
ANNALES MATHÉMATIQUES

BLAISE PASCAL
Elena Olivos
A family of totally ordered groups with some special
properties

Volume 12, no1 (2005), p. 79-90.

<http://ambp.cedram.org/item?id=AMBP_2005__12_1_79_0>

© Annales mathématiques Blaise Pascal, 2005, tous droits réservés.

L’accès aux articles de la revue « Annales mathématiques Blaise Pascal »
(http://ambp.cedram.org/), implique l’accord avec les conditions générales
d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale
ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copy-
right.

Publication éditée par le laboratoire de mathématiques
de l’université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://ambp.cedram.org/item?id=AMBP_2005__12_1_79_0
http://ambp.cedram.org/
http://ambp.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Annales Mathematiques Blaise Pascal 12, 79-90 (2005)

A family of totally ordered groups with some
special properties

Elena Olivos

Abstract

Let K be a field with a Krull valuation | | and value group G 6= {1},
and let BK be the valuation ring. Theories about spaces of countable
type and Hilbert-like spaces in [1] and spaces of continuous linear
operators in [2] require that all absolutely convex subsets of the base
field K should be countably generated as BK-modules.

By [1] Prop. 1.4.1, the field K is metrizable if and only if the
value group G has a cofinal sequence. We prove that for any fixed
cardinality ℵκ, there exists a metrizable field K whose value group
has cardinality ℵκ. The existence of a cofinal sequence only depends
on the choice of some appropriate ordinal α which has cardinality ℵκ

and which has cofinality ω.
By [2] Prop. 1.4.4, the condition that any absolutely convex subset

of K be countably generated as a BK-module is equivalent to the fact
that the value group has a cofinal sequence and each element in the
completion G# is obtained as the supremum of a sequence of elements
of G. We prove that for any fixed uncountable cardinal ℵκ there exists
a metrizable field K of cardinality ℵκ which has an absolutely convex
subset that is not countably generated as a BK-module.

We prove also that for any cardinality ℵκ > ℵ0 for the value group
the two conditions (the whole group has a cofinal sequence and every
subset of the group which is bounded above has a cofinal sequence)
are logically independent.

1 Preliminaries

In order to obtain, for any cardinality ℵκ > ℵ0, a metrizable field K whose
value group has cardinality ℵκ we will construct below an abelian totally
ordered group as a subset of the direct product of a family of subgroups of
(R+, ·,≤) indexed by some ordinal α of cardinality ℵκ. In this section we
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recall the principal features concerning to ordinals and cardinals. Readers
may refer to [3] for additional information.

A linear ordering ≤ of a set A is a well-ordering if every nonempty
subset of A has a smallest element. A set T is an ordinal number if
every element of T is a subset of T and T is well-ordered with respect to the
membership-relation (∈).

We use small Greeks letters to denote ordinal numbers. The class of all
ordinals is denoted by Ord; it is easy to see that Ord is not a set. The relation
on Ord defined by α < β if and only if α ∈ β is a well-ordering of the class
Ord. Thus, 0 = φ is the first ordinal, and for each ordinal number α, α = {β :
β < α}, we have that α+1 = α∪{α} = inf{β : β > α} is an ordinal called the
successor of α. If α is not a successor, then α = sup {β : β < α} =

⋃
β<α

β

and it is called a limit ordinal. We also consider 0 as the first limit ordinal.
Every well-ordered set is isomorphic to a unique ordinal number. The finite
ordinals are denoted by 0, 1, 2, . . . , n, . . . and they correspond to the order-
type of the natural numbers. The order-type of the set of natural numbers
is denoted by ω and it is the first limit ordinal different from 0, and the first
infinite ordinal. It is important to note that ω, ω + 1 and ω + ω represent
different order-types, although all of them are isomorphic as sets with the set
of natural numbers. For example, ω + 1 represents the order-type of the set
N ∪ {∞} such that n <∞ for all n ∈ N ; ω + ω represents the order-type of
the set { n

n+ 1
: n ∈ N } ∪ {1 +

n

n+ 1
: n ∈ N } with the usual ordering on

the rational numbers. That is to say “two copies of ω". The lexicographical
order on N×N is represented by ω copies of ω. The first uncountable ordinal
is denoted by ω1. Also, ω1, ω1 + n, ω1 + ω, ω1 + ω1 are different as ordered
sets but all of them are isomorphic as sets.

