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ANNALES MATHEMATIQUES BLAISE PAsCAL 12, 117-145 (2005)

Generalized Besov type spaces
on the Laguerre hypergroup

Miloud Assal
Hacen Ben Abdallah

Abstract

In this paper we study generalized Besov type spaces on the La-
guerre hypergroup and we give some characterizations using different
equivalent norms which allows to reach results of completeness, con-
tinuous embeddings and density of some subspaces. A generalized
Calderén-Zygmund formula adapted to the harmonic analysis on the
Laguerre Hypergroup is obtained inducing two more equivalent norms.

1 Introduction

Schwartz’s theory of Fourier transform and the Lebesgue spaces has been
exploited by many authors in the study of Besov spaces on R™ ([3], [24], [6]).
This theory has been generalized to different spaces, and was applied further
to investigate spaces analogous to the classical Besov spaces ([4], [2]).

In the present work, we study Besov type spaces on the Laguerre hyper-
group, so we fix a >0 and K = [0, +oo[xR and we define Besov type spaces
using the harmonic analysis on the Laguerre hypergroup which can be seen
as a deformation of the hypergroup of radial functions on the Heisenberg
group (see [1]).

We consider the following system of partial differential operators:

0
Dl - &7
2 204109 L,
D, = 78:L’2+T%+I @7 ($7t) €]O7OO[X]R'

For « = n —1; n € N\{0}, the operator Dy is the radial part of the sub-
Laplacian on the Heisenberg group H". We denote by ¢y, (A,m) € R x N,
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the unique solution of the following system:
Diu = i),
Dou = —4|A|(m + “)u;
w(0,0) =1, 24(0,¢t)=0  forallt € R.

One knows that oy, (z,t) = ™MLY (|A2?), where L2 is the Laguerre

functions defined on Ry by L% (z) = ™2 ii”%; and L is the Laguerre

polynomial of degree m and order « (see [17], [11], [13], [16]).

We recall that for (A,m) € R x N and for a suitable function f: K — C
the Fourier-Laguerre transform F(f)(A\,m) of f at (A, m) is defined by ([19],
22, 23], [12]):

FOO) = [ @ a0, el (1)
K
2ot dxdt
ml(a+1)

It has been proved in [19, Theorem IIL.1] that the Fourier-Laguerre
transform is a topological isomorphism from S,(K) onto S(R x N) where

where dy,(z,t) =

e 5,(K) is the Schwartz space of functions ¢ : R> — C even with respect
to the first variable, C> on R? and rapidly decreasing together with all
their derivatives; i.e. for all k£, p,q € N we have

opta
OxPOte

./\~/'k,p,q(w) = sup {(1 + 2%+ t2)k‘

(z,t)eK

w(x,t)‘} < 0. (1.2)

e S(R x N) the space of functions ¥ : R x N — C satisfying :
i) For all m,p,q,r, s € N, the function

1 0\*
A )\”<|)\|(m + O‘; ))qu (A2 + ﬁ) T\, m)
is bounded and continuous on R, C* on R* = R\ {0} and such that the
left and the right derivatives at zero exist.

ii ) For all k,p,q € N, we have

A7 (As+ 8)qm(x,m)‘} < o0.

Vipa(¥) = sup {(1+)\2(1+m2))k 5

(A,m)ER**N
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where

o MU\ m) =L (mA+A,\IJ(A, m) + (o + )AL TN, m)).

AT (A, m) = 51 <(a Fm A DALY, m) + mA_T(A, m)).
e ALU(A,m) =Y\, m+1)— T\ m).
o A_U(A\m)=T(\m)—¥(A\,m—1),ifm >1and A_¥(\, 0) = ¥(\0).

We note that S, (K) (resp. S(RxN)) equipped with the semi-norms /\N/'k,p,q
(resp. Vipq)s k,p,q € N, is a Fréchet space ([19]).

This paper deals with generalized Besov-Laguerre type spaces defined
on K and it is organized as follows: in the second section, we collect some
harmonic analysis properties of the Laguerre hypergroup which are given in
[19] and [18]. Next, we state a version of Schur lemma which will be useful
for our purpose. In the third section we introduce the homogeneous Besov-
Laguerre type spaces /.X;/,q(K) (1 <p,g <o0,v€R). The definition of the
so called spaces is given in terms of convolution f#, with different kinds of
smooth functions 1. Next we characterize these spaces using discrete norms
replacing the group R =]0, +-00[ by the 2-powers group D, = {27;7 € Z} and
we introduce some results and embeddings properties of these spaces with
respect to their parameters p,q and . In the fourth section we establish
some new harmonic analysis results on usual spaces on K, essentially we
give a Delsarte type development and a Calderén-Zygmund type formula.
Finally we study the non homogeneous Besov-Laguerre type spaces A} (K)
(1 <p,q<o0,0 <~ <2)introduced as intersection of the homogenous ones
with LP-spaces and we give some characterizations with equivalent norms
using the differences A4 f = T((zi) f— f. In proving these results, the main
tool used is the harmonic analysis on the Laguerre hypergroup.

Finally, we mention that, C' will be always used to denote a suitable
positive constant that is not necessarily the same in each occurrence.
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Preliminaries

Throughout this paper we fix @ > 0 and we denote by

R* = R\{0} and R% =]0, +oo[
K = [0, oco[xR.
C.(K) the space of continuous functions on R? even with respect to the

first variable.

Ci(K) the subspace of C.(K) consisting of functions with compact
support.

C>(K) the space of functions f : R?> — C, even with respect to the
first variable and C* on R2.

S40(K) the subset of functions v in S,(K) such that Fi» € D(R*x N).
5! o(K) the subset of functions ¢ in S, o(K) such that

> 2 2dr *
(fw(r )\7m)> — =1, for (\,m) € R*x N.
O T..
These functions are known as generalized wavelets on K ([19]).

D(R x N) the subspace of S(R x N) of functions ¢ satisfying the fol-
lowing;:
i) There exists mgy € N satisfying (A, m) = 0, for all (\,m) € RxN
such that m > my.

ii) For all m < mg, the function A —— (A,m) is C*> on R, with
compact support and vanishes in a neighborhood of zero.

LP(K) = LP(K, dua), 1 < p < oo, the space of Borel measurable func-
tions on K such that || f||, < oo, where

1

1l = (/K If(as,t)pdua(m))p, if pellod

[fllc = esssup|f(z,t)],
(z,t)eK

d,, being the positive measure defined on K given in the introduction.
Each of these spaces is equipped with its usual topology.
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GENERALIZED BESOV-LAGUERRE TYPE SPACES

Definition 2.1:
e The generalized translation operators T ) on the Laguerre hypergroup
are given for a suitable function f by:

1 2
— f(2* + 42 +2xycos€)2 t+ s+ xysinb)db,

2m
if a=0,

// f((2? + o2 +2:):yp0059)2 t + s+ zypsinh) x
p(1 = p?)*=tdodp, if a>0.

T((zcii)f(ya S) =

e The generalized convolution product on the Laguerre hypergroup is
defined for a pair of functions f and g in C,.(K) by:

frgla,t) = /K T F (W, 9)9(y, =5)dpa(y, s)  for all (x,1) € K.

We recall that (K, *,7) is an hypergroup in the sense of Jewett ([15], [5])
where ¢ denotes the involution defined on K by i(z,t) = (x, —t). This hyper-
group is the Laguerre hypergroup which can be seen as a deformation of the
hypergroup of radial functions on the Heisenberg group (see [1]).

Notation 2.2: Let r > 0. We will denote by
T T )
e (z,t), = (=, —) the dilated of (z,t) € K.

rr

o fi(x,t) =r~CFHf((z,t),) the dilated of the function f defined on K
preserving the mean of f with respect to the measure du,, in the sense
that

/Kf,.(x,t)dua(x,t) _ /Kf(:zt,t)dua(:p,t), ¥r>0and feLNK). (2.1)

Awof =T\ f — f, for all (z,1) € K.

121



M. AssaL & H. BEN ABDALLAH

Proposition 2.3: The following properties hold
1) For all f € C,.(K), we have (see [19])
(i) Ton (v, s) = F(y,s), (y.s) € K.
(i) Ty f(y.s) = fly,s+1),  V(ys) €K, teR.
(iii) TS f(y, ) =T fat) Y1), (y,5) €K
2) (i) For all f € C.(K) and (z,t), (y,s) € K, we have (see [18])

TE£09) = [ Walla.0), (09, (o) (2,022 o

where W, ((z,1), (y, ), (2,v)) is given by
e (W)Q —w— s+

m(zyz

if (z,v) € Sa((z,t),(y,s)) and Wo((z,t), (y,s),(z,v)) equals O otherwise.
Sa((x7t)7 (y7 S)) is gZ"U@TL, fO’I” « 7é O) by

Sul(at). ) = {() e i (F2EY o <oty

and

o0, () = {2y e K (FE Y L (e =),

(i1) Let f be z'n LP(K) 1 < p < oo. Then for all (z,t) € K, the
function T f belongs to LP(K) and we have

1T Fllp < 11£ -

3) For f in LP(K) and g in LK), 1 < p,q < oo, the function fxzg belongs
to L™ (K); %-l— % =1+1 and we have

1291l < [[f[lpllgllq-
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4) (i) Let f be in LY(K). Then the function F(f) is bounded on R x N
and we have

| F ()l zoe@mxny < || £l
where | F(F) = = esssup_[F(F),m).
(A,m)eERxN

(ii) Let f and g in L'(K), then we have
F(frg) = F()F(9).

(i11) Let f be in L*(K). Then for all (x,t) in K and (A\,m) in R x N,
we have

FTELFNm) = e, DF(F)(A,m).

Proposition 2.4: (See [1]) Let ¢ in S.(K) and (x,t) € K. Then T((zz)z/)
belongs to S.(K) and we have for all p,q € N

DP D! (T&ji@) =T, (D’ngw).

Proposition 2.5: Let ¢ in C.(K). Then ¢ belongs to S.(K) if and only if
(i) For allp,q € N the function (x,t) — DY D (z,t) is of class C* on R?,

(ii) For all k,p,q € N we have

Nipg(w) = sup {(1+N*(e,0))*| D Dfs(a, )| } < oo,

(z,t)eK

where N(x,t) = (22 + |t|)/? is the norm of (v,t) € K.

PROOF: We obtain the desired result by using Proposition II.7 in [19] and
the fact that

(1+2?+12)F < (14+N?(z, 1)) < 22 (1422 4+tH)*,  V(z,t) € Kand k € N.
|
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In the sequel we equip S,(K) with the semi-norms N, , which define the
standard topology on S, (K).

We finish this preliminary section by giving a version of Schur lemma that
will be useful for our purposes.

Lemma A. (Schur lemma). Let 1 < q < oo and ¢ its conjugate expo-
nent. Let (Q1, My, 1) and (Qo, Mo, p2) be a pair of o-finite measure spaces
and let F : Qy x Qo — Ry be a measurable function. Define Trf for all
measurable positive function f on Qi by

Trf(ws) = /Q F(wy,wa) f(wr)du (wr), for all wy € Q.

If there exist C' > 0 and measurable functions h; : §; —]0,+oo[ (i = 1,2)
such that

/ F(wy, w)h (wi)dpy(wy) < ChY (ws) lo — a.e.
Q1

/ F(wy, wa)hd(we)dpa(we) < Chi(w) [y — a.e.
Qo

Then Tr can be extended as a bounded operator from L1(Qy, 1) into L9(Qa, p12).

3 Generalized homogeneous Besov-Laguerre
type spaces

dr

T

In what follows we equip the spaces RY and D, by the invariant measure
and the counting measure respectively.

Definition 3.1: Let 1 < p,q < 00,7 € R and ¢ € S} ((K). We define the

generalized homogeneous Besov-Laguerre type spaces /.\g:g’(K) as the set of
tempered distributions f such that

o dr
r= [ et (3.1)
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and || f A () < OO where
1
o0 \ qd I}
(/ (Hf#zf Hp) 7") 7 i 1<q< oo,
r r
A 5300 = ’
’ || f#¢r |l TH
ess>s(§1p ) if q=o0.

Remarks 3.2: 1) We begin by mentioning that the definition of the
generalized homogeneous Besov-Laguerre type spaces given here is the same
than that introduced by Chemin in the classical case (see [8]) and generalized
by Bahouri, Gérard and Xu on the Heisemberg group (see [2]). We do not
choose the classical definition introduced by Peetre (see [20]) in which A;}Z"(K)
is defined as a set of distributions modulo polynomials. In fact in the case
v < 2‘%4, the condition || f < oo implies the convergence of the
integral

[ ]
AJd (K)

> d
/ Fotbyats, &
0 T

in the sense of distribution and not only in the sense of distribution modulo
polynomials, thus the two points of view are equivalent. We note finally that,
similarly to the classical case, for v > 20‘:4, the space /ig;]f(K), as we define,
is not a Banach space.

2) We note here that the expression (3.1) is independent, in S, (K), of
the choice of v in Si,o and it corresponds to the analogous one given in
[2, Definition 3.1, p.12] replacing the diadic decomposition by the continuous
decomposition.

3) If f belongs to L?(K), then (3.1) holds in L?(K). Which is a conse-
quence of Plancherel’s formula (see [18]). Hence one can write

- {fwm\fﬂx,m)

2 o0
€ 24 |?
1—/ Fibe(A,m)) —| b [A[e+d.
| (Feom) S }| |

And, using Lebesgue theorem, the right hand side of the above equality tends
to zero as € tends to +00. Indeed

‘1—/16 (}"wr()\,m))Q%Z—w as € — 400,

€

2
| %

Hf Y I A
1/e r
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ZL“ ‘}"f)\mHl—/ (fwr(Am)Qﬂ ZLa ‘ff/\m‘.

and the right hand side of the above inequality is in Ll(R, [A]“TLdN).
4) The expression (3.1) is not true in S, (K) if f is a polynomial function
on K. Indeed in this case, for all » > 0, we have fxu, = 0.

Proposition 3.3: Let 1 < p,q < oo and v € R. Then the space A;;;/’(K)
is independent of the choice of the function 1 in S} ,(K).

