) with degA(x) < δ(A) (or degA(x) <
δ(A) − C for some constant C > 0), and assembles them into “clusters",
i.e. it builds iteratively full subgraphs Ki which have a high percentage of
low-valence vertices. The subgraphs Ki are defined iteratively out of the
connected components Kj

i−1 of Ki−1 by adding vertices and edges from
their neighborhood in order to create larger connected components, with
the goal to decrease the total A-boundary of the union of the Kj

i−1.
At any given state Ki the computer checks the cardinality of ∂AKi, and

stops the subroutine if this check shows that Ki is density decreasing.

(3) A promising method to find interesting candidates for density decreas-
ing subgraphs K ⊂ A seems to be the following: We consider a symmetric
random walk on A where the starting measure on each vertex x is given
by µ0(x) = 2m−degA(x). We then let the random walk proceed for some
integer time t, thus distributing the measure to give a value of µt(x) on
any x ∈ V (A) via the formula µt(x) =

∑ µt−1(y)
degA(y) , where the sum is taken

over all vertices y adjacent to x in A. For any h ≥ 0 we define the vertex
sets V (h, t) = {x ∈ V (A) | µt(x) ≥ h}, and the subgraphs K(h, t) as the
full subgraphs of A with vertex set V (h, t). For any integer time t ≥ 0,
if we let h decrease monotously from max{µt(x) | x ∈ V (A)} to 0, the
family K(h, t) defines a (finite) increasing nested sequence of subgraphs
of A, which we propose as candidates for density decreasing subgraphs.

A variation of this approach would be to iterate the random walk until
t is large enough so that the measure µt(x) approximates a stable equi-
librium µ∞(x), for all vertices x ∈ V (A). But this seems less interesting,
as there is only one such limit distribution, and that is precisely given by
1

2m times the density function.
Another, perhaps more promising variation comes from adding exterior

measure sources or measure sinks, for example sinks for the high-density
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vertices, or sources for the low-density vertices, to force an equilibrium
state to assemble the measure in the neighborhood of certain subgraphs
considered as possible candidates for density decreasing subgraphs. (Recall
that low-density does not imply density increasing, as one also needs that
the A-boundary of K is small.)

(4) More generally, improving the density of A by erasing interiors of
subgraphs can also be viewed as improving the quality of A as an expander:
We look for a “small" set Z of vertices (corresponding to ∂AK in the above
approaches) which cuts A into subgraphs K and A (with union A and
intersection Z) that have rather different densities δ(A) > δ(K). If the
difference of these densities is large with respect to the cardinality of Z,
for example if δ(A) − δ(K) > 2m#Z

v(K)−#Z , then δ(A) will be strictly bigger
than δ(A).

There are also some interesting theoretical questions surrounding the
algorithmic attempts to improve the density by erasing subgraphs:
(i) Is there an algorithm to find the (possibly non-uniquely determined)
subgraph Amax of highest density among all subgraphs of A ?

As A is finite, the answer is of course “yes", but trying out all subgraphs
is unfortunately not feasable in practise. Hence we rephrase the question
as:
(ii) What is the minimal complexity of any algorithm that derives Amax

from a given finite graph A. In particular, is there a polynomial-time
algorithm ?
(iii) Is there an algorithm for finding Amax that uses only finitely many
types of steps to pass from one intermediate subgraph Ai to Ai+1 ? Here
a “step" consists of modifying a subgraph of Ai of a given graph type into
a new graph of given type.
(iv) Is there always a sequence of nested subgraphs Ai of increasing density
and uniformly bounded volume difference e(Ai)−e(Ai+1) connecting A to
Amax ? What is the minimal value for the volume difference bound needed
to answer this question in the positive, in terms of the universal vertex
degree bound 2m ?

An important fact the reader should note is the observation that certain
“wrong” initial improvements on A (by erasing the interior of some density
increasing subgraph K) can prevent the algorithm used in this paper,
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as well as any of the above proposed improvements (1) - (4), from ever
finding any of the really desired subgraphs A ⊂ A with density δ(A) close
to δ(Amax). Indeed, it is not hard to find examples of graphs (for example
built on two disjoint graphs connected by adding a long chain) which
answer the following question in the negative:

Is any subgraph A of A with δ(A) ≥ δ(A), such that A does not contain
a subgraph of strictly larger density than δ(A), necessarily equal to Amax ?

B. Deterministic methods do increase A to a larger graph
A∗ with higher density

We first notice that for any finite subgraph A of the Cayley graph C of
G, and for any g ∈ G with sufficiently large translation length in C, the
subgraph gA of C is a disjoint isomorphic copy of A, and hence their union
has the same density as A. On the other hand, if one finds an element g ∈ G
such that A and gA intersect in a single vertex, then the density of the
union A ∪ Ag is strictly larger than that of A. Of course, as the special
case of a subtrees A shows, there are rather strict limits to this method in
its crude form, but nevertheless it gives the right idea why the following
is promising.

