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Local time and related sample paths of filtered
white noises

Raby Guerbaz

Abstract

We study the existence and the regularity of the local time of filtered white
noises X = {X(t), t ∈ [0, 1]}. We will also give Chung’s form of the law of iterated
logarithm for X, this shows that the result on the Hölder regularity, with respect
to time, of the local time is sharp.

1. Introduction

The purpose of this paper is to investigate local times and some related
sample paths properties for Filtered White Noises ([3][2], in short FWN).
FWN are Gaussian processes with the following representation :

X(t) =
∫

R

a(t, λ)(eitλ − 1)
|λ|1/2+H

dW (λ), t ∈ [0, 1],

where 0 < H < 1 and dW (λ) is the random Brownian measure on
L2(R). When a ≡ 1, a FWN is a H-fractional Brownian motion (fBm).
Through the paper we keep the same assumptions on a(t, λ) as in [3] and
[2]. Thus, we assume that a(t;λ) is C2(R2; R), and that there exists a
function a∞(t) 6= 0 such that lim|λ|→∞ a(t, λ) = a∞(t) and that σ(t, λ) =
a(t, λ)− a∞(t) satisfies :∣∣∣∣∣∂i+jσ(t, λ)

∂it∂jλ

∣∣∣∣∣ ≤ C

|λ|j+η
, (1.1)

for i, j = 0, 1, 2 and η > 0 such that 0 < H + η < 1.

Keywords: Local time, Local nondeterminism, Chung’s type law of iterated logarithm,
Filtered white noises.
Math. classification: 60G15, 60G17.
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The FWN was introduced by Priestley [13]. The dependence on t in
the function a(t, λ) was introduced to overcome the limitations, in the
stationary increments processes, that they are not able to follow local
modulations of the parameters: stationarity implies uniformity. Various
properties of its trajectories have been already explored in the literature,
related for instance to its regularity and the identification of its relevant
parameters H and a∞(t). More precisely, it is proved ([2]) that the FWN
has a pointwise Hölder exponent equal to H almost surely. We will prove
a Chung form of the law of iterated logarithm, Theorem 4.1, which links
the pointwise regularity of the FWN, at each t, to the value of a∞(t).

Recently, Boufoussi, Dozzi and Guerbaz [7] have studied the local time
of another class of Gaussian processes possessing the same local fractal
properties as the fBm, called the multifractional Brownian motion (mBm).
This process extend the fBm in the sense that its Hurst parameter is no
more constant, but a Hölder function of time.

Section 2 contains a brief review on local times of Gaussian processes
and on Berman’s concept of local nondeterminism. Section 3 is devoted
to prove our result on local times. Chung’s form of the law of iterated
logarithm for FWN is obtained in Section 4, which is applied to derive a
lower bound for the local moduli of continuity of the local times of FWN.

We will use C,C1, ... to denote unspecified positive finite constants
which may not necessarily be the same at each occurrence.

2. Preliminaries

We recall some aspects of local times and we refer to the paper of Ge-
man and Horowitz [9] for an insightful survey on local times. Let X =
(X(t), t ∈ R+) be a real valued separable random process with Borel sam-
ple functions. For any Borel set B of the real line, the occupation measure
of X is defined as follows

µ(A,B) = λ{s ∈ A : X(s) ∈ B} ∀ A ∈ B(R+),

and λ is the Lebesgue measure on R+. If µ(A, .) is absolutely continuous
with respect to the Lebesgue measure on R, we say that X has local times
on A and define its local time, L(A,.), as the Radon-Nikodym derivative of
µ(A, .). Here x is the so-called space variable, and A is the time variable.

The existence of jointly continuous local time reveals information on the
fluctuation of the sample paths of the process itself ([1], Chapter 8). There
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are several approaches for proving the joint continuity of local times, one
of them is the Fourier analytic method developed by Berman to extend his
earlier works on the local times of stationary Gaussian processes. The main
tool used in Berman’s approach [6] is the local nondeterminism. We give
a brief review of the concept of local nondeterminism, more informations
on this subject can be found in Berman [6]. Let J be an open interval on
the t axis. Assume that (X(t), t ∈ R+) is a zero mean Gaussian process
which has no singularities in an interval of length δ, for some δ > 0, nor
does it have fixed zeros; that is, there exist δ > 0 such that

(P)
{

E(X(t)−X(s))2 > 0, whenever 0 < |s− t| < δ;
E(X(t))2 > 0, for all t ∈ J .

