Propriétés des classes d’éléments α-standard
Annales Mathématiques Blaise Pascal, Tome 4 (1997) no. 1, pp. 57-67.
@article{AMBP_1997__4_1_57_0,
     author = {Isambert, Emmanuel},
     title = {Propri\'et\'es des classes d{\textquoteright}\'el\'ements $\alpha $-standard},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {57--67},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {4},
     number = {1},
     year = {1997},
     doi = {10.5802/ambp.88},
     zbl = {0911.03034},
     language = {fr},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.88/}
}
Emmanuel Isambert. Propriétés des classes d’éléments $\alpha $-standard. Annales Mathématiques Blaise Pascal, Tome 4 (1997) no. 1, pp. 57-67. doi : 10.5802/ambp.88. https://ambp.centre-mersenne.org/articles/10.5802/ambp.88/

[1] J.L. Bell and A.B. Slomson. Models and Ultraproducts: an introduction. North Holland, 1971. | MR 269486 | Zbl 0179.31402

[2] Labib Haddad. La double ultrapuissance. Exposé 24, Séminaire d'Analyse, Université de Clermont II, Département de Mathématiques, 1987-88. | MR 1088979 | Zbl 0697.03040

[3] W.A.J. Luxemburg and K.D. Stroyan. Introduction to the theory of infinitesimals. London Academic Press, 1976. | MR 491163 | Zbl 0336.26002

[4] Edward Nelson. Internal set theory. Bull. Amer. Math. Soc., 83:1165-1198, 1977. | MR 469763 | Zbl 0373.02040

[5] Edward Nelson. The syntax of non standard analysis. Annals of Pure and Applied Logic, 38(2):123-124, 1988. | Zbl 0642.03040

[6] Yves Péraire. Théorie relative des ensembles internes. Osaka Journal of Mathematics, (2), 1992. | MR 1173990 | Zbl 0803.03046

[7] Abraham Robinson. Non standard analysis. North Holland, Amsterdam, 1966. | MR 205854 | Zbl 0151.00803