Since A is finite, the subset GA ⊂ G defined by:

GA = {g ∈ G | A ∩ gA non-empty}

is also finite, so that at least in principle one can calculate, for all subsets
B ⊂ GA, the density of the union:

AB = ∪{gA | g ∈ B} .

It seems quite realistic that among the AB one finds new graphs with
substantially higher density than A, and that an iteration of this procedure
leads to a very promising family of density test graphs for G.

On the other hand, the calculation of the unions AB is tedious and
requires much computing time. Hence the following suggestion may prove
to be helpful:

Denote gA by A′, and let K = A ∩ A′ be the intersection subgraph.
Then δ(A ∪A′) is calculated by the formula:

δ(A ∪A′) =
4e(A)− 2e(K)
2v(A)− v(K)
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and hence δ(A ∪A′) > δ(A) if and only if δ(A) > δ(K).
We may thus start out with a large g = gq = xq . . . x1 ∈ G, so that gA

is disjoint from A and then pass successively to gq−1A, to gq−2A, etc, for
gk = xk . . . x1, until A and gkA meet. As small graphs have (a forteriori)
small density, the first non-empty intersection graphs K = A ∩ giA seem
to be interesting candidates for the above procedure.

A very different deterministic approach to construct families Ai of in-
creasing volume e(Ai) and increasing density δ(Ai) consists of systematic
“local" improvements implemented as follows:

A first computer program compiles a complete list L = Ln, for some
integer n ≥ 1, of all pairs of subgraphs Ki ⊂ Li contained in the ball
Bn(1) in C of radius n around the trivial element 1 ∈ G, which satisfy
δ(Li) > δ(Ki). A second program then verifies, for any x ∈ Ai, whether
Bn(x) ∩ Ai = xKi, and if so, replaces the subgraph xKi of Ai by xLi to
obtain the new graph Ai+1.

Of course, if one can increase the index n of the list Ln in the first
computer program, the procedure performed by the second program will
lead to better values. In principle one can also imagine an interactive
procedure, where all pairs of graphs Ai ⊂ Ai+1 produced by the second
program are automatically added to the list of test pairs Ki ⊂ Li from L.
The problem with this theoretically most promising approach is of course
the hugh amount of memory needed to store the list L.

C. Non-deterministic methods for enlarging the test graph A

A different concept for finding high-density subgraphs of C comes from the
observation that a random walk in a graph has the tendency to accumulate
large amounts of measure (= “heat") in parts of the graph which are “heat
preserving". There are several methods how to mimick random walks in
more or less efficient ways on a computer:
(1) For any non-negative function µt : C → R which is equal to 0 outside
a finite set A ⊂ C we define µt+1 : C → R via µt+1(x) =

∑ µt(y)
degC(y) ,

where the sum is taken over all vertices y adjacent to x in C. We then
define, for fixed t and increasing h, a decreasing family of finite level sets
At,h = {x ∈ C | µt(x) > h} with empty intersection, which hence can be
computed for any value of t and any value of h. Of course, the computation
is very time consuming.
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(2) An approximation of the previous method is the following: at any
time t, one only distributes the weight µt(y) among all of its neighbors xi

(including possibly y itself) if µt(y) is maximal or close to the maximum
value of µt(z) among all z ∈ At = At,0.

The idea here is that vertices with small measure will have to be ignored
anyway, as their totality grows too much like balls and will hence have low
density, in general.
(3) We can exploit the fact that our graph C in question is not just any
graph, but actually the Cayley graph of a group G, by denoting a (finite
support) measure on C as element in the group ring RG. It is easy to see
that convolution of (finite support) measures is nothing else than simply
multiplying the corresponding elements in RG. In particular, the classical
nearest neighbor symmetric random walk on C(G, X) is directly given by
the powers µt for t →∞, where µ = 1

2#X

∑
X∪X−1 x ∈ RG.

(4) An interesting variation of the previous three approaches seems to be
the following “discretization”: One decides ahead of time on a finite integer
scale, (say, from 0 to N ,) and rescale the heat function µt at any time so
that its maximal value on C equals N . Furthermore, for every vertex x
the value µt(x) is decreased to µ∗t (x) = [µt(x)], i.e. to the largest integer
smaller or equal to µt(x). This reduces on one hand the computational
effort, and at the same time it cuts off the undesired very-low-heat vertices
added by the pure random walk as described above in (1). Of course, if one
choses the scale too coarsely by picking N too small, we may get nowhere,
by cutting off at every “rescaling second half-step" precisely what has
been gained right before by the “neighbor-heat-distribution" in the first
half-step, throughout any step of our discretized random walk procedure.
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