To introduce the concept of local nondeterminism, Berman defined the
relative conditioning error,

Vm =
V ar{X(tm)−X(tm−1)/X(t1), ....., X(tm−1)}

V ar{X(tm)−X(tm−1)}
(2.1)

where, for m ≥ 2, t1, ...., tm are arbitrary points in J ordered according
to their indices, i.e. t1 < t2... < tm. We say that the process X is locally
nondeterministic (LND) on J if for every m ≥ 2,

lim inf
c↘0+

0<tm−t1≤c

Vm > 0. (2.2)

This condition means that a small increment of the process is not almost
relatively predictable on the basis of a finite number of observations from
the immediate past. Berman has proved, for Gaussian processes, that the
local nondeterminism is characterized as follows.

Proposition 2.1. X is LND if and only if for every integer m ≥ 2, there
exist positive constants C and δ (both may depend on m) such that

V ar

 m∑
j=1

uj [X(tj)−X(tj−1)]

 ≥ Cm

m∑
j=1

u2
jV ar [X(tj)−X(tj−1)] , (2.3)

for all ordered points t0 < t1 < .... < tm < 1 with tm − t1 < δ, t0 = 0 and
(u1, u2, ..., um) ∈ Rm.

The proof of the previous proposition is given in [6], Lemmas 2.1 and 8.1.
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3. Local times

The main result of this section reads as follows

Theorem 3.1. The FWN has, almost surely, a jointly continuous local
time L(t, x), which has the following Hölder continuities. For any compact
K ⊂ R, we have
(i) If 0 < ξ < 1 ∧ 1−H

2H , then for any I ⊂ [0, 1] with small length

sup
x,y∈K,x6=y

|L(I, x)− L(I, y)|
|x− y|ξ

< +∞, a.s.

(ii) If 0 < δ < 1−H, then

sup
x∈K

|L(t + h, x)− L(t, x)|
|h|δ

< +∞, a.s.

where |h| < κ, κ being a small random variable, almost surely positive and
finite.

We need some preliminaries lemmas for the proof of the theorem

Lemma 3.2. The process {X1(t), t ∈ [0, 1]} defined by

X1(t) = a∞(t)
∫

R

eiλt − 1
|λ|1/2+H

dW (λ), (3.1)

is LND on the interval (0, 1).

Proof. Observe that X1(t) = a∞(t)BH(t) with BH is, up to a multiplica-
tive normalizing constant, a fBm with Hurst parameter H. Since a∞(.)
doesn’t vanishes, then

σ(X1(u), u ∈ A u ≤ s) = σ(BH(u), u ∈ A u ≤ s),

for any s ≥ 0 and any finite time set A. Hence

V ar (X1(t + h)/X1(u), u ∈ A, u ≤ t)

= V ar
(
X1(t + h)/ BH(u), u ∈ A u ≤ t

)
≥ a2

∞(t + h)V ar
(
BH(t + h)/BH(u), u ∈ A u ≤ t

)
. (3.2)

Moreover, according to Monrad and Rootzen [11], BH is strongly nonde-
terministic, i.e.

V ar
(
BH(t + h)/BH(u), u ∈ A u ≤ t

)
≥ CHh2H
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Therefore

V ar (X1(t + h)/X1(u), u ∈ A, u ≤ t) ≥ CH min
u∈[0,1]

a2
∞(u)h2H (3.3)

We are now in position to prove that X1 is LND on (0, 1). First, we have
E
(
X2

1 (t)
)

= a2
∞(t)t2H > 0, for all t ∈ (0, 1). Moreover, the inequality (3.3)

implies that

E (X1(t)−X1(s))
2 ≥ V ar (X1(t)/X1(u), u ∈ A u ≤ s)

≥ CHa(t− s)2H . (3.4)

where a = minu∈[0,1](a∞(u))2. Therefore the condition (P) of LND holds.
It remains to verify (2.2). By using the fact that a∞(.) is C1 and denoting
the derivative of a by a′, we obtain

E (X1(t + h)−X1(t))
2 ≤ 2

[
a2
∞(t + h)E

(
BH(t + h)−BH(t)

)2

+(a∞(t + h)− a∞(t))2E
(
BH(t)

)2
]

≤ C[|h|2H + |h|2], (3.5)

where C > 0 is a constant depending on H, max
t∈[0,1]

a∞(t) and max
t∈[0,1]

a′∞(t).