With this fact in mind, cardinals numbers are defined. Two sets have the
same cardinality if there exists a bĳection between them. The cardinality of
a set A is denoted by |A|. Thus, for example, |ω| = |ω + ω|.
Definition 1.1: An ordinal number κ is a cardinal number if |λ| 6= |κ| for
all λ < κ.

The class of all cardinals is denoted by Card. Every infinite cardinal is a
limit ordinal. Converse is not true. For example ω + ω is a limit ordinal but
it is not a cardinal number. We use ℵα to denote the cardinal number and
ωα to denote its order-type. Thus, ℵ0 = ω0 = ω; ℵα+1 = ωα+1 = ℵ+

α ; and
ℵα = ωα = sup {ωβ : β < α}, if α is a limit. In this case we say that ℵα is a
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limit cardinal. The rules for addition and multiplication of infinite cardinals
are quite simple: ℵα + ℵβ = ℵα · ℵβ = max{ℵα, ℵβ}.

Definition 1.2: Let α > 0 a limit ordinal. The cofinality of α, cf(α) is
defined as the smallest limit ordinal λ such that there exists an increasing
family of ordinals indexed by λ, {αε : ε < λ} with sup

ε<λ
{αε} = α.

For example, for any ordinal α, we have cf(ωα+ω) = ω because sup
n<ω
{ωα+n} =

ωα+ω. On the other hand, cf(ω1) = ω1 since there does not exist a countable
family of ordinals {αn} such that sup

n<ω
{αn} = ω1. A limit cardinal ℵκ is reg-

ular if cf(ωκ) = ωκ and it is singular if cf(ωκ) < ωκ. There are arbitrarily
large singular cardinals. Using the axiom of choice, it can be proven that
every ℵκ+1 is a regular cardinal.

2 The construction of the group Γα

Let I be a totally ordered set. For each index i ∈ I, let Gi be a totally
ordered multiplicative group with unit element 1Gi

. The direct product∏
i∈I

Gi of the family {Gi}i∈I consists of all functions f : I →
⋃
i∈I

Gi such that

f(i) ∈ Gi for all i ∈ I. With respect to the componentwise multiplication∏
i∈I

Gi is a group with unit element 1 = (1Gi
: i ∈ I). For every f ∈

∏
i∈I

Gi,

one defines the support of f as supp(f) = {i ∈ I : f(i) 6= 1Gi
}. In [4], the

Hahn product is defined as the subgroup of the direct product consisting
of all functions f such that supp(f) is a well-ordered set and it is denoted by
Hi∈IGi. An ordering is introduced by declaring f < g if f(k) < g(k) where
k is the first element of I such that f(k) 6= g(k). We will define groups Γα

as special Hahn products.
Let α be an ordinal, {Gβ}β<α a family of abelian multiplicatively written

totally ordered groups of rank 1. (This means that each Gβ is a subgroup of
〈(0,∞), ·, ≤〉).

The group Γα is a subset of the direct product of the family {Gβ}β<α

defined by:

Γα = {f ∈
∏
β<α

Gβ : supp(f) is finite}
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with componentwise multiplication. We define the degree of f as deg(f) =
max{supp(f)}. The ordering on Γα is defined by f > 1 if and only if
f(degf) > 1. We say that Γα is antilexicographically ordered. Furthermore,
for every element b ∈ Gβ, we define the element χ(b,β) ∈ Γα by χ(b,β)(β) = b
and χ(b,β)(γ) = 1 if γ 6= β.

For example, Γω =
⊕
n<ω

Gn is used in [1] with a countable family {Gn} of

cyclic groups. Note that Γω has not a “last copy" of Gn. On the other hand,
the group Γω+1 is also a subgroup of the direct product of a countable family
of groups, but in this case we do have a “last copy", the group Gω.

Consider the set 〈I,≺〉 where I = {β ∈ Ord : β < α} with the inverse
ordering on Ord. That is to say β ≺ γ if and only if γ < β for all β, γ ∈ I. It
is clear that 〈I,≺〉 is not well-ordered, but the well-ordered subsets of I are
precisely the finite ones. Therefore the groups Γα are Hahn products over
〈I,≺〉.

A convex subgroup H of a totally ordered group G is called principal if
there is an element g ∈ G such that H is the smallest convex subgroup of
G containing g. By [4], every convex subgroup H which is not principal is
equal to the union of all principal convex subgroups of G contained in H. In
this case H is called a limit convex subgroup. For every β < α we define
the sets:

Hβ = {f ∈ Γα : deg(f) ≤ β} and H∗
β = {f ∈ Γα : deg(f) < β}

For convenience, we put H∗
0 = {1}. The next proposition justifies this nota-

tion.

Proposition 2.1: Hβ is a principal convex subgroup generated by any ele-
ment f such that deg(f) = β. Each principal convex subgroup of Γα is equal
to Hβ for some β < α.

Proof:
It is clear that Hβ is a convex subgroup. Now, let f ∈ Hβ such that

deg(f) = β. This means f(β) 6= 1Gβ
. Without loss of generality we may

suppose that f(β) > 1Gβ
. Let H be a convex subgroup that contains f and

let h ∈ Hβ, h > 1. We shall prove that h ∈ H. If deg(h) < β then 1 < h < f
hence h ∈ H. Suppose deg(h) = β. Because the order of Gβ is archimedean,
there exists n ∈ N such that 1Gβ

< h(β) < f(β)n which implies 1 < h < fn,
hence h ∈ H. Therefore, Hβ is a principal convex subgroup because it is the
smallest convex subgroup that contains f .
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A family of totally ordered groups

Now let H be a principal convex subgroup generated by some element
g ∈ H. Then g ∈ Hdeg(g) which means that H = Hdeg(g).

Corollary 2.2: If H is a proper convex subgroup of Γα, then there exists
β < α such that H = Hβ or H = H∗

β.

Proof:
It is immediate because if H is not a principal convex subgroup, from

the above proposition H 6= Hβ for all β < α, and by [4], H is the union of
principal convex subgroups, that is to say H =

⋃
γ<β

Hγ, for some β < α. This

β exists of course, β = min{γ : ∀f ∈ H (deg(f) < γ)}. Therefore, h ∈ H if
and only if deg(h) = γ for some γ < β, if and only if h ∈ Hγ ⊆ H∗

β.

Remark 2.3: If β is an infinite limit ordinal, then H∗
β is not a principal

convex subgroup. Indeed, if H∗
β is generated by f , because deg(f) = γ for

some γ < β , then f ∈ Hγ from which H∗
β ⊆ Hγ, a contradiction. On the

other hand, if β = γ + 1 then H∗
β = Hγ.

Hence, the order-type of the set of all principal convex subgroups of Γα,
ordered by inclusion, is α.

Proposition 2.4: Let α be an infinite limit ordinal. Then the following are
equivalent:
i) There exists an increasing sequence of principal convex subgroups {Hβn :

n ∈ ω} such that Γα =
⋃
n<ω

Hβn.

ii) cf(α) = ω.
iii) Γα has a cofinal sequence.

Proof:
(i) ⇒ ii)) If there exists such a sequence then sup{βn : n < ω} = α,

hence cf(α) = ω.
(2 ⇒ 3) If cf(α) = ω, there exists an increasing sequence {βn : n < ω}
such that sup{βn : n < ω} = α. Because each group Gβ is a multiplicative
subgroup of R+, each of them has a cofinal sequence. Let aβn be the n-th
element in a cofinal sequence of Gβn , for all n ∈ N. Then the sequence
{χ(aβn ,βn) : n < ω} is cofinal in Γα.
(3 ⇒ 1) Finally, if Γα has a cofinal sequence {fn : n < ω}, then Γα =⋃
n<ω

Hdeg(fn).

83



E. Olivos

Definition 2.5: [2] A totally ordered group G is quasidiscrete if min{g ∈
G : g > 1} exists in G. A group that is not quasidiscrete is called quasi-
dense.

In infinite rank it is possible to have a quasidiscrete group which has
quasidense subgroups. (See [2], example at the end of 1.2).

Proposition 2.6: Γα/H
∗
β is quasidiscrete if and only if Gβ is quasidiscrete.

In particular, Γα is quasidiscrete if and only if G0 is quasidiscrete.

Proof:
Suppose Γα/H

∗
β is quasidiscrete and let π : Γα → Γα/H

∗
β the canoni-

cal projection. Remember that for each f, g ∈ Γα the ordering in Γα/H
∗
β

is defined by π(f) < π(g) if and only if fg−1 /∈ H∗
β and f(deg(fg−1)) <

g(deg(fg−1)). Let f0 ∈ Γα such that π(f0) = min{π(f) ∈ Γα/H
∗
β : π(f) >

π(1)}. We claim that deg(f0) = β and f0(β) = min{g ∈ Gβ : g > 1Gβ
}. In

fact, notice that f0 /∈ H∗
β hence deg(f0) ≥ β and because it is the minimum,

deg(f0) = β. Furthermore, if there exists a ∈ Gβ such that 1Gβ
< a < f0(β)

in Gβ, then χ(a,β) /∈ H∗
β and we have π(1) < π(χ(a,β)) < π(f0), a contradic-

tion. Therefore, Gβ is quasidiscrete.
Conversely, if Gβ is quasidiscrete, let a = min{b ∈ Gβ : b > 1}. It follows

immediately that the element χ(a,β) satisfies π(χ(a,β)) = min{π(f) ∈ Γα/H
∗
β :

π(f) > π(1)}, hence Γα/H
∗
β is quasidiscrete.

3 Completions of linearly ordered sets

Completions of totally ordered groups are important in order to obtain supre-
mum and infimum of subsets of them. In this section we define the Dedekind
completion of arbitrary linearly ordered sets. We study the extension of
mappings between two such sets (or groups) to their completions.

A linearly ordered set X is called Dedekind complete if each nonempty
subset of X that is bounded above has a supremum. A subset A of a linearly
ordered set X is called dense (in X) if for each s ∈ X:

supX{a ∈ A : a ≤ s} = infX{a ∈ A : a ≥ s} = s

Let Z be any set. A function f : Z → X is called dense if f(Z) is dense in
X. A Dedekind completion of a linearly ordered set X is a pair (X#, i)
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where X# is a complete linearly ordered set and i : X → X# is a strictly in-
creasing and dense mapping. This completion satisfies the following universal
property:

Proposition 3.1: Let (X#, i) be a Dedekind completion of a linearly ordered
set X. Then for every linearly ordered Dedekind complete set Y and every
strictly increasing and dense mapping ϕ : X → Y , there is only one strictly
increasing function ψ such that ϕ = ψ ◦ i.
Proof: Let Y be a linearly ordered complete set and ϕ a strictly increasing
and dense mapping from X to Y . We define ψ(s) = supY {ϕ(x) : x ∈
X ∧ i(x) ≤ s} for each s ∈ X#. Then for all x ∈ X we have ϕ(x) = (ψ◦i)(x).
Furthermore, if s < t in X#, by density there exist a, b ∈ X such that
s ≤ i(a) < i(b) ≤ t and then ψ(s) ≤ ϕ(a) < ϕ(b) ≤ ψ(t), hence ψ is strictly
increasing.

For uniqueness, let δ : X# → Y another strictly increasing mapping such
that δ ◦ i = ϕ. Then, there is an s ∈ X# with δ(s) 6= ψ(s). By the definition
of ψ we have ψ(s) < δ(s) and by density of ϕ there is an a ∈ X such that
ψ(s) ≤ ϕ(a) < δ(s) or ψ(s) < ϕ(a) ≤ δ(s). In the first case if s < i(a) then
δ(s) ≤ δ(i(a)) = ϕ(a) a contradiction, therefore i(a) < s from which it follows
that ϕ(a) = ψ(s). But s /∈ X, then there is a b ∈ X with i(a) < i(b) < s and
ϕ(a) = ϕ(b), but that is not possible by injectivity of ϕ. A similar argument,
taking into consideration that s = infX#{x ∈ X : i(x) ≥ s} works in the case
ψ(s) < ϕ(a) ≤ δ(s).

Therefore, ψ is unique. In particular, for each s ∈ X# we have:

sup
Y
{ϕ(x) : x ∈ X ∧ i(x) ≤ s} = inf

Y
{ϕ(x) : x ∈ X ∧ i(x) ≥ s}

The above proposition proves that all completion are order isomorphic
and therefore the canonical completion by Dedekind cuts with the natural
embedding i is a Dedekind completion. As usual, we shall identify i with the
inclusion and we shall write x instead of i(x) for all x ∈ X. From now on we
say complete instead Dedekind complete.

Proposition 3.2: Let Y ⊆ X and Y #, X# their completions. Then Y # can
be embedded in X# through a strictly increasing mapping τ : Y # → X# such
that τ(y) = y for all y ∈ Y .

Proof: Let τ(s) = supX#{y ∈ Y : y ≤ s} for all s ∈ Y #. Then τ(y) = y
for all y ∈ Y and s < t in Y # implies there are y1, y2 ∈ Y such that
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s ≤ y1 < y2 ≤ t. Therefore τ(s) ≤ y1 and τ(t) ≥ y2, hence τ(s) < τ(t) that
is to say τ is strictly increasing.

Remark 3.3: Actually, the mapping τ of the above proposition is not nec-
essarily unique. For instance, let X = Q, Y = Q ∩ ( [0, 1) ∪ (2, 3] ). Then,
Y # = [0, 1) ∪ {a} ∪ (2, 3] where a ∈ [1, 2] is arbitrary. Hence, there are
infinite mappings which extend IdQ. Uniqueness is obtained if Y is dense in
the convex hull of Y in X.

Definition 3.4: [1] Let X be a totally ordered set and let Y ⊆ X. The
X-convex hull of Y is defined by:

convXY = {x ∈ X : ∃ y1, y2 ∈ Y (y1 ≤ x ≤ y2)}

Proposition 3.5: If Y ⊆ X is dense in convXY , then the mapping τ of the
above proposition is unique.

Proof: Let δ : Y # → X# strictly increasing such that δ(y) = y for all
y ∈ Y . Suppose that δ 6= τ . Then τ(s) < δ(s) for some s ∈ Y # \ Y .
This means that there exist y1, y2 ∈ Y such that y1 < s < y2. Hence,
y1 < τ(s) < δ(s) < y2. Therefore there is an element y ∈ Y such that
τ(s) ≤ y < δ(s). But s < y implies δ(s) ≤ y and y < s implies y = τ(s).
Hence τ is unique.

Corollary 3.6: Let H be a convex subgroup of a totally ordered group G.
Then there is only one strictly increasing mapping τ : H# → G# such that
τ = IdH and H# = convG#H

Proposition 3.7: Let G1, G2 be totally ordered groups and let τ : G1 → G2

a surjective homomorphism of totally ordered groups. Then there exists an
increasing mapping τ# : G#

1 → G#
2 that extends τ .

Proof: Again, let τ# be defined by τ#(s) = supG#
2
{τ(g) : g ∈ G1∧ g ≤ s}.

