Feynman et les mathématiques
Annales Mathématiques Blaise Pascal, Tome 3 (1996) no. 1, pp. 211-226.
@article{AMBP_1996__3_1_211_0,
     author = {Zambrini, Jean-Claude},
     title = {Feynman et les math\'ematiques},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {211--226},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {3},
     number = {1},
     year = {1996},
     doi = {10.5802/ambp.62},
     zbl = {0864.60001},
     mrnumber = {1397333},
     language = {fr},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.62/}
}
Jean-Claude Zambrini. Feynman et les mathématiques. Annales Mathématiques Blaise Pascal, Tome 3 (1996) no. 1, pp. 211-226. doi : 10.5802/ambp.62. https://ambp.centre-mersenne.org/articles/10.5802/ambp.62/

[0] R. Descartes, Discours de la méthode, Flammarion, Paris.

[1] J. Von Neumann, Mathematical foundations of Quantum Mechanics, Princeton Univ. Press, Princeton N. J. (1955). | MR 66944 | Zbl 0064.21503

[2] E. Schrödinger, Quantization as a problem of proper values, part I,II, Annalen der Physik (4), vol 79 (1926).

[3] (1) V. Arnold, Méthodes mathématiques de la mécanique classique, Editions Mir, Moscou (1976). (2) R. Abraham,J. Marsden, Foundations of Mechanics, Benjamin (1978). | MR 474391 | Zbl 0385.70001

[4] R. Feynman,A. Hibbs, Quantum mechanics and path integrals, Mc. Graw-Hill (1965). | Zbl 0176.54902

[5] R.H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. Physics 39,126 (1960). | MR 127776 | Zbl 0096.06901

[6] B. Simon, Functional integration and quantum physics, Acad .Press, N. Y. (1979). | MR 544188 | Zbl 0434.28013

[7] W.H. Fleming,H.M. Soner, Controlled Markov processes and viscosity solutions, Springer-Verlag, New York (1993). | MR 1199811 | Zbl 0773.60070

[8] N.V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Reidel, Dordrecht (1987). | Zbl 0619.35004

[9] P.L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equation, part I, Comm. PDE 8, 1101 (1983; | MR 709164 | Zbl 0716.49022

P.L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equation, part II, Comm. PDE 8, 1229 (1983). | MR 709162 | Zbl 0716.49023

[10] N. Ikeda,S. Watanabe, Stochastic differential equations and diffusion processes, North - Holland Kodansha, N. Y., (1981). | MR 637061 | Zbl 0495.60005

[11] A.D. Wentzell, A course in the theory of stochastic processes, Mc. Graw-Hill, N. Y. (1981). | Zbl 0502.60001

[12] (1) J.C. Zambrini, J. Math. Phys. 27, 2307 (1986). (2) S. Albeverio,K. Yasue,J.C. Zambrini, Ann.Inst. Henri Poincaré, Phys. Th. 49 (3), 259 (1989). | Numdam | MR 854761 | Zbl 0687.60091

[13] E. Nelson, Dynamical theories of Brownian motion, Princeton Univ. Press, Princeton, N.J. (1967). | MR 214150 | Zbl 0165.58502

[14] (1) A. Beurling, Annals of Math. (2), 72, n. 1, 189 (1960). (2) B. Jamison, Z. Wahrsch. Gebiete 30, 65 (1974). | MR 125424 | Zbl 0091.13001

[15] A.B. Cruzeiro,J.C. Zambrini, Journ. of Funct. Anal. vol 96, n.1, 62 (1991); Journ. of Funct.Anal. vol 130, n.2, 450 (1995). A.B. Cruzeiro,Z. Haba,J.C.Zambrini, Bernstein diffusions and Euclidean quantum field theory, in Progr. in Prob. vol 36, 77, E. Bolthausen, F. Russo Eds, Birkhäuser (1993).

[16] M. Thieullen,J.C. Zambrini, Symmetries in stochastic calculus of variations, preprint Univ. Paris VI; The theorem of Noether in Schrödinger's Euclidean quantum mechanics, preprint Institut Mittag-Leffler. | MR 1440139

[17] P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, in Proc. Int. Symp. SDE, Kyoto 1976, Kinokuniya, Tokyo (1978). | Zbl 0411.60060

[18] E. Cartan, Leçons sur les invariants intégraux, Hermann, Paris (1971). | MR 355764 | Zbl 0212.12501

[19] A.B. Cruzeiro, J.C. Zambrinien préparation.