On the topology of compactoid convergence in non-archimedean spaces
Annales Mathématiques Blaise Pascal, Tome 3 (1996) no. 2, pp. 135-153.
@article{AMBP_1996__3_2_135_0,
     author = {Katsaras, A.K. and Beloyiannis, A.},
     title = {On the topology of compactoid convergence in non-archimedean spaces},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {135--153},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {3},
     number = {2},
     year = {1996},
     doi = {10.5802/ambp.72},
     zbl = {0892.46086},
     mrnumber = {1435320},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.72/}
}
A.K. Katsaras; A. Beloyiannis. On the topology of compactoid convergence in non-archimedean spaces. Annales Mathématiques Blaise Pascal, Tome 3 (1996) no. 2, pp. 135-153. doi : 10.5802/ambp.72. https://ambp.centre-mersenne.org/articles/10.5802/ambp.72/

[1] N. De Grande-De Kimpe, The bidual of a non-Archimedean locally convex space, Proc. Kon. Ned. Akad. Wet., A 92 (2) (1989) 203-312. | MR 1005052 | Zbl 0693.46071

[2] N. De Grande-De Kimpeand J. Martinez-Maurica, Compact like operators between non-Archimedean normed spaces, Proc. Kon. Ned. Akad. Wet., A 85 (1982), 423-429.

[3] J. Horvath, Topological Vector Spaces and Distributions, Addison-Wesley, Reading, Massachusets. Palo Alto-London. Don mills. Ontario, 1966. | MR 205028 | Zbl 0143.15101

[4] A.K. Katsaras, Spaces of non-Archimedean valued functions, Bolletino U.M.I (6) 5-B (1986), 603-621. | MR 860645 | Zbl 0611.46074

[5] A.K. Katsaras, The non-Archimedean Grothendieck's completeness Theorem, Bull. Inst. of Math. Acad. Sinica, vol. 19, no 1 (1991), 351-354. | MR 1157888 | Zbl 0780.46043

[6] A.K. Katsaras and A. Beloyiannis, Non-Archimedean weighted spaces of continuous functions, Rendiconti di Matematica, Ser. VII. vol. 16, Roma(1996) (to appear). | MR 1451076 | Zbl 0911.46049

[7] A.K. Katsaras and A. Beloyiannis, On non-Archimedean weighted spaces of continuous functions, Proc. Fourth Conf. on p-adic Analysis (Nijmegen, The Netherlands), Marcel Dekker (to appear). | MR 1459213 | Zbl 0947.46057

[8] A.K. Katsaras, C. Petalas and T. Vidalis, Non-Archimedean sequential spaces and the finest locally convex topology with the same compactoid sets, Acta Math. Univ. Comenianae, vol. LXIII, 1 (1994), 55-75. | EuDML 118731 | MR 1342595 | Zbl 0826.46073

[9] C. Pérez-Garcia, "The Hahn-Banach extension Theorem in p-adic Analysis ", in: p-adic Functional Analysis, Marcel Dekker, New York. Bassel. Hong Kong (1992), 127-140. | MR 1152574 | Zbl 0776.46036

[10] W.H. Schikhof, Locally convex spaces over nonspherically complete valued fields I, II Bull. Soc. Math. Belg. Sr. B 38( (1986). 187-224. | MR 871313 | Zbl 0615.46071

[11] W.H. Schikhof, The continuous linear image of a p-adic compactoid Proc. Kon. Ned. Akad. Wet. A 92 (1989), 119-123. | MR 993683 | Zbl 0696.46053

[12] W.H. Schikhof, "The p-adic Krein-Šmulian Theorem ", in: p-adic Functional Analysis, Marcel Dekker, New York. Basel. Hong Kong (1992), 177-189. | MR 1152578 | Zbl 0781.46053

[13] W.H. Schikhof, A perfect duality between p-adic Banach spaces and compactoids, Indag. Math. N.S., 6(3) (1995), 325-339. | MR 1351151 | Zbl 0837.46062