@article{AMBP_1994__1_1_75_0, author = {S.D. Bajpai and M.S. Arora}, title = {Semi-orthogonality of a class of the {Gauss'} hypergeometric polynomials}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {75--83}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {1}, number = {1}, year = {1994}, doi = {10.5802/ambp.6}, zbl = {0798.33006}, mrnumber = {1275218}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.6/} }
TY - JOUR TI - Semi-orthogonality of a class of the Gauss' hypergeometric polynomials JO - Annales Mathématiques Blaise Pascal PY - 1994 DA - 1994/// SP - 75 EP - 83 VL - 1 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.6/ UR - https://zbmath.org/?q=an%3A0798.33006 UR - https://www.ams.org/mathscinet-getitem?mr=1275218 UR - https://doi.org/10.5802/ambp.6 DO - 10.5802/ambp.6 LA - en ID - AMBP_1994__1_1_75_0 ER -
%0 Journal Article %T Semi-orthogonality of a class of the Gauss' hypergeometric polynomials %J Annales Mathématiques Blaise Pascal %D 1994 %P 75-83 %V 1 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://doi.org/10.5802/ambp.6 %R 10.5802/ambp.6 %G en %F AMBP_1994__1_1_75_0
S.D. Bajpai; M.S. Arora. Semi-orthogonality of a class of the Gauss' hypergeometric polynomials. Annales Mathématiques Blaise Pascal, Volume 1 (1994) no. 1, pp. 75-83. doi : 10.5802/ambp.6. https://ambp.centre-mersenne.org/articles/10.5802/ambp.6/
[1] A new orthogonality property for the Jacobi polynomials and its applications. Nat. Acad. Sci. Letters, Vol. 15, No 7 (1992), 1-6. | MR: 1224858 | Zbl: 0904.33002
[2] Higher transcendental functions. Vol. 1, Mc Graw-Hill, New York (1953). | Zbl: 0051.30303
, et. al.[3] Higher transcendental functions. Vol. 2, Mc Graw-Hill, New York (1953). | Zbl: 0052.29502
, et. al.[4] Tables of integral transforms. Vol. 2, Mc Graw-Hill, New York (1954). | Zbl: 0058.34103
, et. al.[5] The G- and H- functions as symmetrical Fourier Kernels. Trans. Amer. Math. Soc., 98 (1961), 395-429. | MR: 131578 | Zbl: 0096.30804
[6] The H-function with applications in statistics and other disciplines. John Wiley and Sons, New Delhi (1978). | MR: 513025 | Zbl: 0382.33001
andCited by Sources: