@article{AMBP_1996__3_2_189_0, author = {R.K. Raina and R.K. Ladda}, title = {A new family of functional series relations involving digamma functions}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {189--198}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {3}, number = {2}, year = {1996}, doi = {10.5802/ambp.76}, zbl = {0869.33006}, mrnumber = {1435324}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.76/} }
TY - JOUR TI - A new family of functional series relations involving digamma functions JO - Annales Mathématiques Blaise Pascal PY - 1996 DA - 1996/// SP - 189 EP - 198 VL - 3 IS - 2 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.76/ UR - https://zbmath.org/?q=an%3A0869.33006 UR - https://www.ams.org/mathscinet-getitem?mr=1435324 UR - https://doi.org/10.5802/ambp.76 DO - 10.5802/ambp.76 LA - en ID - AMBP_1996__3_2_189_0 ER -
%0 Journal Article %T A new family of functional series relations involving digamma functions %J Annales Mathématiques Blaise Pascal %D 1996 %P 189-198 %V 3 %N 2 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://doi.org/10.5802/ambp.76 %R 10.5802/ambp.76 %G en %F AMBP_1996__3_2_189_0
R.K. Raina; R.K. Ladda. A new family of functional series relations involving digamma functions. Annales Mathématiques Blaise Pascal, Volume 3 (1996) no. 2, pp. 189-198. doi : 10.5802/ambp.76. https://ambp.centre-mersenne.org/articles/10.5802/ambp.76/
[1 ] A certain family of infinite series associated with digamma functions, J. Math. Anal. Appl. 159 (1991), 361-372. | MR: 1120938 | Zbl: 0726.33002
, and ,[2 ] Asymptotic expansions and analytical countinuations for a class of Barnes - integral, Compositio Math. 15 (1964) , 239-341. | Numdam | MR: 167651 | Zbl: 0129.28604
,[3 ] The G and H functions as symmetrical Fourier Kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429. | MR: 131578 | Zbl: 0096.30804
,[4 ] Functional relations by means of Riemann - Liouville operator, Serdica 13 (1987), 170-173. | MR: 903439 | Zbl: 0634.33007
,[5 ] A functional relation involving Ψ-function, Rev. Tech. Fac. Ingr. Univ. Zulia 8 (1985), 31-35. | MR: 824949 | Zbl: 0589.39009
and ,[6 ] Summation of certain infinite series with digamma functions, C.R. Acad. Bulgare Sci. 41 (11) (1988), 15-17. | MR: 985873 | Zbl: 0662.33001
and ,[7 ] The development of functional relations by means of fractional calculus, in Fractional Calculus, Pitman Ad. Publishing Program Boston (1985), 32-43. | MR: 860085 | Zbl: 0616.26005
and ,[8 ] An application of Riemann - Liouville operator in the unification of certain functional relations, J. College Engrg. Nihhon Univ. 32 (1991), 133-139. | MR: 1213814 | Zbl: 0896.33008
and ,[9 ] Certain class of infinite series summable by means of fractional calculus, J. College Engrg. Nihon Univ. 30 (1989), 97-106. | MR: 985182 | Zbl: 0651.33002
and ,[9 a ] Leçons sur les séries d'interpolation, Paris, Gauthier-Villars, 1926. | JFM: 52.0301.04
,[10 ] A series relation by means of certain fractional calculus operators, Indian J. Pure Appld. Math. 21(2) (1990), 172-175. | MR: 1041940 | Zbl: 0693.33003
,[11 ] Serendipidity in maths or how one is led to discover that ∑ ∞ n=1 ((1.3.5...(2n-1))/(n.2n.n!)) = ((1/2) + (3/16) + (15/144) + ...) = ln4, Amer. Math. Monthly 90 (1983) 562-566. | Zbl: 0539.26005
,[12 ] Methods of Summation, Descrates Press, Koriyama (1987). | MR: 1012739 | Zbl: 0726.40001
,[13 ] An elementary proof of a generalization of a certain functional relations derived by means of fractional calculus, J. Fractional calculus 1 (1992), 69-74. | MR: 1165437 | Zbl: 0849.33009
and ,[14 ] Multiple Gaussian Hypergeometric Series, Ellis Horwood Publication (1985). | MR: 834385 | Zbl: 0552.33001
and ,[15 ] The H functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras (1982). | MR: 691138 | Zbl: 0506.33007
, and ,Cited by Sources: