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Convergence of the finite element method
applied to an anisotropic phase-field model

Erik Burman1

Daniel Kessler2

Jacques Rappaz

Abstract

We formulate a finite element method for the computation of so-
lutions to an anisotropic phase-field model for a binary alloy. Con-
vergence is proved in the H1-norm. The convergence result holds for
anisotropy below a certain threshold value. We present some numeri-
cal experiments verifying the theoretical results. For anisotropy below
the threshold value we observe optimal order convergence, whereas in
the case where the anisotropy is strong the numerical solution to the
phase-field equation does not converge.

1 Introduction

In this paper we study a finite element method for the numerical computation
of an anisotropic phase-field model for a binary alloy. For details on modelling
and physical background to this model we refer to Warren and Boettinger [12]
and Kessler et al [7]. Existence for the anisotropic model was proved by
Burman and Rappaz in [1] and convergence of a finite element method in
the isotropic case was proved in Kessler and Scheid [8]. Other work on
convergence of the finite element method for isotropic phase-field models
include Chen and Hoffman [3], Feng and Prohl [5], Chen et al. [2]. The
anisotropy (as introduced in Kobayashi [9]) permits the modelling of branches
in models of dendritic growth but makes the second order operator strongly
nonlinear. However we show that this operator is strongly monotone, under
a certain convexity condition, and Lipschitz continuous. The convergence of

1supported by the Swiss National Science Foundation
2supported by the Swiss National Science Foundation
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the finite element method is proved under regularity assumptions close to
the regularity proved for the isotropic model.

We consider a binary alloy of two pure elements in both liquid and solid
states inside a lipschitzian domain Ω ⊂ R2. The system is characterized by
a relative concentration c = c(x, t), where the value c = 1 corresponds to
the situation with only one element present and c = 0 with only the other,
and by an order parameter φ = φ(x, t) (the phase-field), which takes values
between 0 and 1. The value φ = 0 corresponds to a solid region and the
value φ = 1 to a liquid region. The nonlinear parabolic system then takes
the following form (see Burman and Rappaz [1] for details)

∂φ

∂t
− div(A(∇φ)∇φ)− S(c, φ) = 0 in Ω× (0,+∞), (1.1)

∂c

∂t
− div(D1(φ)∇c+D2(c, φ)∇φ) = 0 in Ω× (0,+∞), (1.2)

A(∇φ)∇φ · n = 0 on ∂Ω× (0,+∞), (1.3)

(D1(φ)∇c+D2(c, φ)∇φ) · n = 0 on ∂Ω× (0,+∞), (1.4)

φ(0) = φ0, c(0) = c0 in Ω, (1.5)

where ∂Ω is the boundary of Ω and n is the unit normal to ∂Ω. We define
the anisotropy matrix A(ξ) for ξ ∈ R2by

A(ξ) =

[
a(θξ)

2 −a′(θξ)a(θξ)
a′(θξ)a(θξ) a(θξ)

2

]
where θξ denotes the angle between the x-axis and the vector ξ, the function
a(θ) is given by

a(θ) = 1 + ā cos(kθ)

with k > 1 an integer corresponding to the number of branching directions.
The functions S, D1 and D2 appearing in (1.1)-(1.5) are Lipschitz continuous
functions, with first derivatives with respect φ and c uniformly bounded,
satisfying S(c, 0) = S(c, 1) = 0, 0 < Ds ≤ D1(φ) < Dl and D2(c, φ) = 0 for
c = 0 and 1 and φ = 0 and 1. In practice for the numerical computations we
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Convergence of the finite element method

choose the following form of the non-linear functions (see Kessler et al [7].)

S(c, φ) = − 1

δ2
α(c)g′(φ)− 1

δ
β(c)p′(φ), (1.6)

D1(φ) = Ds + p(φ) (1−Ds) , (1.7)

D2(c, φ) = γc(1− c)D1(φ)

(
α′(c)

δ
g′(φ) + β′(c)p′(φ)

)
(1.8)

where

g(φ) = φ2(1− φ)2, (1.9)
p(φ) = 6φ5 − 15φ4 + 10φ3, (1.10)

α(c) = (1− c)αA + cαB, (1.11)

β(c) = (1− c)βA + cβB (1.12)

for 0 ≤ φ, c ≤ c. Outside this interval all these functions are extended
continuously by a constant. We remark that by integrating equation (1.2)
on Ω and by using (1.4) we obtain conservation of mass

d

dt

∫
Ω

c dx = 0.

In Burman and Rappaz [1], we proved existence of a weak solution for this
strongly nonlinear parabolic system under certain assumptions on the pa-
rameter ā. To be more specific we denote by V = H1(Ω), V ′ the dual space
of V , T the final time. The L2-scalar product is denoted (·, ·)Ω and the
corresponding norm ‖ · ‖Ω. We have proved

Theorem 1.1: If ā < (k2 − 1)−1 then for all (φ0, c0) ∈ [L2(Ω)]2 there exists
a couple of functions (φ, c) satisfying

φ, c ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;V ′),

such that φ(0) = φ0, c(0) = c0 and(
∂φ

∂t
, v

)
Ω

+

∫
Ω

(A(∇φ)∇φ) · ∇v dx =

∫
Ω

S(c, φ)v dx,

〈
∂c

∂t
, w

〉
V ′,V

+

∫
Ω

(D1(φ)∇c+D2(c, φ)∇φ) · ∇w dx = 0,

(1.13)
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for all v, w ∈ H1(Ω) and a.e. in (0,T). Furthermore, if φ0 ∈ H1(Ω) then

φ ∈ L∞(0, T ;H1(Ω)) ∩H1(QT )

and
divA(∇φ)∇φ ∈ L2(QT ),

where QT = Ω × (0, T ). Moreover, if we extend the mappings S and D2 by
zero outside the unit square (0, 1) × (0, 1) and if we assume 0 ≤ φ0 ≤ 1,
0 ≤ c ≤ 1 then the solution (c, φ) satisfies 0 ≤ c, φ ≤ 1 a.e. (x, t) ∈ QT .

2 A finite element method
We discretize the above system of equations using P1-lagrangian finite ele-
ments in space and a semi-implicit Euler-scheme in time. Let T be a trian-
gulation of Ω̄. For any triangle K ∈ T , we denote by hK its diameter and
set h = maxK∈T hK . Let Vh be the finite element space defined by

Vh = {v ∈ C0(Ω̄); v|K ∈ P1(K),∀K ∈ T },

where P1(K) denotes the set of polynomials of degree 1 on K. For an integer
N > 0 we introduce τ = T/N and tn = nτ , n = 0, 1, 2, . . .
We consider the following fully discrete scheme. Given (φn

h, c
n
h) ∈ [Vh]

2 find
(φn+1

h , cn+1
h ) ∈ [Vh]

2 such that

(∂τφh, vh) +

∫
Ω

(A(∇φn+1
h )∇φn+1

h ) · ∇vh dx =

∫
Ω

S(cnh, φ
n+1
h ) vh dx

(∂τch, wh) +

∫
Ω

(D1(φ
n+1
h )∇cn+1

h +D2(c
n
h, φ

n+1
h )∇φn+1

h ) · ∇wh dx = 0,

(2.1)

for all (vh, wh) ∈ [Vh(Ω)]2, where ∂τu = un+1−un

τ
and n = 0, 1, 2, 3, . . . Note

that to compute (φn+1
h , cn+1

h ) we only need to solve a nonlinear system for
φn+1

h . We can prove in the same way as in Ref. 1 that given (φn, cn) both
equations have a unique solution [1] (φn+1

h , cn+1
h ) for timesteps τ sufficiently

small. Existence of φn+1
h is proved using direct methods in the calculus of

variations (see Dacorogna [4]) and the existence of cn+1
h follows by a standard

application of the Lax-Milgram lemma.
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3 The nonlinear operator
To prove the convergence of the finite element scheme we need to extend the
analysis concerning boundedness and continuity of the nonlinear operator.
First we recall some fundamental results [1], which we state here without
proofs.

Lemma 3.1: When
ā <

1

k2 − 1
, (3.1)

the Ginzburg-Landau potential

G(ξ) =

∫
Ω

a(θξ)
2

2
|ξ|2 dx (3.2)

is strictly convex in ξ, ∀ξ ∈ [L2(Ω)]2.

Lemma 3.2: The Gateaux derivative of the Ginzburg-Landau potential,

G(∇φ) =

∫
Ω

a(∇φ)2

2
|∇φ|2 dx,

exists for each φ ∈ V and is given by

G′(∇φ)ψ =

∫
Ω

A(∇φ)∇φ · ∇ψ dx, ∀ψ ∈ V. (3.3)

Lemma 3.3: The anisotropic operator satisfies the following upper and lower
bounds:

(1− ā)2|φ|2V ≤
∫

Ω

A(∇φ)|∇φ|2 dx ≤ (1 + ā)2|φ|2V ,

where |φ|2V =
∫

Ω
|∇φ|2 dx. We also recall some results on Eulerian oper-

ators derived from Gateaux-differentiable functionals.

Definition 3.4: An operator A(φ) : V → V ′ is monotone if

(A(φ)−A(ψ), φ− ψ) ≥ 0, ∀φ, ψ ∈ V,
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where (·, ·) denotes the duality pairing between V ′ and V . In addition to
these results we need the following lemma, stating that the nonlinear operator
defined by (3.3) is strongly monotone and Lipschitz continuous with respect
to the H1(Ω)-seminorm, | · |V .

Lemma 3.5: If the convexity condition ā < 1
k2−1

holds, then we have the
following inequalities for all φ, ψ ∈ V :

µā‖∇φ−∇ψ‖2
Ω ≤ (A(∇φ)∇φ− A(∇ψ)∇ψ,∇φ−∇ψ)Ω, (3.4)

‖A(∇φ)∇φ− A(∇ψ)∇ψ‖Ω ≤ L‖∇φ−∇ψ‖Ω, (3.5)

where L is a constant independent of φ, ψ and ‖ · ‖Ω is the L2-norm of
vectorial functions.

Proof: The first inequality is a consequence of the fact that the Eulerian
operator derived from a convex functional is monotone. We consider the
perturbed Ginzburg-Landau functional

Gµā(∇φ) =

∫
Ω

(
a(∇φ)2

2
− µā

2

)
|∇φ|2 dx.

It is easy to see that for some sufficiently small µā > 0 this functional will re-
main convex. We consider the corresponding Hessian matrix of
ξ →

(
a(ξ)2

2
− µā

2

)
|ξ|2 in polar coordinates, for ξ 6= 0:

H(ξ) = Oθ

(
a(θ)2 − µā a(θ)a′(θ)
a(θ)a′(θ) a(θ)2 + a′(θ)2 + a(θ)a′′(θ)− µā

)
OT

θ

= OθH̃(ξ)OT
θ ,

where Oθ denotes the matrix of rotation of the angle θ. It is easy to show [1]
that if ā < (k2 − 1)−1, then a(θ) + a′′(θ) > 0 and H̃(ξ) will remain positive
definite for ξ when

0 < µā ≤
a(θ)3(a(θ) + a′′(θ))

(2a(θ)2 + a′(θ)2 + a(θ)a′′(θ))
.

Hence, by the monotonicity of the corresponding Eulerian operator we have

0 ≤ (A(∇φ)∇φ− µā∇φ− A(∇ψ)∇ψ + µā∇ψ,∇φ−∇ψ)
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and (3.4) follows immediately. To prove (3.5) we consider ξ, ζ ∈ R2 and show
that

|A(ξ)ξ − A(ζ)ζ| ≤ L|ξ − ζ|.

Relation (3.5) is obvious when ξ or ζ is vanishing. In the following we assume
that ξ and ζ are non-zero.

First of all we remark that the spectral norm |A(ξ)| is bounded inde-
pendently of ξ and A(αξ) = A(ξ) for all α 6= 0. If ξ, ζ ∈ R2 satisfy ζ = αξ
with α 6= 0, then (3.5) is a trivial consequence of the above remark. Now we
suppose that ξ and ζ are not co-linear and consequently 0 6∈ sξ + (1 − s)ζ,
∀s ∈ R. So we have for all η ∈ R2:

(A(ξ)ξ − A(ζ)ζ) · η =

∫ 1

0

ηTH(sξ + (1− s)ζ)(ξ − ζ)ds

where · denotes the scalar product in R2, ηT is η-transposed, and H is the
above hessian matrix with µā = 0. Since the spectral norm of H is bounded
independently of ξ, we easily obtain inequality (3.5) with L = maxx∈R2

|x|=1

|H(x)|

The convexity of the functional is of essential importance for the well-
posedness of the system. To illustrate how convexity is lost we plot the
contourlines of the integrand of the functional (3.2) with k = 4 for the case
ā = 0.05 and ā = 0.15 in Fig. 1. Note the non-convex zones appearing
around θ = nπ/2, n = 0, 1, 2, 3 when the anisotropy parameter is larger than
1/15. These non-convex zones corresponds to “forbidden” gradient direc-
tions and will give rise to corners and rapidly oscillating gradients in the
finite element approximation (2.1) of the equation for φ as we will see in the
numerical section.

4 Regularity hypothesis

The strong non-linearity in the anisotropic operator makes a priori estimates
on higher order derivatives very difficult to prove, especially considering that
A(ξ)ξ is not differentiable at ξ = 0. For the isotropic problem on the other
hand quite extensive regularity results were proved in Rappaz and Scheid [10].
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Figure 1: Contourlines of the Ginzburg-Landau potential a(θξ)2

2
|ξ|2,

left: ā = 0.05, right: ā = 0.15.

In fact we have

φ ∈ L2(0, T,H3(Ω)) ∩ L∞(0, T ;H2(Ω)) ∩H1(0, T,H1(Ω)),

c ∈ L2(0, T,H2(Ω)) ∩H1(0, T, L2(Ω)),

provided that the initial data are sufficiently regular, that is to say φ0 ∈
H2(Ω), ∂φ0

∂n
= 0 on ∂Ω and c0 ∈ H1(Ω). This however does not suffice to

show convergence of the finite element method. In the sequel we will assume
that there exists a unique solution (φ, c) of the system (1.13) such that both
φ and c enjoy the regularity proved for φ and in addition that the gradients
are bounded on the space time interval. So we will suppose that (φ, c) ∈ W
where

W = [L2(0, T,H3(Ω)) ∩ L∞(0, T ;H2(Ω) ∩W 1,∞(Ω)) ∩H1(0, T ;H1(Ω))]2.

This assumption is reasonable as long as the anisotropic functional remains
strictly convex such that the strong monotonicity (3.4) holds. To make these
assumptions sufficient for the convergence proof to hold we still need to show
that this implies sufficient regularity of the time derivatives. For this we need
to assume that the non-linear terms S, D1, D2 have bounded first derivatives
in φ and c. We show formally in the following lemma that this implies the
necessary regularity of the time derivatives.

Lemma 4.1: Under the above regularity hypothesis we have

(
∂2φ

∂t2
,
∂2c

∂t2
) ∈ [L2(0, T ;V ′(Ω))]2 (4.1)
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Proof: We only give the proof for the strongly non-linear equation for
φ since the proof for the concentration is similar. Formally differentiating
equation (1.1) with respect to t we get

∂2φ

∂t2
− div

∂

∂t
A(∇φ)∇φ =

∂S

∂c

∂c

∂t
+
∂S

∂φ

∂φ

∂t
.

We study this equation on weak form:

sup
w∈V

‖w‖V =1

〈
∂2φ

∂t2
, w

〉
≤ sup

w∈V
‖w‖V =1

〈
∂

∂t
A(∇φ)∇φ,∇w

〉

+ sup
w∈V

‖w‖V =1

〈
∂S

∂c

∂c

∂t
+
∂S

∂φ

∂φ

∂t
, w

〉
.

Clearly we have

sup
w∈V

‖w‖V =1

〈
∂S

∂c

∂c

∂t
+
∂S

∂φ

∂φ

∂t
, w

〉
≤ C

(
‖∂c
∂t
‖V ′(Ω) + ‖∂φ

∂t
‖V ′(Ω)

)
.

A straightforward calculation using the definition of the non-linear operator
and the relation

∂θ∇φ

∂t
= − 1

|∇φ|2
∇∂φ
∂t
· J∇φ

where

J =

[
0 1

−1 0

]
shows that

∂

∂t
A(∇φ)∇φ = A(∇φ)

∂

∂t
∇φ+ A′

θ(∇φ)R′(θ)

(
R(θ) · ∂

∂t
∇φ
)
, (4.2)

where θ = θ∇φ, R(θ) = [sin θ,− cos θ], R′(θ) = [cos θ, sin θ] and A′
θ(∇φ) is

given by

A′
θ(∇φ) =

[
2a(θ)a′(θ) −(a′(θ)2 − a(θ)a′′(θ))

a′(θ)2 − a(θ)a′′(θ) 2a(θ)a′(θ)

]
.
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It follows from (4.2) that

| ∂
∂t

A(∇φ)∇φ| ≤ C| ∂
∂t
∇φ|,

from which we conclude that

sup
w∈V

‖w‖V =1

〈
∂2φ

∂t2
, w

〉
≤ C

(
‖ ∂
∂t
∇φ‖Ω + ‖∂c

∂t
‖V ′(Ω) + ‖∂φ

∂t
‖V ′(Ω)

)
.

Taking the square of this inequality and integrating in time yields (4.1) for
φ.

5 Convergence of the finite element method
and error estimate

Theorem 5.1: If the system (1.1) - (1.5) admits a unique solution (φ, c) ∈ W,
then the solution (φh, ch) of the finite element discretization (2.1) satisfies the
a priori error estimate

‖φN
h − φ(tN)‖2

Ω + µā

N−1∑
n=0

‖∇(φn+1
h − φ(tn+1))‖2

Ωτ

+ η

(
‖cNh − c(tN)‖2

Ω +Ds

N−1∑
n=0

‖∇(cn+1
h − c(tn+1))‖2

Ωτ

)

≤ C̃ exp(αt)(τ 2 + h2 +
h4

τ
+ h4). (5.1)

Proof: In the sequel LA, LS, LD1 and LD2 will denote the Lipschitz con-
stant associated with operators A(∇φ)∇φ, S(φ, c), D1(φ) and D2(c, φ) fur-
thermore Dmax

2 = max(φ,c)∈[0,1]2 D2(φ, c). Using the weak formulation (1.13)
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and the finite element formulation (2.1), we may write

1

τ
(φn+1

h − φn
h − φ(tn+1) + φ(tn), vh)Ω

+ (A(∇φn+1
h )∇φn+1

h − A(∇φ(tn+1))∇φ(tn+1),∇vh)Ω

= (S(cnh, φ
n+1
h )− S(c(tn+1), φ(tn+1)), vh)Ω

− 1

τ
(φ(tn+1)− φ(tn)− ∂φ

∂t
(tn+1), vh)Ω, ∀vh ∈ Vh (5.2)

Now using the notation φn
∆ = φn

h−φ(tn) and the equality (5.2) we obtain for
all ψn+1 ∈ Vh

1

τ
(φn+1

∆ −φn
∆, φ

n+1
∆ )Ω +(A(∇φn+1

h )∇φn+1
h −A(∇φ(tn+1))∇φ(tn+1),∇φn+1

∆ )Ω

=
1

τ
(φn+1

∆ − φn
∆, ψ

n+1 − φ(tn+1))Ω

+ (A(∇φn+1
h )∇φn+1

h − A(∇φ(tn+1))∇φ(tn+1),∇(ψn+1 − φ(tn+1)))Ω

+ (S(cnh, φ
n+1
h )− S(c(tn+1), φ(tn+1)), (φn+1

h − ψn+1))Ω

−
(

1

τ
(φ(tn+1)− φ(tn))− ∂φ

∂t
(tn+1), φn+1

h − ψn+1

)
Ω

. (5.3)

It now follows by Lemma 3.5 that

1

τ
‖φn+1

∆ ‖2
Ω−

1

τ
(φn

∆, φ
n+1
∆ )Ω+µā‖∇φn+1

∆ ‖2
Ω ≤ |1

τ
(φn+1

∆ −φn
∆, ψ

n+1−φ(tn+1))Ω|

+ LA‖∇φn+1
∆ ‖Ω‖∇(ψn+1 − φ(tn+1))‖Ω

+ |(S(cnh, φ
n+1
h )− S(c(tn+1), φ(tn+1)), (φn+1

h − ψn+1))Ω|

+

∣∣∣∣(1

τ
(φ(tn+1)− φ(tn))− ∂φ

∂t
(tn+1), φn+1

h − ψn+1

)
Ω

∣∣∣∣ . (5.4)

Now multiplying by τ and summing over n we obtain, using summation by
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parts,

1

2
‖φN

∆‖2
Ω +

1

2

N−1∑
n=0

‖φn+1
∆ − φn

∆‖2
Ω + µā

N−1∑
n=0

‖∇φn+1
∆ ‖2

Ω τ

≤ 1

2
‖φ0

∆‖2
Ω +

N−1∑
n=0

|(φn+1
∆ − φn

∆, ψ
n+1 − φ(tn+1))Ω|

+ LA

N−1∑
n=0

‖∇φn+1
∆ ‖Ω‖∇(ψn+1 − φ(tn+1))‖Ω τ

+
N−1∑
n=0

|(S(cnh, φ
n+1
h )− S(c(tn+1), φ(tn+1)), (φn+1

h − ψn+1))Ω| τ

+
N−1∑
n=0

|

(∫ tn+1

tn

(s− tn)

τ

∂2φ

∂t2
(s)ds, φn+1

h − ψn+1

)
Ω

| τ.

We proceed by adding and subtracting φ(tn+1) in the two last terms in the
right hand side and using the Cauchy-Schwarz inequality in combination with
Young’s inequality

1

2
‖φN

∆‖2
Ω +

µā

2

N−1∑
n=0

‖∇φn+1
∆ ‖2

Ω τ ≤ 1

2
‖φ0

∆‖2
Ω +

1

2

N−1∑
n=0

‖ψn+1 − φ(tn+1)‖2
Ω

+
2L2

A

µā

N−1∑
n=0

‖∇(ψn+1 − φ(tn+1))‖2
Ω τ

+
N−1∑
n=0

|(S(cnh, φ
n+1
h )− S(c(tn+1), φ(tn+1)), (φn+1

∆ + φ(tn+1)− ψn+1))Ω| τ

+
N−1∑
n=0

|

(∫ tn+1

tn

(s− tn)

τ

∂2φ

∂t2
(s)ds, φn+1

∆ + φ(tn+1)− ψn+1

)
Ω

| τ. (5.5)

We now eliminate the second term on each side of the inequality, we use the
Lipschitz continuity of the source terms and a duality argument for the second
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derivative in time to obtain (using Cauchy-Schwarz and Young’s inequality
repeatedly)

|(S(cnh, φ
n+1
h )− S(c(tn+1), φ(tn+1)), φn+1

∆ + φ(tn+1)− ψn+1)Ω|

≤ |(S(cnh, φ
n+1
h )− S(c(tn), φ(tn+1)), φn+1

∆ + φ(tn+1)− ψn+1)Ω|

+ |(S(c(tn), φ(tn+1))− S(c(tn+1), φ(tn+1)), φn+1
∆ + φ(tn+1)− ψn+1)Ω|

≤
(
LS‖cnh − c(tn)‖2

Ω +
LSτ

2

∫ tn+1

tn
‖∂c
∂t
‖2

Ω dt

+ 3LS‖φn+1
∆ ‖2

Ω + 2LS‖φ(tn+1)− ψn+1‖2
Ω

)
(5.6)

and

|

(∫ tn+1

tn

(s− tn)

τ

∂2φ

∂t2
(s)ds, φn+1

∆ + φ(tn+1)− ψn+1

)
Ω

|

≤ 2τ

3µā

∫ tn+1

tn
‖∂

2φ

∂t2
‖2

V ′ dt+
µā

4

(
‖φn+1

∆ ‖2
V + ‖φ(tn+1)− ψn+1‖2

V

)
. (5.7)

Now using (5.6) and (5.7) in (5.5) and collecting terms we obtain

‖φN
∆‖2

Ω +
µā

2

N−1∑
n=0

‖∇φn+1
∆ ‖2

Ω τ ≤ ‖φ0
∆‖2

Ω + 2
(
3LS +

µā

4

)N−1∑
n=0

‖φn+1
∆ ‖2

Ω τ.

+ 2

(
1

2τ
+ 2LS +

µā

4

)N−1∑
n=0

‖ψn+1 − φ(tn+1)‖2
Ω τ

+ 2

(
2L2

A

µā

+
µā

4

)N−1∑
n=0

‖∇(ψn+1 − φ(tn+1))‖2
Ω τ + 2LS

N−1∑
n=0

‖cn+1
∆ ‖2

Ωτ

+ LSτ
2‖∂c
∂t
‖2

Q +
4τ 2

3µā

‖∂
2φ

∂t2
‖2

L2(0,T ;V ′(Ω), (5.8)

where cn∆ = cnh − c(tn). We turn to the equation for the concentration c and
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obtain, in the same fashion

1

τ
(cn+1

∆ − cn∆, c
n+1
∆ )Ω +Ds‖∇cn+1

∆ ‖2
Ω ≤

1

τ
(cn+1

∆ − cn∆, c
n+1
∆ )Ω

+ (D1(φ
n+1
h )∇cn+1

h −D1(φ(tn+1))∇c(tn+1),∇cn+1
∆ )Ω

+ ((D1(φ(tn+1))−D1(φ
n+1
h ))∇c(tn+1),∇cn+1

∆ )Ω.

(5.9)

We use the formulation (2.1) to replace the cnh in cn∆ by some arbitrary func-
tion wn

h ∈ Vh.

1

τ
(cn+1

∆ − cn∆, c
n+1
∆ )Ω +Ds‖∇cn+1

∆ ‖2
Ω ≤

1

τ
(cn+1

∆ − cn∆, w
n+1
h − c(tn+1))Ω

+ (D1(φ
n+1
h )∇cn+1

h −D1(φ(tn+1))∇c(tn+1),∇(wn+1
h − c(tn+1)))Ω

+ ((D1(φ(tn+1))−D1(φ
n+1
h ))∇c(tn+1),∇cn+1

∆ )Ω

+ (D2(c
n
h, φ

n+1
h )∇φn+1

h −D2(c(t
n+1), φ(tn+1))∇φ(tn+1),∇(cn+1

h − wn+1
h ))Ω

+
1

τ
(c(tn+1)− c(tn)− ∂c

∂t
(tn+1), cn+1

h − wn+1
h )Ω = I1 + I2 + I3 + I4 + I5

(5.10)

Proceeding as above we may write for terms I1 and I5 as

I1 ≤
1

2
‖cn+1

∆ − cn∆‖2
Ω +

1

2
‖wn+1 − c(tn+1)‖2

Ω

and using the Young inequality

I5 ≤
2τ

3Ds

∫ tn+1

tn
‖∂

2c(t)

∂t2
‖2

V ′ dt+
Ds

4
(‖cn+1

∆ ‖2
V + ‖c(tn+1)− wn+1

h ‖2
V ).
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We treat I2 to I4 in the same spirit as (5.6) leading to

I2 ≤ |(D1(φ
n+1
h )∇cn+1

∆ ,∇(wn+1
h − c(tn+1)))Ω|

+ |(LD1|φn+1
∆ |∇c(tn+1),∇(wn+1

h − c(tn+1)))Ω|

≤ Ds

8
‖∇cn+1

∆ ‖2
Ω +

(
2Dl

Ds

+ LD1

)
‖∇(wn+1

h − c(tn+1))‖2
Ω

+ LD1‖∇c(tn+1)‖2
L∞(Ω)‖φn+1

∆ ‖2
Ω

and analogously

I3 ≤
Ds

8
‖∇cn+1

∆ ‖2
Ω +

2L2
D1

Ds

‖∇c(tn+1)‖2
L∞(Ω)‖φn+1

∆ ‖2
Ω

and

I4 ≤
8LD2‖∇φ(tn+1)‖2

L∞(Ω)τ

Ds

∫ tn+1

tn
‖∂c
∂t
‖2

Ω dt

+
Ds

4

(
‖∇cn+1

∆ ‖2
Ω + ‖∇(c(tn+1)− wn+1

h )‖2
Ω

)
+

8Dmax
2

Ds

‖∇φn+1
∆ ‖2

Ω

+
8‖∇φ(tn+1)‖2

L∞(Ω)LD2

Ds

(
‖cn∆‖2

Ω + ‖φn+1
∆ ‖2

Ω

)
. (5.11)
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Multiplying by τ and summing over n in equation (5.10) we have

‖cn+1
∆ ‖2

Ω +
Ds

2

N−1∑
n=0

‖∇cn+1
∆ ‖2

Ωτ ≤ ‖c0∆‖2
Ω +

N−1∑
n=0

‖wn+1
h − c(tn+1)‖2

Ω

+ 2

(
Ds

4
+

8LD2‖∇φ‖2
L∞(Q)

Ds

)
N−1∑
n=0

‖cn+1
∆ ‖2

Ωτ

+ 2

(
3Ds

8
+

2Dl

Ds

+ LD1

)N−1∑
n=0

‖c(tn+1)− wn+1
h ‖2

V τ+

+
4τ 2

3Ds

∫ T

0

‖∂
2c

∂t2
‖2

V ′(Ω) dt+
16LD2‖∇φ‖2

L∞(Ω)τ
2

Ds

∫ T

0

‖∂c
∂t
‖2

Ω dt

+

(
16LD2‖∇φ‖2

L∞(Q)

Ds

+ LD1‖∇c‖2
L∞(Q)

)
N−1∑
n=0

‖φn+1
∆ ‖2

Ωτ

+
16Dmax

2

Ds

N−1∑
n=0

‖∇φn+1
∆ ‖2

Ωτ. (5.12)

Finally we multiply (5.12) by η = µāDs

64Dmax
2

, add (5.8) and (5.12) and apply the
discrete Gronwall lemma to obtain

‖φN
∆‖2

Ω +
µā

4

N−1∑
n=0

‖∇φn+1
∆ ‖2

Ωτ + η

(
‖cN∆‖2

Ω +
Ds

2

N−1∑
n=0

‖∇cn+1
∆ ‖2

Ωτ

)

≤ exp(αt)

(
C0τ

2

{
‖∂c
∂t
‖2

L2(Q) + ‖∂
2φ

∂t2
‖2

L2(0,T,V ′(Ω) + η‖∂
2c

∂t2
‖2

L2(0,T,V ′(Ω)

}

+ C1

N−1∑
n=0

{
1 + τ

τ
‖φ(tn+1)− ψn+1

h ‖2
Ω + ‖∇(φ(tn+1)− ψn+1

h )‖2
Ω

}
τ

+ ηC2

N−1∑
n=0

{
1 + τ

τ
‖c(tn+1)− wn+1

h ‖2
Ω + ‖∇(c(t)− wh(t))‖2

Ω

}
τ

)
. (5.13)
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Since in particular our regularity assumptions include

(φ, c) ∈ [L∞(0, T ;H2(Ω))]2

we may chose

(ψn
h , w

n
h) = (πhφ(tn), πhc(t

n))

where πh denotes the interpolation operator. The theorem now follows by a
standard interpolation estimate.

Remark 5.2: Note that the exponential factor α is of the order of ‖∇φ‖2
L∞(QT )

which under the regularity hypothesis should be of the order δ−2 if δ denotes
the interface thickness. This is the typical worst case estimate for phase-field
equations (see for instance Kessler and Scheid [8] or Chen and Hoffman [3].)
However in a recent paper Feng and Prohl [5] show that for the isotropic,
thermal phase-field equation, an estimation of the smallest eigenvalue of the
linearized operator permits a priori estimates which show growth only in low
polynomial order of δ−1 provided that all interior layers are developed in the
initial data.

6 Numerical tests

Implementation of the numerical scheme (2.1) was done using the finite el-
ement package ALBERT developed by Schmidt and Siebert [11]. We have
set up tests to obtain the experimental numerical convergence order of the
scheme in the norm L2(0, T ;H1(Ω)) and compare it with the theoretical result
of Theorem 5.1. We have also measured experimental orders of convergence
in the L∞(0, T ;L2(Ω)) norm. Tests have been run using both low and high
anisotropy.
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6.1 Implementation of numerical tests
For the tests, parameters of the nonlinear functions defined in (1.6)-(1.12)
are set to

αA = 0.508, αB = 0.489, (6.1)

βA = 2.58, βB = −2.41, (6.2)
γ = 5.62× 10−4, (6.3)
Ds = 0.1, (6.4)
δ = 0.1. (6.5)

We have treated the nonlinearities of numerical scheme (2.1) with just
one step of a fixed-point method. Quadrature is exact for polynomials of
degree 3, except for the mass matrices for which we used mass lumping.

By adding extra artificial source terms, we have imposed exact solu-
tions to both equations, with which to compare the numerical solutions. We
chose solutions that reproduce some features expected of the solutions of sys-
tem (1.1)-(1.5). Namely, accross the solid-liquid interface, the phase-field is
known to have a hyperbolic-tangent-like profile while its values change from
0 to 1, while the concentration goes smoothly from values close to a small
constant cs in the solid region, to a large constant cl on the liquid side of
the interface, and then down to an intermediate value c0 in the liquid bulk
phase. [6] Also, we assume that propagation velocities of the interface vary de-
pending on the interface’s normal direction proportionally to the anisotropy
function a(θ).

Since we would like to see all interface directions in our test, we choose
exact solutions whose initial conditions represent a circular interface separat-
ing bulk solid and liquid phases with different concentrations. The transition
is smooth as described above. The system then evolves, and the interface
moves outward, with local velocities depending on the interface’s normal di-
rection, assimilated in the definition of the test solutions to the angle in local
polar coordinates.

Let us define polar coordinates associated to position x by

x = ρ

(
cos θ
sin θ

)
, (6.6)

where ρ = ‖x‖ and θ are the cylindrical coordinates of x. In the sequel, we
will be always working in the space-time domain [0, 1]3.
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Let ρ0 and v be given constants representing the radius of the initial
circular interface and the solidification front velocity. We define the auxiliary
function

η(x) = e−
√

2
δ

(ρ−va(θ)t−ρ0) (6.7)

and the actual imposed phase-field solution

φe =
1

1 + η
. (6.8)

Let c0, cs, c̄l and ρ∆ be given constants representing the values of the
concentration in the liquid and solid bulks, a value proportional to the con-
centration on the liquid side of the interface, and an δ-rescaled shift from the
center of the interface. We then define the two auxiliary functions

η±(x) = e−
√

2
δ

(ρ−va(θ)t−ρ0∓δρ∆) (6.9)

and the imposed concentration solution

ce = cs +
c̄l − cs
1 + η−

+
c0 − c̄l
1 + η+

. (6.10)

For the tests, we fix the previous numerical constants to ρ0 = 0.2, v = 0.6,
c0 = 0.4, cs = 0.2, c̄l = 0.8 and ρ∆ = 1.

As an illustration, radial profiles of the imposed solutions (6.8) and (6.10)
for t = 0.5 and θ = 0 are shown in Figure 2, as well as level sets of φ for both
low and high anisotropy at the final time t = 1 in Figure 3.

In the implementation, exact solutions (6.8) and (6.10) are used as initial
and Dirichlet boundary conditions, and their derivatives are combined to
define artificial source terms added to both equations, ensuring that they are
then solutions of the differential system.

6.2 Results of numerical tests for low anisotropy
We now present numerical results for a low anisotropy ā = 0.05, which is in
the scope of the theory presented in this paper. We performed two series of
tests: one in which the timestep size was decreased linearly with the space
mesh size, and another where the timestep size was decreased quadratically
with the mesh size. We are interested in the experimental orders of conver-
gence (OC) for the L2(0, T ;H1(Ω)) norm of the error, which is in the scope
of the theory, and also the L∞(0, T ;L2(Ω)) norm, for which the convergence
rate predicted by our theoretical result is expected to be suboptimal.
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Figure 2: Radial profiles of imposed solutions at t = 0.5
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Figure 3: level set φ = 1/2 at t = 1 for the imposed exact solutions with
ā = 0.05 and ā = 0.10
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Table 1: results for φ, with τ ∝ h
i h τ ‖e‖L∞(0,T ;L2(Ω)) OCm ‖e‖L2(0,T ;H1(Ω)) OCH1
0 2.50e-01 0.100000 8.02e-02 — 4.63e-01 —
1 1.25e-01 0.050000 9.76e-03 3.04 2.01e-01 1.21
2 6.25e-02 0.025000 3.44e-03 1.51 1.00e-01 1.00
3 3.12e-02 0.012500 1.67e-03 1.04 5.00e-02 1.00
4 1.56e-02 0.006250 8.43e-04 0.99 2.50e-02 1.00
5 7.81e-03 0.003125 4.26e-04 0.99 1.25e-02 1.00

Table 2: results for c, with τ ∝ h
i h τ ‖e‖L∞(0,T ;L2(Ω)) OCm ‖e‖L2(0,T ;H1(Ω)) OCH1
0 2.50e-01 0.100000 2.89e-02 — 2.87e-01 —
1 1.25e-01 0.050000 1.47e-02 0.98 1.54e-01 0.90
2 6.25e-02 0.025000 7.34e-03 1.00 7.92e-02 0.96
3 3.12e-02 0.012500 3.58e-03 1.04 3.98e-02 0.99
4 1.56e-02 0.006250 1.74e-03 1.04 1.98e-02 1.00
5 7.81e-03 0.003125 8.56e-04 1.02 9.89e-03 1.00

Table 3: results for φ, with τ ∝ h2

i h τ ‖e‖L∞(0,T ;L2(Ω)) OCm ‖e‖L2(0,T ;H1(Ω)) OCH1
0 2.50e-01 0.100000 8.02e-02 — 4.63e-01 —
1 1.25e-01 0.025000 9.63e-03 3.06 1.98e-01 1.22
2 6.25e-02 0.006250 2.39e-03 2.01 9.84e-02 1.01
3 3.12e-02 0.001563 6.03e-04 1.99 4.90e-02 1.01
4 1.56e-02 0.000391 1.52e-04 1.99 2.45e-02 1.00
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Table 4: results for c, with τ ∝ h2

i h τ ‖e‖L∞(0,T ;L2(Ω)) OCm ‖e‖L2(0,T ;H1(Ω)) OCH1
0 2.50e-01 0.100000 2.89e-02 — 2.87e-01 —
1 1.25e-01 0.025000 1.15e-02 1.33 1.42e-01 1.02
2 6.25e-02 0.006250 3.36e-03 1.78 6.66e-02 1.09
3 3.12e-02 0.001563 8.89e-04 1.92 3.23e-02 1.05
4 1.56e-02 0.000391 2.25e-04 1.98 1.60e-02 1.01

From the results in Tables 1-4, we verify experimentally that the order
of convergence h+ τ predicted by Theorem 5.1 for ‖e‖L2(0,T ;H1(Ω)) is optimal.
However, we can also conclude that this order of convergence is suboptimal
for ‖e‖L∞(0,T ;L2(Ω)), which converges faster, at a rate h2+τ . The experimental
orders of convergence are also illustrated by Figures 4-5, made in log-log scale
using the data from Tables 1-4.
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Figure 4: Error reduction in the norm L2(0, T ;H1(Ω))

6.3 Results of numerical tests for high anisotropy

For the high anisotropy, we take ā = 0.10. We observed in numerical tests
with imposed solutions (6.8) and (6.10) that the numerical solution is unable
to reproduce the features of a presumably H1 regular solution in regions
where the normal direction to the level sets of solutions is pointing at an
angle close to 0, π/2, π or 3π/2. This corresponds to nonconvex portions of
the Franck diagram, i.e. the graph of a level set of the anisotropy energy
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Figure 5: Error reduction in the norm L∞(0, T ;L2(Ω))

as a function of ∇φ. These are the angles that physicists call “forbidden
angles”. Qualitatively, it seems that level sets of the numerical solution
avoid “forbidden angles” in the imposed solution by zigzagging at “permitted
angles”, much like a sailboat would zigzag in an effort to sail upwind, using
only directions in which it is possible to sail.

We have also tried imposing different solutions, planar front equivalents
of (6.8) and (6.10), which contain only one direction. We have chosen a for-
bidden direction (θ = 0) and a permitted direction (θ = π/4) as examples.
The corresponding imposed solutions are the same as (6.8) and (6.10), with
a change of definition for ρ and θ, which are no longer the polar coordinates.
The angle θ is instead the constant 0 or π/4, whereas ρ is defined as respec-
tively x0 or (x0 +x1)/

√
2. The qualitative behavior of these solutions can be

seen in Figure 6.

  

Figure 6: Level sets of φ for forced solutions with high anisotropy

89



E. Burman, D. Kessler, J. Rappaz

We now present numerical evidence of convergence in the L2 norm even
for the “forbidden direction” test, and in the H1 norm only in the case of a
“permitted direction”. Apparently, the zigzagging behaviour still allows the
solid-liquid front to evolve with a correct average velocity, but with wrong
local gradients. For the sake of brevity, in this section we present only results
for φ, and decreasing the timestep quadratically with the mesh size. We have
observed that in the high anisotropy regime, c always converges better than
φ, and its level sets never present the zigzagging behavior.

Table 5: results for a planar front with normal at angle 0
i h τ ‖e‖L∞(0,T ;L2(Ω)) OCm ‖e‖L2(0,T ;H1(Ω)) OCH1
0 3.54e-01 0.012500 1.38e-01 — 8.16e-01 —
1 1.77e-01 0.003125 3.48e-02 1.99 5.38e-01 0.60
2 8.84e-02 0.000781 1.27e-02 1.46 5.81e-01 -0.11
3 4.42e-02 0.000195 6.58e-03 0.94 6.04e-01 -0.06

Table 6: results for a planar front with normal at angle π/4
i h τ ‖e‖L∞(0,T ;L2(Ω)) OCm ‖e‖L2(0,T ;H1(Ω)) OCH1
0 3.54e-01 0.012500 2.26e-01 — 8.76e-01 —
1 1.77e-01 0.003125 4.95e-02 2.19 4.07e-01 1.11
2 8.84e-02 0.000781 7.59e-03 2.70 2.00e-01 1.02
3 4.42e-02 0.000195 1.89e-03 2.01 1.01e-01 0.99

From the results presented in Tables 5-6 and Figure 7, we conjecture that
the result of Theorem 5.1 still holds in the high anisotropy case, whenever
the level sets of the solution have normals in the region where the anisotropy
operator is still convex.
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Figure 7: Error reduction with high anisotropy

6.4 A physical example

For the physical example, parameters of the nonlinear functions defined in
(1.6)-(1.12) are set to

αA = 0.508, αB = 0.489, (6.11)

βA = .258, βB = −.241, (6.12)
γ = 5.62× 10−4, (6.13)
Ds = 10−4, (6.14)
δ = 10−2. (6.15)

These are physical values for the Ni-Cu alloy, except for δ. Anisotropy is set
to the physical value ā = 2%. [6] In figure 8, we present the level sets φ = 1/2
at regular time intervals after an initial condition with circular symmetry. In
this computation, the boundary conditions are the natural conditions for the
differential operators, and there is no artificial forcing term. Notice that at
the tip of the dendrite, the level sets are evenly spaced, indicating a uniform
velocity, as expected from physics, except for small times and close to the
boundary of the domain.
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Figure 8: Physical simulation for Ni-Cu, ā = 0.02
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