@article{AMBP_1996__3_2_135_0, author = {A.K. Katsaras and A. Beloyiannis}, title = {On the topology of compactoid convergence in non-archimedean spaces}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {135--153}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {3}, number = {2}, year = {1996}, doi = {10.5802/ambp.72}, zbl = {0892.46086}, mrnumber = {1435320}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.72/} }
TY - JOUR TI - On the topology of compactoid convergence in non-archimedean spaces JO - Annales Mathématiques Blaise Pascal PY - 1996 DA - 1996/// SP - 135 EP - 153 VL - 3 IS - 2 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.72/ UR - https://zbmath.org/?q=an%3A0892.46086 UR - https://www.ams.org/mathscinet-getitem?mr=1435320 UR - https://doi.org/10.5802/ambp.72 DO - 10.5802/ambp.72 LA - en ID - AMBP_1996__3_2_135_0 ER -
%0 Journal Article %T On the topology of compactoid convergence in non-archimedean spaces %J Annales Mathématiques Blaise Pascal %D 1996 %P 135-153 %V 3 %N 2 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://doi.org/10.5802/ambp.72 %R 10.5802/ambp.72 %G en %F AMBP_1996__3_2_135_0
A.K. Katsaras; A. Beloyiannis. On the topology of compactoid convergence in non-archimedean spaces. Annales Mathématiques Blaise Pascal, Volume 3 (1996) no. 2, pp. 135-153. doi : 10.5802/ambp.72. https://ambp.centre-mersenne.org/articles/10.5802/ambp.72/
[1] The bidual of a non-Archimedean locally convex space, Proc. Kon. Ned. Akad. Wet., A 92 (2) (1989) 203-312. | MR: 1005052 | Zbl: 0693.46071
,[2] Compact like operators between non-Archimedean normed spaces, Proc. Kon. Ned. Akad. Wet., A 85 (1982), 423-429.
and ,[3] Topological Vector Spaces and Distributions, Addison-Wesley, Reading, Massachusets. Palo Alto-London. Don mills. Ontario, 1966. | MR: 205028 | Zbl: 0143.15101
,[4] Spaces of non-Archimedean valued functions, Bolletino U.M.I (6) 5-B (1986), 603-621. | MR: 860645 | Zbl: 0611.46074
,[5] The non-Archimedean Grothendieck's completeness Theorem, Bull. Inst. of Math. Acad. Sinica, vol. 19, no 1 (1991), 351-354. | MR: 1157888 | Zbl: 0780.46043
,[6] Non-Archimedean weighted spaces of continuous functions, Rendiconti di Matematica, Ser. VII. vol. 16, Roma(1996) (to appear). | MR: 1451076 | Zbl: 0911.46049
and ,[7] On non-Archimedean weighted spaces of continuous functions, Proc. Fourth Conf. on p-adic Analysis (Nijmegen, The Netherlands), Marcel Dekker (to appear). | MR: 1459213 | Zbl: 0947.46057
and ,[8] Non-Archimedean sequential spaces and the finest locally convex topology with the same compactoid sets, Acta Math. Univ. Comenianae, vol. LXIII, 1 (1994), 55-75. | EuDML: 118731 | MR: 1342595 | Zbl: 0826.46073
, and ,[9] The Hahn-Banach extension Theorem in p-adic Analysis ", in: p-adic Functional Analysis, Marcel Dekker, New York. Bassel. Hong Kong (1992), 127-140. | MR: 1152574 | Zbl: 0776.46036
, "[10] Locally convex spaces over nonspherically complete valued fields I, II Bull. Soc. Math. Belg. Sr. B 38( (1986). 187-224. | MR: 871313 | Zbl: 0615.46071
,[11] The continuous linear image of a p-adic compactoid Proc. Kon. Ned. Akad. Wet. A 92 (1989), 119-123. | MR: 993683 | Zbl: 0696.46053
,[12] The p-adic Krein-Šmulian Theorem ", in: p-adic Functional Analysis, Marcel Dekker, New York. Basel. Hong Kong (1992), 177-189. | MR: 1152578 | Zbl: 0781.46053
, "[13] A perfect duality between p-adic Banach spaces and compactoids, Indag. Math. N.S., 6(3) (1995), 325-339. | MR: 1351151 | Zbl: 0837.46062
,Cited by Sources: