About ambivalent groups
Annales Mathématiques Blaise Pascal, Tome 3 (1996) no. 2, pp. 17-22.
@article{AMBP_1996__3_2_17_0,
     author = {Armeanu, Ion},
     title = {About ambivalent groups},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {17--22},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {3},
     number = {2},
     year = {1996},
     doi = {10.5802/ambp.65},
     zbl = {0867.20006},
     mrnumber = {1435313},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.65/}
}
Ion Armeanu. About ambivalent groups. Annales Mathématiques Blaise Pascal, Tome 3 (1996) no. 2, pp. 17-22. doi : 10.5802/ambp.65. https://ambp.centre-mersenne.org/articles/10.5802/ambp.65/

[1 ] B. Hupert, N. Blackburn, Finite Groups, Vol. 2, Springer Verlag, 1982. | Zbl 0477.20001

[2 ] W. Feit, G. Seitz On finite rational groups and related topics, Illinois J. of Mathematics, Vol. 33, no. 1, 1988, (103-131). | MR 974014 | Zbl 0701.20005

[3 ] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976. | MR 460423 | Zbl 0337.20005

[4 ] J.S. Rose, A Course in Group Theory, Cambridge, 1978. | MR 498810 | Zbl 0371.20001

[5 ] M. Suzuki, Group Theory, Vol. 2, Springer Verlag, 1986. | Zbl 0586.20001

[6 ] J.H. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math., 89 (1969) 405-514. | MR 249504 | Zbl 0184.04605