Now, let us take A = {t1, ....., tm−1} and tm = tm−1 + h. Then, combining
(3.3) and (3.5), we obtain that the relative prediction error Vm in (2.1) is
at least equal to

CHa

C
× |h|2H

[|h|2H + |h|2]
,

which is bounded away from 0, as h tends to 0, and the proof is complete.
�

Lemma 3.3. The FWN satisfies the result of the Proposition 2.1.

Proof. In the remainder of the paper we denote for simplicity :

X1(t) = a∞(t)
∫

R

eiλt − 1
|λ|1/2+H

dW (λ), and X2(t) =
∫

R

σ(t, λ)(eiλt − 1)
|λ|1/2+H

dW (λ).
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By using the elementary inequality (x + y)2 ≥ x2

2
− y2 we obtain

V ar

 m∑
j=1

uj [X(tj)−X(tj−1)]


≥ 1

2
V ar

 m∑
j=1

uj [X1(tj)−X1(tj−1)]

− V ar

 m∑
j=1

uj [X2(tj)−X2(tj−1)]

 .

Furthermore, since X1 is LND then by Proposition 2.1, there exist δm and
Cm such that for any t0 = 0 < t1 < ... < tm < 1, with tm − t1 < δm, we
have

V ar(
m∑

j=1

uj [X(tj)−X(tj−1)]) (3.6)

≥ Cm

2

m∑
j=1

u2
jV ar(X1(tj)−X1(tj−1))−m

m∑
j=1

u2
jV ar(X2(tj)−X2(tj−1))

Moreover, we have

E
(
X2(t)−X2(t′)

)2
≤
∫

R

|σ(t, λ)|2|eiλt − eiλt′ |2

|λ|1+2H
dλ +

∫
R

|σ(t, λ)− σ(t′, λ)|2|eiλt′ − 1|2

|λ|1+2H
dλ

Then, according to (1.1), we have

E
(
X2(t)−X2(t′)

)2 ≤ CH,η|t− t′|2H+2η + CH,η|t− t′|2,
≤ C̃H,η|t− t′|2H+2η. (3.7)

This last inequality and (3.4), imply that (3.6) becomes

V ar

 m∑
j=1

uj [X(tj)−X(tj−1)]


≥
(

CmCHa

2
−mδ2η

m C̃H,η

) m∑
j=1

u2
j (tj − tj−1)2H .

In addition, combining (3.5) and (3.7), there exists a constant K such that

E (X(t)−X(s))2 ≤ K|t− s|2H , for all t, s sufficiently close. (3.8)
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Therefore, it suffices now to chose

δ̃m <

(
CmCHa

2mC̃H,η

)1/(2η)

∧ δm,

and to consider

C̃m = K

(
CmCHa

2
−mδ̃2η

m C̃H,η

)
,

and the lemma is proved. �

Now we are in position to prove the theorem, first we have the following
existence result

Proposition 3.4. The FWN has almost surely a local time L(t, x), con-
tinuous in t for almost every x ∈ R and L(t, x) ∈ L2(R).

Proof. Combining (3.4) and (3.7) and the elementary inequality (x+y)2 ≥
1
2x2 − y2, we obtain

E (X(t)−X(s))2 ≥ 1
2
E (X1(t)−X1(s))

2 − E (X2(t)−X2(s))
2

≥
(

CHa

2
− C̃H,η|t− s|2η

)
|t− s|2H

≥ C|t− s|2H , (3.9)

for all |t − s| < δ, for δ2η <
CHa

2C̃H,η

. Then, for any interval I of length

smaller than δ, we have∫
I

1√
E (X(t)−X(s))2

ds ≤
∫

I

1
|t− s|H

ds, for all t ∈ I.

Since 0 < H < 1, then last integral is finite and, according to Geman
and Horowitz [9], the conclusion of the theorem hold for any interval I of
small length. Since [0, 1] is finite interval one obtain the local time on [0, 1]
by standard patch-up procedure, i.e. we partition [0, 1] into ∪n

i=1[αi, αi+1],
such that |αi − αi−1| < δ, and define L([0, 1], x) =

∑n
i=1 L([αi, αi+1], x),

where α0 = 0 and αn = 1. �

In order to prove the joint continuity of L and the Hölder continuities
stated in Theorem 3.1, we first establish appropriate upper bounds for
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the moments of the local time. According to Remark 3.4 in [7], the LND
property can be used on the whole interval [0, 1] instead of (0, 1).