PROOF: Assume v and ¢ be a pair of functions belonging to St ( ) To get
the desired result it suffices to prove that || f|| Aok , for all

fe /.X;’}]/’(]K) Since Fiy and F¢ belong to D(]R* X N), then there exist
a, 3 > 0 such that (SuppFi),) N (SuppF¢,) =0, for all (r/p) ¢ |a, 3]. This
implies that ¢,#¢, = 0, for all (r/p) ¢ [, f]. And so, using (3.1), one can
write

f#d)p / f#¢p#7vz}r#¢r / f#wrp#¢p#¢rp
And by Minkowski’s inequality

”f#QSPHP < C/ﬂ Hf#lﬁrp”pﬁ
e A
= |l f#rpllp dr
= C’/ 7 Lia.g(r —
; o) (7) oy T
= C(HxG)(p)
with H(s) = s, 4(s), G(s) = M and H x G is the convolution of
s

H and G on the group (R, %) Now, by Young’s inequality, it holds

I 8o = </OOO <H.f¥;¢:p“p>qdpp>q

CHH*G

IN

LI(R+,B(Ry), %)

IN

ClH N 1@y @), 2) Gl o, 5w, 22)
= CIlfll ALY (k)

This completes the proof of the proposition. 0
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Remark 3.4: In view of their independence with respect to v the spaces
AVP(K) (1 < p,g < oo and v € R) will be denoted indifferently with or
without ¢, which will be chosen adequately in S} ;(K).

In what follows we give some properties of the generalized Besov-Laguerre
type spaces.

Proposition 3.5: Let 1 < p,q < oo, v € R. The Besov-Laguerre type space
A ) 2a+4
A} (K) is homogeneous of degree d(p,~) =

— in the sense that, for all
fe ), (K)

20+4
HdeH A ) T ror

where d, f(x,t) = f((x,t),), for all (z,t) € K.

forallr >0

PROOF: Assume f in /.\;”q(K), then for all 1 < p,q < oo and v € R we have
. _ Doy
H rf” AL T
i LRy, B(Ry), %)
_ o || 1 ee
PY ey BRy), %)
zats_, [l

P ey sy ey

The proposition is proved. 0O

Proposition 3.6: Let 1 < p < oo, 1 < q < oo andy € R. The subspace
A} (K)NCP(K) is dense in A) (K).

PROOF: Let ¢ € S} ((K) and f € /'\;Z’q(K). Then for ¢ > 1, the function

f f#¢r#¢r
1/e

is obviously C* and belongs to ./.\g)q(K). Moreover the same reasoning given
in Proposition 3.3 leads to

e = 11 30 < CH 166l y

La(Ry B(R), L)
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where 1. is the characteristic function of the set R\ [1/¢,¢]. And the right
hand side of the above inequality tends to zero as € tends to oo. 0

Proposition 3.7: Let 1 < p,q < oo and v < %. Then A;(J(K) is
a Banach space.
Let us first establish the following lemmas.
Lemma 3.8: Let h € S,(K) and ¢ € S} (K). Then, for all k € N, there
exists Py € Si0(K) such that

hapr = 1" (D5 h)# (Y ) (3.2)

where Dy is the differential operator given in the introduction part. Further-
more there exists C > 0 such that

[ hatr || 11y < Cr?* forall0 <r <1 (3.3)

and
|hsthe || 1) < C for allr > 1. (3.4)

Proor: For k£ =1 one can write
a+1 Fp(r?X,m)
4r2|\|(m + Oil)

2
= 1r2F(Dsh)(\,m) ]:1/)[1](7“2)\,77@)

F(hao,)(A,m) = 4A[(m + )2 Fh(X, m)

where Fip)(A,m) = %, which leads to
2

h#wr = TQ(DQh)#(dj[l] )r7

and hence we obtain (3.2) by induction on k. The inequalities (3.3) and (3.4)
follow from (3.2) and Proposition 2.3. 0

Lemma 3.9: Let 1 <p,g <00 andy < 2‘%4. For ¢ in Si,of put

R (35)

Then ® defines a linear and continuous mapping from LY(RY, LP(K), o)

to A} ,(K).
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PROOF:  Let us first prove that, for g € LY(R%, LP(K), %), ®(g) defines
an element of S, (K), that is for all h € S,(K),

r

Take ¢ € S,(K) such that F(¢) = 1 on SuppF¢. Then, using Holder’s and
Young’s inequalities, we obtain

‘ < Q(T)#¢T7h > | = | < g(r)#¢ryh#¢r > |
HQ(T)#@HLOO(K)Hh#%HLl(K)

_ 2044

Cr v g ()l e 1 hstorl| 21 x) -

d
r7 < g(r)s#p., h > T« .
r

IA

IN

On the other hand, using Lemma 3.8, we get

T

1 0o
_ 2a+4 dr —20+4 -
<o [ ol + [0 a0l |
0 1

1 1/q 1 1/q
dr 2044y dr
<C a 2 (2kty—=2F)g 20
<o) ([ - e )
o dr\ ! e 2atayodr) Y
g 9 (yv—==)g%"
+C (/1 ”9(7’)HLP(K) . ) (/1 r " ) .