Remark 3.8: Since Ker τ is a convex subgroup of G1 we can restate the
proposition 3.7 in the following way:

Let H be a convex subgroup of a totally ordered group G and π : G→ G/H
the canonical projection. Then there exists an increasing mapping π# : G# →
(G/H)# which extends the projection π.
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We have uniqueness of π# in the case that G/H is quasidense.

Proposition 3.9: Let G,H, π as before. If G/H is quasidense then π# is
unique. If G/H is quasidiscrete then there are exactly two extensions of π.

Proof: By proposition 3.7, the mapping π# : G# → (G/H)# is increas-
ing and extends the projection π. Suppose that exists another increasing
extension δ of π. Then there is an s ∈ G# \ G such that π#(s) < δ(s). By
density, there are g1, g2 ∈ G such that π#(s) ≤ π(g1) < π(g2) ≤ δ(s). Thus
g1 < s < g2 from which it follows that π(1) < π(g−1

1 g2) hence π#(s) = π(g1)
and δ(s) = π(g2).

If there exists a ∈ G with π(1) < π(a) < π(g−1
1 g2) then π(g1) < π(ag1) <

π(g2). But g1 < ag1 < s implies a ∈ H and s < ag1 < g2 implies π(ag1) =
π(g2) a contradiction. Therefore if G/H is quasidense, π# is unique. In
particular sup(G/H)#{π(g) : g ≤ s} = inf(G/H)#{π(g) : g ≥ s}.

If there does not exist a ∈ G with π(1) < π(a) < π(g−1
1 g2) then G/H is

quasidiscrete and π#(s) = sup(G/H)#{π(g) : g ≤ s} and τ(s) = inf(G/H)#{π(g) :
g ≥ s} may be different (for instance take s = supH), but both of them are
increasing mappings which extend π. We claim that they are the only ones.
In fact if there were another extension δ then, as in the first paragraph, we
would have s < g2 which implies τ(s) < δ(s), a contradiction.

4 Cardinality conditions

Spaces of countable type play a fundamental role in the theory of Hilbert-
like spaces. Let K be a field with a non-archimedean valuation. If it has
the property (∗): Every absolutely convex subset of K is countably generated
as a BK-module, then all subspaces of spaces of countable type are also of
countable type. It is not yet known if this is true when the field K does
not satisfy (∗). By [1] Proposition 1.4.4, (∗) is equivalent to the following:
the value group G has a cofinal sequence and every element of G# is the
supremum of a sequence of elements of G.

In this section we show that these conditions are true for the groups Γα

if and only if cf(α) = ω and α < ω1. We give a characterization of those Γα

in which one and only one of these two conditions are valid, thereby proving
that they are logically independent. We describe also those Γα in which
neither of them hold.
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It is well known that for every totally ordered group Γ there exists a
valued field K such that Γ is its value group. For our purposes we shall use
the construction indicated in [5] of such a K.

Let F be an arbitrary field and let R = {f : Γ → F : supp(f) is finite}.
With the operations + and · defined by:

(f + g)(γ) = f(γ) + g(γ) (fg)(γ) =
∑

γ1·γ2=γ

f(γ1) · g(γ2)

R becomes a domain. Let v : R → Γ be the mapping defined by v(f) =
max{γ ∈ Γ : f(γ) 6= 0} and let K be the field of fractions of R. We extend v
to K by letting v(f−1) = v(f)−1. It is easy to see that v is a Krull valuation
of K with v(K) = Γ.

Theorem 4.1: For any fixed cardinal ℵκ, there exists a group Γα, of cardi-
nality ℵκ which has a cofinal sequence.

Proof: Consider the ordinal α = ωκ + ω. Then |α| = ℵκ and cf(α) = ω.
Therefore, the group Γα has cardinality ℵκ and, by Proposition 2.4, it has a
cofinal sequence.

Corollary 4.2: For any fixed infinite cardinal ℵκ there exists a Krull valued
field of cardinality ℵκ which is metrizable.

Proof: It is enough to consider the group Γα of the above proposition
which has a cofinal sequence (hence it has a coinitial sequence). Then we use
the construction of [5] in order to obtain a field K with value group Γα and,
by [1] Theorem 1.4.1, the metrizability of this field is guaranteed.

Theorem 4.3: For any fixed uncountable cardinal ℵκ , there exists a group
Γα with |α| = ℵκ and an element s ∈ Γ#

α which is not the supremum of some
countable subset of Γα.

Proof: Since ℵκ is uncountable, we choose α such that ω1 < α and
|α| = ℵκ. Let s = supH∗

ω1
. Because s /∈ H∗

ω1
, supΓ#

α
{t ∈ Γ#

α : t < s} = s.
However, if there exists a sequence {gi}i<ω ⊆ Γα such that supΓ#

α
{gi :

i < ω} = s, then the sequence {deg(gi) : i < ω} would be cofinal in ω1, a
contradiction.

Corollary 4.4: For any fixed uncountable cardinal ℵκ there exists a field
K with a Krull valuation which is metrizable and contains absolutely convex
subsets which are not countably generated as BK-modules.
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Proof: Again, by [5], we consider the field K with a Krull valuation | |
and value group Γα where ω1 < α, cf(α) = ω and |α| = ℵκ as the above
proposition.

We claim that the set B(0, s)−, where s = supH∗
ω1

is not countably
generated as a BK-module. In fact, let B(0, s)− be generated as a BK-
module by k1, k2, . . . ∈ K. By [1] Proposition 1.4.4, s = sup{|ki| : i ∈ N}, a
contradiction.

Let α be an ordinal and consider the group Γα. The condition ‘Γα has a
cofinal sequence’ will be denoted M and the condition ‘every element of Γ#

α

is the supremum of a sequence of elements of Γα’ will be called S. The above
results can be restated as follows:

i) If α < ω1 then Γα satisfies M and S.
ii) If α = ω1 then Γα satisfies S but does not satisfy M.
iii) If α > ω1 and α is a succesor or cf(α) = ω then Γα satisfies M but

does not satisfy S.
iv) If α > ω1 and cf(α) ≥ ω1 then Γα does not satisfy neither M nor S.
Now, let I be an arbitrary linearly ordered set and let {Gi}i∈I be a

family of totally ordered multiplicative groups of rank 1. Let ΓI = {f ∈∏
i∈I

Gi : supp(f) is finite} with componentwise multiplication and antilexico-

graphically ordered. We prove that ΓI has a cofinal sequence if and only if I
has a cofinal sequence or I has a last element.

With respect to the second one -every s ∈ Γ#
I is the supremum of a

sequence of elements of ΓI- we show that it is equivalent to a condition on
the index set I, that supI#{deg(f) : f ≤ s} should be equal to the supremum
of a sequence in I. A straightforward proof shows:

Corollary 4.5: The group ΓI has a cofinal sequence if and only if I has a
last element or has a cofinal sequence.

Theorem 4.6: For every s ∈ Γ#
I there exists a sequence {gn}n<ω ⊆ ΓI such

that s = supΓ#
I
{gn}n<ω if and only if for all k ∈ I# there exists a sequence

{in}n<ω such that k = supI#{in}n<ω.

Proof: (→) We only need to prove that if k ∈ I# \ I then there exists
a sequence {in}n<ω such that k = supI#{in}n<ω. For each i ∈ I, i < k, let
gi ∈ Gi, gi > 1 arbitrary. Let s = supΓ

I#
{χ(gi,i) : i < k}. By hypothesis,

there exists a sequence {fn} ⊆ ΓI such that s = supΓ
I#
{fn : n < ω}.
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Then for each n, there exist i, j < k such that i < deg(fn) < j. Therefore
k = supI#{deg(fn) : n < ω}.

(←) Let s ∈ Γ#
I \ ΓI . Let k = supI#{deg(f) : f ∈ ΓI ∧ f < s}. Then

there is a sequence {in} ⊆ I such that k = supI#{in}. It is immediate that
s = supΓ

I#
{χ(gin ,in : n < ω}.
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