Lemma 3.5. Let δ ∈ (0, 1) be the constant such that the inequality (3.9)
holds. Then, for any even integer m ≥ 2 there exists a positive and finite
constant Cm such that, for any t ∈ [0, 1], any h ∈ (0, δ), x, y ∈ R and any
ξ < 1 ∧ 1−H

2H we have

E [L(t + h, x)− L(t, x)]m ≤ Cm
hm(1−H)

Γ(1 + m(1−H))
, (3.10)

E [L(t + h, y)− L(t, y)− L(t + h, x) + L(t, x)]m (3.11)

≤ Cm|y − x|ξm hm(1−H(1+ξ))

Γ(1 + m(1−H(1 + ξ)))
.

Proof. We prove only (3.11), since (3.10) is easier and follows from similar
arguments. It follows from (25.7) in Geman and Horowitz (1980) (see also
(6) in Boufoussi and al. [7]) that for any x, y ∈ R, t, t + h ∈ [0, 1] and for
every even integer m ≥ 2,

E [L(t + h, y)− L(t, y)− L(t + h, x) + L(t, x)]m (3.12)

= (2π)−m
∫
[t,t+h]m

∫
Rm

m∏
j=1

[
e−iyuj − e−ixuj

]

×E
(

e
i
∑m

j=1
ujX(sj)

) m∏
j=1

duj

m∏
j=1

dsj .

Using the elementary inequality |1− eiθ| ≤ 21−ξ|θ|ξ for all 0 < ξ < 1 and
any θ ∈ R, we obtain

E [L(t + h, y)− L(t, y)− L(t + h, x) + L(t, x)]m ≤ (2ξπ)−mm!|y − x|mξ (3.13)

×
∫

t<t1<...<tm<t+h

∫
Rm

m∏
j=1

|uj |ξE

exp

i
m∑

j=1

ujX(tj)

 m∏
j=1

duj

m∏
j=1

dtj ,

where in order to apply the LND property of X, we have replaced the
integration over the domain [t, t + h] by the integration over the subset
t < t1 < .... < tm < t + h.
We deal now with the inner multiple integral over the u’s. Change the
variables of integration by means of the transformation

uj = vj − vj+1, j = 1, ....,m− 1; um = vm.
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Then the linear combination in the exponent in (3.13) is transformed
according to

m∑
j=1

ujX(tj) =
m∑

j=1

vj(X(tj)−X(tj−1)),

where t0 = 0. Since the FWN is a Gaussian process, the characteristic
function in (3.13) has the form

exp

−1
2
V ar

 m∑
j=1

vj [X(tj)−X(tj−1)]

 . (3.14)

Since |a− b|ξ ≤ |a|ξ + |b|ξ for all 0 < ξ < 1, it follows that

m∏
j=1

|uj |ξ =
m−1∏
j=1

|vj − vj+1|ξ|vm|ξ

≤
m−1∏
j=1

(|vj |ξ + |vj+1|ξ)|vm|ξ. (3.15)

Moreover, the last product is at most equal to a finite sum of terms each
of the form

∏m
j=1 |xj |ξεj , where εj = 0, 1, or 2 and

∑m
j=1 εj = m.

Let us write for simplicity σ2
j = E (X(tj)−X(tj−1))

2. Combining the
result of Proposition 2.1, (3.14) and (3.15), we get that the integral in
(3.13) is dominated by the sum over all possible choices of (ε1, ..., εm) ∈
{0, 1, 2}m of the following terms

∫
t<t1<t2...<tm<t+h

∫
Rm

m∏
j=1

|vj |ξεj exp

−Cm

2

m∑
j=1

v2
j σ

2
j

 m∏
j=1

dtjdvj ,

where Cm is the constant given in Proposition 2.1. The change of variable
xj = σjvj converts the last integral to

J(m, ξ)×
∫

t<t1...<tm<t+h

m∏
j=1

σ
−1−ξεj

j dt1...dtm,
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where we denote J(m, ξ) =
∫

Rm

m∏
j=1

|xj |ξεj exp

−Cm

2

m∑
j=1

x2
j

 m∏
j=1

dxj .

Consequently

E [L(t + h, y)− L(t, y)− L(t + h, x) + L(t, x)]m ≤

J(m, ξ)Cm|y − x|ξm
∫

t<t1...<tm<t+h

m∏
j=1

σ
−1−ξεj

j dt1...dtm. (3.16)

According to (3.9), for h sufficiently small, namely 0 < h < inf(δ, 1), we
have

E[X(ti)−X(ti−1)]2 ≥ C(ti − ti−1)2H , (3.17)

It follows that the integral on the right hand side of (3.16) is bounded, up
to a constant, by∫

t<t1...<tm<t+h

m∏
j=1

(tj − tj−1)−H(1+ξεj)dt1...dtm. (3.18)

Since, (tj − tj−1) < 1, for all j ∈ {2, ...,m}, we have

(tj − tj−1)−H(1+ξεj) ≤ (tj − tj−1)−H(1+2ξ) ∀ εj ∈ {0, 1, 2}.

Since by hypothesis ξ < 1
2H − 1

2 , the integral in (3.18) is finite. Moreover,
by an elementary calculation (cf. Ehm, [8]), for all m ≥ 1, h > 0 and
bj < 1,∫

t<s1...<sm<t+h

m∏
j=1

(sj − sj−1)−bjds1...dsm = h
m−
∑m

j=1
bj

∏m
j=1 Γ(1− bj)

Γ(1 + k −
∑m

j=1 bj)
,

where s0 = t. It follows that (3.18) is dominated by

Cm
hm(1−H(1+ξ))

Γ(1 + m(1−H(1 + ξ))
,

where we have used
∑m

j=1 εj = m. Consequently

E [L(t + h, y)− L(t, y)− L(t + h, x) + L(t, x)]m

≤ Cm
|x− y|ξmhm(1−H(1+ξ))

Γ(1 + m(1−H(1 + ξ))
. (3.19)

This completes the proof of the lemma. �

86



Local time of filtered white noises

Proof of Theorem 3.1. Since L(0, x) = 0 for all x ∈ R, hence if we replace
t and t + h by 0 and t respectively in (3.11), we obtain

E [L(t, y)− L(t, x)]m ≤ C̃m|x− y|ξm. (3.20)

The joint continuity of the local time is now straightforward from (3.10),
(3.11) and (3.20) and classical two parameter Kolmogorov’s theorem (c.f.
Berman [4], Theorem 5.1).
The Hölder condition (i) of Theorem 3.1 follows from (3.11) and one pa-
rameter Kolmogorov’s theorem (see also the proof Theorem 2 in [12], state-
ments after (4.1)).

We turn out to the proof of (ii). According to Theorem 3.1 in [5],
the inequalities (3.10), (3.11) and (3.20) implies that (ii) holds for any
δ < 1−H(1 + ξ), for all ξ < 1 ∧ 1−H

2H . Letting ξ tends to zero, we obtain
the desired result. �

As a classical consequence, we have the following result on the Hausdorff
dimension of the level set. We refer to Adler [1] for definition and results
for the fBm.

Proposition 3.6. With probability one, for any interval I ∈ [0, 1], we
have

dim{t ∈ I/X(t) = x} = 1−H, (3.21)

for all x such that L(I, x) > 0.

Proof. According to (3.8) and Kolmogorov’s theorem, the FWN is β-
Hölder continuous for every β < H. Moreover, the FWN has a jointly
continuous local time, then Theorem 8.7.3 in Adler [1] completes the proof
of the upper bound, i.e. dim{t ∈ I/X(t) = x} ≤ 1−H, a.s.
Now by (ii) of Theorem 3.1, the jointly continuous local time of the FWN
satisfies an uniform Hölder condition of any order smaller than 1−H. Then
Theorem 8.7.4 of Alder implies that dim{t ∈ I/X(t) = x} ≥ 1 −H, a.s.
for all x such that L(I, x) > 0. This completes the proof. �

4. Chung’s law for the FWN and pointwise Hölder exponent
of local time

The main result of this section is that the FWN satisfies the same form
of Chung’s law of iterated logarithm (LIL) as the fBm. For an excellent
summary on LIL, we refer to the survey paper of Li and Shao [10].
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Theorem 4.1. Then the following Chung’s type laws of iterated logarithm
hold for the FWN :

lim inf
δ→0

sup
s∈[t,t+δ]

|X(t)−X(s)|
(δ/ log | log(δ)|)H

= C(H)|a∞(t)|. a.s. (4.1)

where C(H) is the constant appearing in the Chung law of the fBm.