where ¢ is the conjugate exponent of ¢q. Then, for k sufficiently large it holds

r

Now, let ¢ in Si,0~ We proceed as in Proposition 3.3 to obtain

> d
/ 17 < glr)es,.h> |
0

dr
P < g(ude h > |5 < Clglay oo,z < 00

dr dr

19 ()4t o ’ -
WPRIFTPIErE) / o)l — = C / ™ L) (r)lg(rp)ll 2oy -
a 0

p’Y
which leads to
2(g)]l A7, (K) < CHgHLQ(Ri,LP(K),%)'

The lemma is proved. 0

PROOF:  (Proposition 3.7) Let ¢ in S} and take ¢ = 1) in Lemma 3.9. Then
® defined by (3.5) is a continuous linear mapping from L?(R?, L?(K), 4)
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to A;Q(K). On the other hand the operator ¥ associating to f in /.\gq(K)
the function W(f) defined on RY by:

_ f#wr
w(f)r) =1
is obviously a linear isometry from /.\;”q(K) to LI(R7, LP(K), %) and using
the decomposition (3.1), we obtain ® o ¥ = Id 4, ®)" This implies

(Wod®)oW =0  on A (K).

So W([\gq(K)) = ker (\I’ od — Iqu(RLLp(K),%O is a closed subspace of
LY(R%, LP(K), %), Since V¥ is an isometry, then /.\;7Q(K) can be identified
with a closed subspace of LI(R", LP(K), ). The completeness of /.\;)q(K)
follows. O

Remark 3.10: From the Proof of Lemma 3.9, the result of Proposition 3.7
remains valid, for ¢ = 1, if v = 20;%4.

To introduce some embedding results of the spaces /.\;Z’q(K) with respect
to their parameters p,q and v we begin by the following lemma which will
be useful.

Lemma 3.11: Let f € S'(K) satisfying (3.1) and let

f= </Ooo ‘f#wr %if)m. (3.6)

Then, for all 1 < p < oo, we have

felP(K) < fe LK)

Moreover, there exists Cp, > 0 such that

1 .
o W llzra) < Ifllzee) < Coll Fllzoge).
p

PRrROOF: The proof of the above lemma is the same as in [21] p. 46. 0
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Proposition 3.12: 1) Let1 < g<oo, 11,72 € Rand 1 <p; < py < 0

such that d(py,v1) = d(pa,y2) where d(p,7y) = 2‘”4 — . Then we have

A LK) C A (K) (with continuous embedding).

P2,9

2) Letp>2. Then
/.\272(K) C LP(K) (with continuous embedding).
3) Let1<p<oo. Then we have

./.\2)1(K) C LP(K) (with continuous embedding).

ProoOF: 1) Let f € Ji;hq(K) and let 1 < p3 < oo such that p%—i—p% = 1+pi2.
We consider ¢ € S,(K) satisfying F¢ = 1 on SuppFp. Then it holds
for all 7 > 0
If#trllee )y = [[f#tradllrx)
b d)(L
< I #lln @llérlls@ = Cll fadrllzmgyr 5.

A\

Hence, we obtain

| f 4l Lr2 () < oM #rllen@

rvz r7

2) Let f € S'(K) and let f defined in (3.6). Then,

2dr>1/2

er

" llLer2 ()

0 1/2
( / )

o0 1/2
(/0 Hf#% iP(K)C’lI“T>

= Hf” 7\212(]1()

1) = H f#

LP(K)

’f#wr

IN
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The desired continuous embedding holds using Lemma 3.11.
3) Let f € S'(K) satisfying (3.1). Then

o d
Il = | [ ot

o dr
< [Tl =Cll 3y 0
LP(K) 0 r Pt

The proof is finished. O

To obtain more general inclusion properties we introduce a discrete norm
on Ag’q(_K) replacing the group R’ =]0,4+o00[ by the 2-powers group
D, = {27;5 € Z}.

Theorem 3.13: Let 1 < p,g < oo, v € R and 0 € S.(K) such that
FO € DR*x N) and, for fived A1, 2 € R; Ao > 44X\ > 0, FOA,m) # 0 on

Caix, Where

C/\l’)\z - {(Av m) ERxN; Ay <AL )\2} (37)

For f in ./.\;’q(K) put

(S(h) s

,0 _ jEZ
Dl(f)=9q ¢
sup (Hf#%a’”p) i q=o0
jez i ’ '

)9 . be .
Then D}y is a norm on A} (K) equivalent to |.

A3 q(K)’

Remarks 3.14: 1) An immediate consequence of the above theorem is the
independence of the norm Dg;g with respect to 6 that will be denoted with
or without 6.

2) The case 1 < g < 0o could be proved by interpolation with the extreme
cases (¢ =1 and ¢ = 00), but a direct proof is presented in this paper.

Proor: Taking into account the fact that 76 # 0 on Cy, », for A;, A2 € R;
Ao > 4\;, where Cy, ), is defined as in (3.7), then there exists Fo in
D(R* xN) such that FO(A,m)Fa(X,m) =1onCy, »,. Let ¥ € S}, satisfying
SuppF1p C Cyx, z,- This gives, for all 1 <r <2 and (A\,m) e Rx N

F(27r2 N, m) = F(2%r° X, m)FO(2¥ N, m)Fa (22X, m). (3.8)

132



GENERALIZED BESOV-LAGUERRE TYPE SPACES

So, using the fact that F(1,)(\,m) = F()(r*\,m) it holds

f#hoi, = fathoi 20052095

And, by the same reasoning giving in Proposition 3.3, we obtain for

1<g¢g< @
, 2 #Uair|lp\ 4 H
([ (Ui
C(z(”fzfij”p)qy

jez

= CD] (f)

I1f

Agq(K)

IN

Conversely, let F supported on Cy, », and let ¢ € S} ((K) satisfying Fip = 1
on Cy, 4x,. Then it holds, for 1 <r <2 and (A\,m) € R x N, that

FO¥ N, m) = F(2% 1\, m)FO(2¥ X, m). (3.9)
The above reasoning leads to

Dz,q(f) < CHfH 7\],&(]1{)'

Now we consider the case ¢ = co. Let us assume that D) (f) < oo and let
r >0 and j € Z be such that 2/ < r < 277! then from (3.8) we get

”f#d}er < OHf#QQij < C29 < CrY

< Q.
< 00, then it holds from (3.9) that for

which implies that [ f|| 1~ ®)
P,00

Conversely let us take | f| 1~ ®)
P,00

1 < r < 2 the following estimation
[ f#02i llp < Cll fetbasll, < C(27r)7 < (27C)27.

This completes the proof. 0O

Remark 3.15: Equipped with the norm D7, the space /.\;7Q(K) (1<pq<

y2R
00, v € R) is homogeneous in a weaker sense: there exists ¢1,co > 0 such
that for all f € A7 (K)

2a+4 2a+4

ar » D) (f) <D} (d.f) < cor v D) (f), for allr > 0.
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Proposition 3.16: Let 1 <p < oo and vy € R. Then, for 1 < q < g < 00
we have

(K) (with continuous embedding).

PRrOOF: The result holds using the discrete norm and the fact that {9 C [%
for all ¢; < ¢o and we have

(Z |Uj|qQ)1/q2 = (Z |Uj|ql)1/q1

for all (u;) € 9. O

4 Generalized non homogeneous Besov-
Laguerre type spaces

In this section we study the non homogeneous Besov-Laguerre type spaces
defined as L?(K) subspaces and we give some characterizations using equiva-
lent norms. The main tool used here is the Calderén formula on the Laguerre
hypergroup introduced in Lemma 4.7. In what follows we equip the spaces

: : dxdt
K by the invariant measure N (aD)

Definition 4.1:Let 1 < p,qg < oo and v > 0. The non homogeneous Besov-
Laguerre type space is A) (K) = A} (K) N LP(K) endowed with the norm

11 85,0
Theorem 4.2: Let 1 <p,q < oo and 0 <y < 2. For f in A} (K) put
1
HA<xt)pr>q dedt N\
’ - , 1< g < oo,
(/K( Niwt) ) M@)o T TS0
1Ay s

s (5 ) s

B, (f) =

Then B}, is a norm on A) (K) equivalent to |.

P4 A3 q(®)’

Remark 4.3: This characterization is similar to the results obtained by
T. Coulhon, E. Russ and V. Tardivel-Nachef in [9].
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Let us first prove the following lemmas that will be useful in the sequel.

Lemma 4.4: Let f: R, — C be a measurable function. Then it holds

d dxdt
fe LRy, 71") if and only if foNelLl (K v ))

" N3(z,t

/f N(;lzzsdtt / fr dr (A1)

PRrROOF: We obtain the equality (4.1) by a polar decomposition formula. 4

and we have

In the following lemma we give a Delsarte type development (see [10]) on the

Laguerre hypergroup of the function T 1/1 using the differential operators
D; and Ds.

Lemma 4.5: Let ¢ in S.(K) and (x,t) € K. Then, for all (y,s) € K, there
exist 0 < n, u < 1 such that

Ty, s) = (1) + sTie) (D1) (0, us)

1
o [T&)(Dw) (ny, ) = 2a+1) / T (Do) (uy, S)uz‘“ldu}
0

1
! [T DR ) = o+ U [T (D) oy, sy ]
0

(4.2)
Furthermore we have

1AGsvlh < C(N*(y,5) + Ny, s),  for all (y,s) € K. (4.3)

ProOF: For ¢ € S,(K) we have (see [1, Proposition 2.2]) T((;i)zb € S.(K).
And using Proposition 2.3 together with Taylor’s formula we get
T (1) = (o) + 5 (7)) (0, n5) + : & (7)) Oy 9)
(ys ) - ) 88 ( M y a 2 (g;t nya
with 0 < g, < 1. On the other hand we have (see [19])

0
%(:%S) = Dﬂﬁ(y’ S)

8%

1
aiyz(ya s) = DsY(y,s) — (2a+ 1)/0 Dt(yu, s)u+du
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where the operator Ds is given by Dsi)(y,s) = (Dy — y?D?)¢(y, s). So we
obtain the development (4.2) from Propositions 2.3 and 2.4. Also from (4.2)
we deduce that

Ao, 6)] < Jsl|[ T, (D) (. 1)|
+y? {T(:;s (Do) (z, t)‘+(2a+1) /1 ‘Tﬁjys (Dgw)(a:,t)‘du}

+yt {T(nay)s D2q/;)(xt 2a+1)/ ‘Tnuys (D) (z, t ‘dU}

(4.4)
So by integration of (4.4) over K with respect to the measure dpu, we obtain
(4.3). 0

Lemma 4.6: Let ¢ € S.(K). Then, for all (z,t) € K and r > 0 we have

8l < Cmin (1, (FL2YY), (4.5)

PRrROOF: From the expression of the kernel W, and using (4.3), one can see
easily that

Bl = 18wl < (M2 (MEOYY g

r

The contraction property of the translation operators T(( on LY(dpa)
(see Proposition 2.3, 2), (ii)) leads to

|A@yYrlli < Cmin (2, <N<$’t))2+(N(x7t))4> < 2C min (1’ <N(x,t)>2).

T r T

a
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The following lemma gives a version of Calderén-Zygmund formula ([14],
[7]) on the Laguerre hypergroup.

Lemma 4.7: Let g in /.\;qu(K) N LP(dpe), 1 < p,g < o0, 0 <y <2 and
Y € S} o(K). For 1 <e <oo, put

005 = [ (Getnst) w5 for () €K

1/e

Then, for all (z,t) € K, Apge converges to Apg in LP(dp,) as e — +oo.

PROOF: Using the fact that [[*(Fi, (A, m))*L = [ (Fp(r?X,m))?%E =1
we deduce easily that, for g € S.(K), (z,t) 6 K and (A\,m) € R x N,

)

f(A(xt g-)(A,m) — ]:(A(x,t)g)(/\ m)

= (et = 1) Fg0m) ([ J”’“ - | m(fwru,m))?cff“)
= F(A@ng)(A,m) ( /E(fwr(/\ m) / (Fibp (A, m))? . ) .
Using the fact F(Ang) € S(R x N), we obtain, for all k,p,q € N

Vk,p,q (f(A(a:,t)ga) - f(A(z,t)g))—> 0.

E— 0

And so, using the fact that ([19, Theorem II.1]) the Fourier-Laguerre trans-
form is a topological isomorphism from S, (K) onto S(R x N), one can con-
clude that A g tends to Ay g in S, (K) as € tends to co. Let us now
take g € LP(du,) considered as an element of S, (K) the topological dual of
S4(K) then an elementary calculation leads to

< A(m,t)gav f >=<yg, A(z,ft)fs >
This leads to, for all g € LP(dj,)
A1) 9e S a— Aw@ng in SL(K). (4.7)

So, using Lemma (4.6) it holds for € < ¢’ large that

< (7 [y (1 (D) g e,
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On the other hand, using Holder’s inequality and the fact that g belongs to
/'\g’q(K) one can prove easily that the right hand side of the above inequality
tends to 0 as €, tend to co. This implies that the family (A ge)- is
a Cauchy net in LP(du,). We get the desired result using (4.7). 0O

Lemma 4.8: Let 1 <p,q<o00,0<y<2andy €S}, Then
1) For all B > 0 there exists C' > 0 such that for all f € A (K) we have,
for a.e. >0,

el < € [ min (D) (G5 Ndeo g (9

2) There exists C > 0 such that for all f € A} (K) we have, for a.c. (z,t) €K,

8enflh < [ (1 (T2 ) irw, T a9

Proor: 1) Let us take ¢ in S, (K) and f € A} (K). Then, using (2.1)
and the fact that / W(x, t)dua(x,t) =0, we get
K

(Fot)s) = [ ol =T 0. 5)da,1)
= [ =08 0.5 1),

From Minkowski’s inequality we get

1f#¢ellp < /K\l/)r(fmt)HlA(x,anpd/«La(%t)

K p dt
(]xd]

< C /K<N<<x,t>r>>2a+4w<<x,—t>r>| 18wofl 5t -
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Taking into account that i belongs to S.(K) then, for all 3 > 0, there exists
C' > 0 such that

N2 (@, 1), )| (@, —t)r)] < ONT((w,1),)

and
|¢((l‘, _t)r)| < C.

Hence (4.8) follows from the above estimations.
2) Let us take f in A) (K) and 1 < e < co. Then, for all (z,1), (y,s) € K,
we have

€ dr

Apety (Y, 8) —/ ((A(z,t)@br)#f#wr)(y,s)?.

1/e

Minkowski’s inequality together with Young’s inequality imply
€ dr
HA(I,t)feHP < HA(ac,t)erle#erPi'
1/e r
Now using Lemma 4.7 we obtain

o dr
180 fls < [ 18wl el - (1.10)

Inequality (4.9) follows immediately from (4.5) and (4.10). O

PROOF: (Theorem 4.2.) Let 1 < p,q < oo and 0 < v < 2. We shall prove
the desired results in different cases ¢ = 00, ¢ =1 and 1 < ¢ < 0.

(1) Let us start with the case ¢ = oo which follows immediately from Lemma
4.8. Assume B) (f) <oo. Using (4.8) with 3 > v and Lemma (4.4), we get

C/Kmm ((N(f’t)yaﬂ’ (N(;,t))ﬁ) HA(m)pr%
O/Km(x’t) i «M) " (N(;,t)>ﬂ> Nc‘ig(jft)

= o f o ((5)C))F

= Cr.

1 #¢rlp

IN

IN
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That is A () is finite.
Take now f € A) (K). Then from (4.9) it holds, using 0 < v < 2, that

¢ [ min 1 (N(T)) Yol &
C/ r”mln (r )> )cfnr

= CN(x,t).

HA(:v,t)fHP

IN

IN

(ii) Let us prove the case ¢ = 1. Assume B) | (f) < oo. We shall prove that
£l A, ®) < CB),(f). Hence from (4.8) with # > v we obtain

o) rpd
135,00 = [ el

<C/ r W/ml >2a+47<N(;’t)> >HAM)f|’pNGj£(Udt )dr

N Y e (R e S

_C/ Bl _drds
N’Y (z,t) N3(z,t)

— CB'Y

Conversely, let us take f in A, (K). Then using (4.9), we get

5 . ||A x,t f”P dl‘dt
Bill) = g NY(x,t) N3(x,t)
N dr dxd
= C// N tymin (1, (= = )) Y7ol TNBQ(Sxtt)

st 3 o ()t
= C/ |f#¢r”p/0 P mln(l < ))Ci)Pcir

- o [Tl
0 rY r
= CHf” ]\;11(]1()'
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(iii) Let us now prove the case 1 < ¢ < oco. Using inequality (4.8) we obtain,
for >«

Ul < f (M0 i (M0 () )
HA(a:,t)pr dxdt
N (z,t) N3(z,t)

— C/KF((xyt);r) N'Y(l',t) NS(.I’,t)

_ CTF(7H ]ﬁg(;} J; ’;p) (r)

where F((z,t),r) = (M)”f min((w)hﬂ, (W)ﬁ) By Lemma A

with h; = hy = 1, we obtain the boundedness of the operator Tr from
LUK, 3%4L) into L4(R4, %). Moreover the condition BY (f) < co means

) N3(z,t)
that the function (z,t) — ‘ﬁ;ﬁ t’f‘l” belongs to LI(K, B(K), N‘ﬁ"fdt ). Hence
_ [l
5500 = | i,
A
< C TF<H (,t)f”p>
N7($at) Lq(ﬂ)
< ‘ 1A flp
N0 Noncy
= OB} ,(f)

Conversely, let us take f € A) (K). From (4.9) we get

Am,t P o . ) rilp
ey < o <N<;; ) (1, (M) el
_ C/ Hf#lerpd?“

7 r
_ CTF@UT?HP)(IJ)

141




M. AssaL & H. BEN ABDALLAH

where F(r, (z,t)) = (553 )? min(1, (M)Q) We proceed as above to obtain

e
" La(5255)
S VAT
N v Lq(ﬂ)
- CHfH 7\;{1(]1()
which gives the desired result. 0O

Theorem 4.9: Let 1 <p,q < oo and 0 <y < 2. For f in A} (K) put

([ (albleiny it Ny,
NY(x,t) /'

C)q(f) =

esssup if q= o0
(z,t)eK
my (f, (x,t)) = sup [|[Ag,sfllp being the generalized modulus of continu-
0<y<z
o<[sI<le]

ity on the Laguerre hypergroup. Then C} , is a norm on Ag’q(K) equivalent
to ”H AL (K

PROOF: To compare || f]| Ay, ) and CJ (f) we proceed as in the proof of
the Theorem 4.2 using the following lemma instead of Lemma 4.8. 0O

Lemma 4.10: Let 1 <p,q<oo, 0 <y <2 and € S,o. Then
1) For all B > 0 there exists C' > 0 such that for all f € A} (K) we have,
for a.e. >0,

ol = i (L2 () o 00058
(4.11)

2) There exists C' > 0 such that for all f € A (K) we have, for a.e.
(z,t) € K,

r

my (f, (z,8)) < C/OOO min (1, (N(x’t))Q) Hf#wup% (4.12)
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ProoOF: 1) (4.11) follows immediately from (4.8) and the fact that
HA(I,t)f”p éml’ (f) (l‘,t)), V(.I,t) € K.

2) To prove (4.12) we use the inequality

N(y,s) < N(z,t) ; 0<y<zand 0<]|s| <[t
So it holds
N(y,s)\?2 dr
) )1l
r r

=

“AmﬁMfEC/ min (1, (
0
C

[ min (1 (P22,

IN

And hence

(1) < € [ i (1 (KDY g, L

The proof is finish. O
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