Proof. Conserving the same notations as above, we can write

X(t)−X(s) = a∞(t)(BH(t)−BH(s))+(a∞(t)−a∞(s))BH(s)+X2(t)−X2(s)

According to Monrad and Rootzen [11], the fBm satisfies (4.1) with a∞ ≡
1. Then (4.1) will be proved if we show that

lim
δ→0

sup
s∈[t,t+δ]

|Λ(t, s)|
(δ/ log | log(δ)|)H

= 0, a.s. (4.2)

where we denote for simplicity

Λ(t, s) = (a∞(t)− a∞(s))BH(s) + X2(t)−X2(s).

Combining (3.7) and the fact that the function a∞(t) is C1, we obtain

EΛ2(t, s) ≤ C(t− s)2(H+η), for all s ∈ [t, t + δ]. (4.3)

The expression (4.3) correspond to the assumption (2.1) in [11]. Then,
according to Theorem 2.1 of Monrad and Rootzen [11], we have

P
(

sup
s∈[t,t+δ]

|Λ(t, s)| > ε

)
≤ 1− exp

(
− δ

Kε1/(H+η)

)
,

for some constant K > 0 depending on H and η only. Let us now consider,
for example, δk = k−4(H+η)/η and εk = δ

H+η/2
k∑

k

P
(

sup
s∈[t,t+δk]

|Λ(t, s)| > εk

)
≤

∑
k

(
1− exp

(
− δk

Kε
1/(H+η)
k

))

∼ 1
K

∑
k

δ
η

2(H+η)

k

=
1
K

∑
k

k−2 < ∞.
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By Borel Cantelli lemma, it follows that sup
s∈[t,t+δk]

|Λ(t, s)| ≤ δ
H+η/2
k almost

surely. Furthermore, for δk+1 ≤ δ ≤ δk, we have almost surely

sup
s∈[t,t+δ]

|Λ(t, s)| ≤ sup
s∈[t,t+δk]

|Λ(t, s)|

≤ δ
H+η/2
k

≤ δH+η/2
(

δk

δk+1

)H+η/2

≤ 24(H+η)/ηδH+η/2.

Consequently (4.2) is proved. This completes the proof of the theorem. �

Remark 4.2. The main interest of the previous proof is that it can be
used to generalize many other LIL known for the fBm to the FWN, and
always the constant is derived from the one corresponding to the fBm.
For example, we can extend the following LIL given in Li and Shao ([10],
equation (7.5)) for the fBm to the FWN as follows :

lim sup
δ→0

sup
s∈[t,t+δ]

|X(t)−X(s)|
δH (log | log(δ)|)1/2

= C(H)|a∞(t)|, a.s. (4.4)

where C(H) =

√
2π

HΓ(2H) sin(πH)
.

The Chung laws are known to be linked to the optimality of the moduli
of continuity of local times of stochastic processes. More precisely

Lemma 4.3. The following lower bounds for the moduli of continuity of
local times holds

1
2C(H)|a∞(t)|

≤ lim sup
δ→0

sup
x∈R

L(t + δ, x)− L(t, x)
δ1−H(loglog(δ−1))H

a.s. (4.5)

Proof. Combining (4.1) and the following elementary computation

δ =
∫

X([t,t+δ])
L([t, t + δ], x)dx

≤ sup
x∈R

L([t, t + δ], x) sup
s,s′∈[t,t+δ]

|X(s)−X(s′)|,

≤ 2 sup
x∈R

L([t, t + δ], x) sup
s∈[t,t+δ]

|X(s)−X(t)|,

we obtain the lemma. �
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Remark 4.4. The upper bound in Lemma 4.3 need more fine properties,
like the strong local nondeterminism of the FWN, which we are not able
to derive with the method of this paper. We refer to the survey paper of
Xiao [14] for an excellent summary on this subject.

Recall that the pointwise Hölder exponent of a stochastic process X at
t0 is defined by

αX(t0, ω) = sup
{

α > 0, lim
ρ→0

X(t0 + ρ, ω)−X(t0, ω)
ρα

= 0
}

. (4.6)

Proposition 4.5. Consider the process L∗(t) = {sup
x∈R

L(t, x), t ∈ [0, 1]}.

Then, the pointwise Hölder exponent αL of L∗ at each t satisfies

αL(t) ≥ 1−H a.s.

Proof. The local time L(1, .) vanishes outside of the compact set U =
X([0, 1]), since the trajectories of X are a.s. continuous . Then it follows
from Theorem 3.1 (ii) and the definition (4.6) that αL(t) ≥ 1−H. a.s. �
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